
An Open and Automated Android Behavior Monitor in Cloud

CHUN-YING HUANG, SHANG-PIN MA, MING-LUN CHANG, CHIN-HSIANG CHIU, TING-CHUN HUANG

Department of Computer Science and Engineering

National Taiwan Ocean University

TAIWAN

{chuang,albert,10257030,10257023,10257019}@ntou.edu.tw

Abstract

For security and privacy considerations, it is

important for Android users to understand the

behavior and the risk of an application. Although

Google claims that new applications available on the

official market have passed their security checks, the

open design of the Android system still allows a user

to install applications for third-party vendors.

Therefore, there is still a demand for users to know

more about an unknown application. In this paper, we

discussed our experiences on setting up a scalable

automated Android behavior monitor using

virtualization techniques. Our contribution is

two-fold: 1) We design and implement a scalable

behavior monitor using both dynamic analysis and

static analysis techniques; and 2) Based on parts of

the analyzed results, we develop a preliminary filter

to distinguish benign and malicious applications. The

system is open to the public and we expect that the

analyzed results can be fed back to the research

community and further stimulate more studies on

analyzing malicious Android applications.

Keywords: Android, Behavior monitor,

Classification, Dynamic analysis, Static analysis

1 Introduction
The success of the Android mobile operating system

has attracted a large number of users, developers, and

researchers to explore new feasibilities to make a

better mobile life. Due to its opened design, a large

number of applications can be obtained from various

different sources with no charge. However, one

serious problem that every user must face is that –

given a new application, is that application safe to use?

Is an application been compromised by malicious

attackers? Does that application steal personal

confidential information from a mobile device?

 There are many strategies for a user to judge

whether an application is suspicious or not. One

simplest solution to identify suspicious application is

to check the requested permissions of an application

before installing it. For example, a stand-alone jigsaw

puzzle game should not request permission to send a

short message. If the game requests such permission,

it could be suspicious. However, permission-based

determination is not so reliable. Sometimes it is even

difficult to judge whether an application is suspicious

by using permission. For example, an application

may claim that it has a built-in automatic version

check feature so that it requires Internet access.

However, a user is infeasible to determine whether

the application really uses the Internet to check for

updates or it is engaged in some malicious activities

such as stealing personal information or acting as a

stepping stone. In such a case, the user has to make an

in-depth observation so that the real purpose of the

application can be revealed.

 To solve the above issue, it would be better if

there is more information provided to a user before he

is going to install a new application. Therefore, we

design and implemented an automated Android

behavior monitor (ABM) as a cloud service in this

paper. With the proposed solution, a user is able to

submit an application package to our service and then

a comprehensive report is sent back to the user to

understand the behavior of the inspected application.

Besides regular users, a researcher is also able to

retrieve behavior reports for a bunch of benign and

malicious applications and then attempts to find out

distinguishable behavior and attributes to identify

malicious applications. The proposed solution

obtains application behavior by using both dynamic

and static analysis techniques. For dynamic analysis,

it monitors file system access, network access, and

system call sequences. For static analysis, it retrieves

information such as the request permissions, the

required permissions, the built-in API calls,

parameters, and control flows. The proposed solution

also adopts virtualization techniques so that the

service can be scaled out by simply cloning more

virtual machines.

 In addition to the proposed solution, a preliminary

filter is built as an example to classify benign and

malicious applications based on the analytical reports

generated by the proposed solution. We expect that

through an open and automated application behavior

monitor service, we are able to stimulate more studies

on analyzing malicious applications by providing

collected applications as well as thee the analyzed

results to the research community.

 The rest of this paper is organized as follows. In

Section 2, we discuss related works that focus on

analyzing Android applications. In Section 3, we

introduce proposed solution including the design

objectives and the components. In Section 4, we

discuss the preliminary filter that is designed based

on the analyzed results. Finally, a concluding remark

is given in Section 5.

2 Related Work
A lot of researches have been devoted to analyze the

(malicious) behavior on Android applications. Ju et

al. [15] wrote a brief introduction on Android

malware and discuss possible intentions of attackers.

Enck et al. [6] wrote a good introduction on android's

security design in 2009. Basically the android

operating system provides a coarse-grained

mandatory access control (MAC). It is able to enforce

how applications access components based on

permitted permissions. As a result, each android

application must have a list of requested permissions

and all these permissions must be granted at the

install time. The requested permission list is often

declared by an application developer manually.

Hence, a number of interesting researches are

devoted to review how permissions are declared in

applications. Barrera et al. [1] analyzed how

developers of android applications use the

permissions. They explored and analyzed 1,100

applications using the Self-Organizing Map (SOM)

algorithm. They found that although android has a

rich set of permissions, only a small number of these

permissions are actively used by developers. Felt et al.

[7] studied android applications to determine whether

android developers follow least privilege with their

permission requests. They built a tool and applied it

to 940 applications and found that about one-third of

evaluated applications are over privileged. They also

concluded that developers are trying to follow least

privilege but failed due to insufficient API

documentation. Johnson et al. [8] developed an

architecture that automatically searches for and

downloads android applications from android Market.

With the application, they created a detailed mapping

of android API calls to the required permissions. The

idea is similar to [7] but they collected a large number

(141,372) of applications to conduct the experiments.

They found that the majority of developers are not

using the correct permission set. The applications are

either over-specify or under-specify their security

requirements. Zhou and Jiang [13] systematically

characterized 1,260 android malicious applications

from various aspects, including their installation

methods, activation mechanisms, and the carried

malicious payloads. In addition, they also compared

the permission requests of the 1,260 malicious

applications against another top free 1,260 benign

applications on android market. The comparison

shows that the top 20 frequently requested

permissions are similar for both benign and malicious

applications.

 In addition to analyze permissions, a number of

researches tried to detect malicious application using

static analysis or dynamic analysis techniques. These

techniques are similar to those used to detect

traditional malware on desktop personal computers.

Besides many well-known signature-based virus

scanners, androguard [5] is an open source project

that dedicated to detect android malware.

Androguard detect a malicious application or an

injected malicious code based on control flow graph.

A given application package is first disassembled and

each identified method in assembly source codes is

converted into a formatted string that represents the

control flow graph [4] of the method. A number of

predefined malware's control flow graphs are then

compared against the obtained control flow graph

strings to check if they are similar [10] to malware.

Schmidt et al. [12] proposed a static analysis solution

to detect malicious application based on the output of

the readelf tool, which contains a list of symbols that

involved with an executable. They then differentiate

malicious applications from benign ones based on the

combinations of system calls used in the executable.

Burguera et al. [3] proposed to detect malware using

dynamic analysis techniques. They developed a

client named Crowdroid that is able to monitor Linux

kernel system call and report them to a centralized

server. Based on the collected dataset, they cluster

each dataset using a partition clustering algorithm

and hence differentiate between benign and

malicious applications. Bläsing et al. [2] proposed

AASandbox that performs both static analysis and

dynamic analysis on android programs to

automatically detect suspicious applications. Static

analysis scans the software for malicious patterns at

the source code level. Dynamic analysis executes the

application in a sandbox which monitors and logs

low-level accesses to the system for further analysis.

It looks like a complete system but the authors did not

show the performance on analyzing malware and

therefore we do not how its performance. Due to the

lack of malware samples, most existing works

conduct experiments using self-made malware or a

limited number of real malware. It still requires more

evidence to prove the effectiveness of these

solutions.

 It is of course that the current security model

adopted by android could be not the best choice.

Researchers also tried to propose alternatives to the

existing model. Nauman et al. [9] proposed the Apex

framework which allows a user to selectively grant

permissions to applications. The framework includes

an extended package installer and provided an

easy-to-use interface for users to set the runtime

constraints (allow, deny, or conditional allow) for

each permission. Granting permissions explicitly by

users may be not a good idea. Roesner et al. [11]

proposed a user-driven access control where

permission granting is built into existing user actions

in the context of an application, rather than added as

an afterthought via manifests or system prompts.

Application developers have to modify their codes by

embedding access control gadgets (ACGs) into the

user interface (UI) of applications. Then, permissions

are granted implicitly when a user takes actions via

the UI. User-driven access control is able to grant

permission in one time, in a session, in a period of

time, or permanently depending on the corresponding

action. It guarantees the least-privilege security

model without losing its flexibility and ease-of-use

property. Nevertheless, with existing design, android

users now can simply make judgments based on the

permissions, which is coarse-grained and still a

difficult puzzle.

3 The Proposed Solution
The overall architecture of the proposed solution is

shown in Figure 1. Except the web portal, all other

components reside in a private network. Therefore, a

user is only able to access the service via the web

portal. On receipt of an application package (the

so-called APK file), the hash value of that APK file is

evaluated and compared against existing repository

to ensure it is a fresh package. It a submitted package

is now new, a previously analyzed report is sent back

to the user immediately. On the contrary, if a fresh

APK file is received, it is placed into the “APKs and

Logs” repository and then scheduled to be inspected

later. The inspection of application behavior is done

by virtual machines in the pool. Each virtual machine

is able to run several concurrent inspection instances

to monitor multiple applications at the same time.

This would shorten the required time to analyze

packages in the submission queue. However, if the

number of virtual machines is not sufficient enough

to process queued APK files in a reasonable time,

more virtual machines can be cloned to share the

workloads.

 The components of an inspection instance are

shown in Figure 2. Each instance has four major

components, i.e., the file system monitor, the system

call sequence monitor, the network traffic monitor,

and the static analyzer. The detail of each component

is introduced later in this Section.

3.1 File System Monitor
We develop our own file system monitor to log file

access activities during the execution process of an

application. As shown in Figure 3, we add a

transparent intermediate layer between applications

and the physical file system. At the beginning, we

choose to use the FUSE (file system in user-space) to

implement the intermediate layer. Although it is

easier to code and debug, the FUSE sub-system

Figure 1 The overall architecture of the proposed

solution.

Input APK

Dynamic
Analysis

File System
Monitor

Network
Monitor

System Call
Monitor

Permission,
Signature, ...

Analytical
Report

Static
Analysis

Figure 2 The components of an inspection instance.

Application

Application

/data
On Physical FS

/mydata
On Physical FS

/data
On UnionFS

(a) Not monitored

(b) Monitored transparently

Figure 3 Access a real file system via a transparent

intermediate layer.

cannot handle access permissions from different

users properly. Therefore, we switched from FUSE to

UnionFS, which is an in-kernel file system that is

able to merge multiple mounts in a single view. To

activate either FUSE or UnionFS, we have to

re-compile the Linux kernel and modify the start-up

scripts so that the monitored file system is mounted at

a different location, e.g., from /data to /mydata, and

then we can mount our transparent intermediate layer

to intercept file system operations for a monitored

mount point, e.g., /data. Currently we monitored

only for /data and /cache, but more mount points

can be easily monitored as well.

 The Android emulator emulates an ARM-based

CPU. Therefore, we use the official development

toolkit NDK to conduct cross-compile on x86 Linux

hosts. Kernel source codes are retrieved from Google

source [14]. Since UnionFS is not part of the standard

kernel, we manually merge the UnionFS into the

kernel source tree. When the cross-compiling of the

Linux kernel is done, we then modify the init.rc

file stored under the root directory. This file defined

fundamental start-up scripts and services. For each

monitored file system, we alter the default mount

point defined in init.rc and then mount UnionFS at

its original path. As a result, we can then intercept

and log all interested file system activities.

3.2 System Call Monitor
To implement the system call monitor, we use the

open source strace tool. The strace tool is a

command-line tool that intercepts and records the

system calls that called by a process and the signals

that are received by a process. The name of each

system call, its arguments, and its return value are

printed on standard error or to a specified file. Since

the Android OS is a Linux-based operating system, it

is not difficult to port the tool onto Android using the

NDK. The problem of monitor an Android

application is that: How to attach the strace tool to

an Android application process, especially when the

process is launched in a virtual machine?

 Readers may have launched an Android

application in the shell prompt using the am script.

However, if you use the strace tool to monitor the

am script, you are not able to monitor any system calls

called by the application process. To make a

successful system call monitor, we have to

understand the process that the Android OS launches

an application. As shown in Figure 4, a user may

launch an application by clicking the application icon

in the launcher or using a shell command such as am

to start an application. The launch request is sent to

the activity manager service and then the application

process is forked by the zygote service, which

creates a Dalvik virtual machine and then run the

Java-based application in the virtual machine.

Therefore, the strace tool should be attached to the

zygote service instead of the launcher or the am

script. There are two possible strategies to achieve

the goal. First, a user is able to modify the init.rc

file, which also defines the command line to launch

the zygote service, and append the strace tool

before that command line. Alternatively, a user is

able to attach the strace tool to the zygote process

on demand and then launch the monitored Android

application.

 We recommend the second strategy because it is

much simpler and the output of the strace tool

contains less noise.

3.3 Network Monitor
Implement the network monitor is straightforward.

There are two different solutions. If an application is

monitored in an Android emulator, the emulator itself

has an option to save all the network traffic of the

emulator into a single file using the pcap format,

Launcher

Activity
Manager
Service

Zygote
Activity Thread

(Dalvik VM)

App
Class

New
Activity

2. LAUNCH_ACTIVITY

1. BIND_APPLICATION

1. onCreate()
2. onStart()

Looper

fork

Process.start()
(returns pid)

looper.loop()

startActivity(intent)

Figure 4 Android’s application launch process.

IP 122.225.x.y.80 > 10.0.2.15.41762: Flags
[S.], seq 164288001, ack 669385195, win 8192,
options [mss 1460], length 0

0x0000: 0000 0001 0006 5254 0012 3502 0000 0800
0x0010: 4508 002c 05ec 0000 4006 d040 7ae1 xxyy
0x0020: 0a00 020f 0050 a322 09ca d601 27e6 01eb
0x0030: 6012 20

Figure 5 A sample network flow sent from a malicious

application.

which is the same as the well-known tcpdump tool. In

case that an application is not monitored in an

emulator, we can still cross-compile the tcpdump tool

and then capture the traffic using that tool. When the

monitoring of an application is finished, the captured

network traces is then used for further analysis.

 A simple screen shot for a captured network flow

is shown in Figure 5. It is a request sent by a

malicious application. The application connects to a

suspicious IP address 122.225.x.y in China using the

HTTP protocol. For the ease of understanding the

application behavior, we also write several scripts to

parse the pcap file and generate comprehensive

reports such as lists of IP addresses, lists of domain

names, and data exchanged in unencrypted popular

application protocols such as HTTP.

3.4 Static Analysis
Our static analysis implementation majorly relies on

the androguard tool. Androguard is a reverse

engineering tool for Android packages. It is written in

python. It is able to retrieve meta-information from

an APK file as well as disassemble the package into

assembly language using Jasmin’s (dedexer’s) syntax.

Some primitive meta-information of an application

includes its package ID, API level, activities, services,

and requested permissions. It is also to statically

analyze the package and retrieve advanced

information such as the required (actual) permissions.

In addition, androguard has several built-in

signatures that are able to detect some existing

malicious applications.

 One important feature of androguard is to create

control flow graph (CFG) [15] of each function. A

CFG is a string-represented function structure. The

syntax of CFG strings is shown in Figure 6.

Therefore, given a short piece of code in Figure 7, it

can be converted into a CFG string represented by

BGBG. Since most android malicious software is

repackaged software, androguard detects malicious

software by comparing a CFG string against

previously collected CFG strings signatures from

malicious applications, as shown in Figure 8. The

comparison of CFG string signatures is done by using

various string similarity algorithms such as

Kolmogorov complexity, NCD, NCS, and entropy.

 Although androguard is able to effectively detect

malicious applications, most of the CFG string

signatures used by androguard are generated

manually. It would better if the generation of

malicious signatures can be done automatically.

Therefore, our analytical reports also attempt to

generate the CFG string for all analyzed applications

Procedure ::= StatementList
StatementList ::= Statement | Statement
StatementList
Statement ::= BasicBlock | Return | Goto |
 If | Field | Package | String
Return ::= 'R'
Goto ::= 'G'
If ::= 'I'
BasicBlock ::= 'B'
Field ::= 'F'0 | 'F'1
Package ::= 'P' PackageNew | 'P' PackageCall
PackageNew ::= '0'
PackageCall ::= '1'
PackageName ::= Epsilon | Id
String ::= 'S' Number | 'S' Id
Number ::= \d+
Id ::= [a-zA-Z]\w+

Figure 6 The syntax of the control flog graph string

represtation.

 1: mov X, 4

 2: mov Z, 5  B
 3: add X, Z

 4: goto +50  G

 5: add X, Z  B

 6: goto -100  G

Figure 7 An example of generating CFG string from a

short piece of code.

Input APk

Disassemble

Identify Functions
and

Convert to CFGs

Compare
against

CFGs in Database

(Malware)
CFG Database

Matched?

Malicious

Yes

Not Malicious

No

Figure 8 The malicious application detectioin flow of

androguard.

Figure 9 The web portal page of the proposed solution.

and we expect that by mining the CFG strings for

both benign and malicious applications would help

the research on automatic generation of CFG string

signatures.

 In addition to androguard, we also use anti-virus

software to check whether an examined application is

a malicious application. This information is stored

along with the report so that a user is able to

determine whether a submitted APK file is a known

malicious malware or not. Currently we use the open

source ClamAV virus scanner and the commercial

Avira virus scanner in the Linux host. Note that we

did not scan for virus inside a virtual machine

instance. Instead, it is performed outside of the VM to

simplify the implementation of virtual machine

images.

3.5 The Implementation
We implement all the inspection instances in a single

virtual machine image. For the ease of expanding the

system, we use qemu-kvm as the core of our

virtualization technique and host virtual machines on

an Ubuntu Linux operating system. Each virtual

machine image contains all the introduced

components. The job dispatching from the web portal

is done by using HTTP requests as well. On receipt of

a fresh APK, an inspection request is sent from the

web portal to a selected VM instance. When an

inspection is done, the results are then stored into the

“APKs and Logs” repository.

 To simplify the design, the web portal provides a

single file chooser for users to choose a local file and

upload it to our system. To prevent a malicious file

from triggering alerts from local anti-virus scanners,

we recommend a user to temporarily disable the

real-time virus scanner and encrypt a malicious

sample APK files as a password protected ZIP file

with a password of “infected.” Figure 9 shows the

screenshot for the web portal. Figure 10 shows the

system call traces obtained from an uploaded

application for three minutes of monitoring. It has

made 1,623 system calls but due to the limit of the

page length, we only leave the head and the tail part.

Figure 10 A sample screenshot that shows the system

call traces monitored by the propsoed system.

com.rovio.angrybirds:
0,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,
0,
0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,
0,
0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,benign

Figure 11 An example of the AngryBird bit-vector for

the mix of requested and required permissions retrieve

from the analytical report.

4 Application
Based on our analytical report for 120 thousands

android applications, we have designed a preliminary

quick filter to exclude benign samples from being

further inspected. The filter is based on a simple

assumption: Can we identify a suspicious application

by simply checking the requested and required

permissions of an application?

 To answer the question, we retrieve the requested

and the required permissions reported by the system.

We then create three data sets: #1) the requested

permissions; #2) the required permissions; and #3)

the mix of the requested and the required permissions.

We translate each data set into a bit vector to indicate

what permissions are needed by an application. Since

Android has 139 built-in permissions, both dataset #1

and dataset #2 have exact 139 bits but dataset #3 has

278 bits. Figure 11 shows an example for the

AngryBird game for dataset #3. In addition to the bit

values, the virus scanning tag is attached at the end of

the vector.

 We then create the malicious application filter by

collecting bit vectors of malicious samples. To

reduce false positives, a bit vector with more than or

equal to N bit-1 is preserved. Otherwise, it is dropped.

The set of all the collected bit vectors is used as the

quick filter. The number of bit vectors within a filter

created by using different N is shown in Figure 12.

Note that duplicated bit vectors are eliminated so the

bit vectors with in a filter are all distinct.

 To quickly filter out benign applications, for each

suspicious application, we retrieve its requested and

required permissions, create the bit vector V for the

application, and then make a bitwise AND operation

iteratively for V and each bit vector V’ in the filter. If

a V AND V’ operation is equivalent to V’, we believe

that the application is a possible malicious candidate.

 Based on the above strategy, we evaluate filters

created for the three data sets. The results are shown

in Figure 13. We found that the filters created from

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

requested required mixed

Figure 12 The number of bit vectors collected for different value of N (ranging from 1 to 16).

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FP Rate TP Rate Precision

(a) Based on requested permissions.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FP Rate TP Rate Precision

(b) Based on required permissions.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FP Rate TP Rate Precision

(c) Based on the mixed permissions.

Figure 13 The performace of the fiilters created using

different datasets.

either requested permissions or required permissions

alone did not perform well. But the filter created from

the mix of requested and required permissions has a

good performance if the number N is well-selected.

When N is set to 9, there are 103 bit vectors within

the filter. The resulted filter is able to detect

approximately 96% of malware while the false

positive rate is only 18%. This also means that the

filter is able to detect most malicious applications and

is able to reduce more than 80% workload of the

backend fully featured malicious software analyzer.

5 Conclusion
The open design of the Android operating system

provides its users a great flexibility on selecting the

source of applications. However, a user still has to

take the risk of installing a malicious application

since not all applications have passed security checks.

We would like to reduce the risk by providing more

behavioral information about an application to both

users and researchers. In addition to understand an

individual application’s behavior, our preliminary

application also shows that by observing behavior

from a bunch of application, it is possible to find out

good solutions to classify applications. We expect the

analytical reports provided by the proposed service

can be good materials for researchers to have

complete pictures of applications’ behavior and

therefore stimulates studies on the detection of

malicious applications.

Acknowledgment
This work was support in part by National Science

Council by the grant NSC 102-2219-E-019-001. We

thank the anonymous reviewers for their insightful

and helpful comments.

References

[1] David Barrera, H. Güne s Kayacik, Paul C. van

Oorschot, and Anil Somayaji, A methodology for

empirical analysis of permission-based security

models and its application to android, Proc. ACM

conference on Computer and Communications

Security (CCS), Chicago, IL, USA, 2010, pp.

73-84.

[2] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick

Schmidt, Seyit Ahmet Camtepe, and Sahin

Albayrak, An android application sandbox

system for suspicious software detection, Proc.

IEEE International Conference on Malicious and

Unwanted Software (MALWARE), Nancy,

France, 2010, pp. 55-62.

[3] Iker Burguera, Urko Zurutuza, and Simin

Nadjm-Tehrani, Crowdroid: behavior-based

malware detection system for android, Proc.

ACM workshop on Security and Privacy in

Smartphones and Mobile Devices (SPSM),

Chicago, IL, USA, 2011, pp. 15-26.

[4] Silvio Cesare and Yang Xiang, Classification of

malware using structured control flow, Proc.

Australasian Symposium on Parallel and

Distributed Computing (AusPDC), Brisbane,

Australia, 2010, pp. 61-70.

[5] Anthony Desnos, androguard - reverse

engineering, malware and goodware analysis of

android applications ... and more (ninja !), Google

Project Hosting, [online]

http://code.google.com/p/androguard/.

[6] William Enck, Machigar Ongtang, and Patrick

McDaniel, Understanding android security, IEEE

Security and Privacy, Vol. 7, No. 1, 2009, pp.

50-57.

[7] Adrienne Porter Felt, Erika Chin, Steve Hanna,

Dawn Song, and David Wagner, Android

permissions demystified, Proc. ACM conference

on Computer and Communications Security,

Chicago, IL, USA, 2011, pp. 627-638.

[8] Ryan Johnson, Zhaohui Wang, Corey Gagnon,

and Angelos Stavrou, Analysis android

applications’ permissions, Proc. IEEE

International Conference on Software Security

and Reliability Companion (SERE-C),

Gaithersburg, Maryland, USA, 2012, pp. 45-46.

[9] Mohammad Nauman, Sohail Khan, and Xinwen

Zhang, Apex: extending android permission

model and enforcement with user-defined

runtime constraints, Proc. ACM Symposium on

Information, Computer and Communications

Security (ASIACCS), Beijing, China, 2010, pp.

328-332.

[10] Pouik and G0rfi3ld, Similarities for fun & profit,

Phrack #68, April 2012, [online]

http://www.phrack.org/issues.html?issue=68&a

mp;id=15\#article.

[11] Franziska Roesner, Tadayoshi Kohno,

Alexander Moshchuk, Bryan Parno, Helen J.

Wang, and Crispin Cowan, User-driven access

control: Rethinking permission granting in

modern operating systems, Proc. IEEE

Symposium on Security and Privacy, San

Francisco, CA, USA, 2012, pp. 224-238.

[12] Aubrey-Derrick Schmidt, Rainer Bye,

Hans-Gunther Schmidt, Jan Clausen, Osman

Kiraz, Kamer A. Yuksel, Seyit A. Camtepe, and

Sahin Albayrak, Static analysis of executables for

collaborative malware detection on android, Proc.

IEEE International Conference on

Communications (ICC), Dresden, Germany, 2009,

pp. 631-635.

[13] Yajin Zhou and Xuxian Jiang, Dissecting

android malware: Characterization and evolution,

Proc. IEEE Symposium on Security and Privacy,

San Francisco, CA, USA, 2012, pp. 95-109.

[14] Googlesource, Android git repositories, [online]

https://android.googlesource.com/

[15] Seung-Hwan Ju, Hee-Suk Seo, and Jin Kwak,

Study on Analysis Methodology for Android

Applications, Journal of Internet Technology, Vol.

14, No. 5, 2013, pp. 851-857.

Biographies

Chun-Ying Huang received his

Ph. D. degree in Electrical

Engineering from National

Taiwan University, Taiwan in

2007. He joined Computer

Science and Engineering

Department at National Taiwan

Ocean University in 2008,

where he is currently an associate professor. Dr.

Huang’s research interests include network

security, multimedia networking, and cloud

computing.

Shang-Pin Ma received his

Ph.D. in Computer Science and

Information Engineering from

National Central University,

Taiwan, in 2007. He has been

an assistant professor of

Computer Science and

Engineering Department, National Taiwan Ocean

University, Taiwan, since 2008. His research

interests include service-oriented computing,

software engineering, and semantic web.

Ming-Lun Chang received his

B.Sc. degree in Computer

Science and Engineering from

National Taiwan Ocean

University, Taiwan in 2013,

where he is now pursuing his

master degree. His current

researches focus on network

transport protocols and cloud computing.

Chin-Hsiang Chiu received

his B.Sc. degree in Computer

Science and Engineering

from National Taiwan Ocean

University, Taiwan in 2013,

where he is now pursuing his

master degree. His current

researches focus on mobile

security and software evaluation.

Ting-Chun Huang received his

B.Sc. degree in Computer

Science and Engineering from

National Taiwan Ocean

University, Taiwan in 2013,

where he is now pursuing his

master degree. His current

researches focus on computer

networks and cloud security.

