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Abstract 
 

For security and privacy considerations, it is 

important for Android users to understand the 

behavior and the risk of an application. Although 

Google claims that new applications available on the 

official market have passed their security checks, the 

open design of the Android system still allows a user 

to install applications for third-party vendors. 

Therefore, there is still a demand for users to know 

more about an unknown application. In this paper, we 

discussed our experiences on setting up a scalable 

automated Android behavior monitor using 

virtualization techniques. Our contribution is 

two-fold: 1) We design and implement a scalable 

behavior monitor using both dynamic analysis and 

static analysis techniques; and 2) Based on parts of 

the analyzed results, we develop a preliminary filter 

to distinguish benign and malicious applications. The 

system is open to the public and we expect that the 

analyzed results can be fed back to the research 

community and further stimulate more studies on 

analyzing malicious Android applications. 
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1   Introduction 
The success of the Android mobile operating system 

has attracted a large number of users, developers, and 

researchers to explore new feasibilities to make a 

better mobile life. Due to its opened design, a large 

number of applications can be obtained from various 

different sources with no charge. However, one 

serious problem that every user must face is that – 

given a new application, is that application safe to use? 

Is an application been compromised by malicious 

attackers? Does that application steal personal 

confidential information from a mobile device? 

     There are many strategies for a user to judge 

whether an application is suspicious or not. One 

simplest solution to identify suspicious application is 

to check the requested permissions of an application 

before installing it. For example, a stand-alone jigsaw 

puzzle game should not request permission to send a 

short message. If the game requests such permission, 

it could be suspicious. However, permission-based 

determination is not so reliable. Sometimes it is even 

difficult to judge whether an application is suspicious 

by using permission. For example, an application 

may claim that it has a built-in automatic version 

check feature so that it requires Internet access. 

However, a user is infeasible to determine whether 

the application really uses the Internet to check for 

updates or it is engaged in some malicious activities 

such as stealing personal information or acting as a 

stepping stone. In such a case, the user has to make an 

in-depth observation so that the real purpose of the 

application can be revealed. 

     To solve the above issue, it would be better if 

there is more information provided to a user before he 

is going to install a new application. Therefore, we 

design and implemented an automated Android 

behavior monitor (ABM) as a cloud service in this 

paper. With the proposed solution, a user is able to 

submit an application package to our service and then 

a comprehensive report is sent back to the user to 

understand the behavior of the inspected application. 

Besides regular users, a researcher is also able to 

retrieve behavior reports for a bunch of benign and 

malicious applications and then attempts to find out 

distinguishable behavior and attributes to identify 

malicious applications. The proposed solution 

obtains application behavior by using both dynamic 

and static analysis techniques. For dynamic analysis, 

it monitors file system access, network access, and 

system call sequences. For static analysis, it retrieves 

information such as the request permissions, the 

required permissions, the built-in API calls, 

parameters, and control flows. The proposed solution 

also adopts virtualization techniques so that the 

service can be scaled out by simply cloning more 

virtual machines. 

     In addition to the proposed solution, a preliminary 

filter is built as an example to classify benign and 

malicious applications based on the analytical reports 

generated by the proposed solution. We expect that 

through an open and automated application behavior 

monitor service, we are able to stimulate more studies 

on analyzing malicious applications by providing 



collected applications as well as thee the analyzed 

results to the research community. 

     The rest of this paper is organized as follows. In 

Section 2, we discuss related works that focus on 

analyzing Android applications. In Section 3, we 

introduce proposed solution including the design 

objectives and the components. In Section 4, we 

discuss the preliminary filter that is designed based 

on the analyzed results. Finally, a concluding remark 

is given in Section 5. 

 

2   Related Work 
A lot of researches have been devoted to analyze the 

(malicious) behavior on Android applications. Ju et 

al. [15] wrote a brief introduction on Android 

malware and discuss possible intentions of attackers. 

Enck et al. [6] wrote a good introduction on android's 

security design in 2009. Basically the android 

operating system provides a coarse-grained 

mandatory access control (MAC). It is able to enforce 

how applications access components based on 

permitted permissions. As a result, each android 

application must have a list of requested permissions 

and all these permissions must be granted at the 

install time. The requested permission list is often 

declared by an application developer manually. 

Hence, a number of interesting researches are 

devoted to review how permissions are declared in 

applications. Barrera et al. [1] analyzed how 

developers of android applications use the 

permissions. They explored and analyzed 1,100 

applications using the Self-Organizing Map (SOM) 

algorithm. They found that although android has a 

rich set of permissions, only a small number of these 

permissions are actively used by developers. Felt et al. 

[7] studied android applications to determine whether 

android developers follow least privilege with their 

permission requests. They built a tool and applied it 

to 940 applications and found that about one-third of 

evaluated applications are over privileged. They also 

concluded that developers are trying to follow least 

privilege but failed due to insufficient API 

documentation. Johnson et al. [8] developed an 

architecture that automatically searches for and 

downloads android applications from android Market. 

With the application, they created a detailed mapping 

of android API calls to the required permissions. The 

idea is similar to [7] but they collected a large number 

(141,372) of applications to conduct the experiments. 

They found that the majority of developers are not 

using the correct permission set. The applications are 

either over-specify or under-specify their security 

requirements. Zhou and Jiang [13] systematically 

characterized 1,260 android malicious applications 

from various aspects, including their installation 

methods, activation mechanisms, and the carried 

malicious payloads. In addition, they also compared 

the permission requests of the 1,260 malicious 

applications against another top free 1,260 benign 

applications on android market. The comparison 

shows that the top 20 frequently requested 

permissions are similar for both benign and malicious 

applications. 

     In addition to analyze permissions, a number of 

researches tried to detect malicious application using 

static analysis or dynamic analysis techniques. These 

techniques are similar to those used to detect 

traditional malware on desktop personal computers. 

Besides many well-known signature-based virus 

scanners, androguard [5] is an open source project 

that dedicated to detect android malware. 

Androguard detect a malicious application or an 

injected malicious code based on control flow graph. 

A given application package is first disassembled and 

each identified method in assembly source codes is 

converted into a formatted string that represents the 

control flow graph [4] of the method. A number of 

predefined malware's control flow graphs are then 

compared against the obtained control flow graph 

strings to check if they are similar [10] to malware. 

Schmidt et al. [12] proposed a static analysis solution 

to detect malicious application based on the output of 

the readelf tool, which contains a list of symbols that 

involved with an executable. They then differentiate 

malicious applications from benign ones based on the 

combinations of system calls used in the executable. 

Burguera et al. [3] proposed to detect malware using 

dynamic analysis techniques. They developed a 

client named Crowdroid that is able to monitor Linux 

kernel system call and report them to a centralized 

server. Based on the collected dataset, they cluster 

each dataset using a partition clustering algorithm 

and hence differentiate between benign and 

malicious applications. Bläsing et al. [2] proposed 

AASandbox that performs both static analysis and 

dynamic analysis on android programs to 

automatically detect suspicious applications. Static 

analysis scans the software for malicious patterns at 

the source code level. Dynamic analysis executes the 

application in a sandbox which monitors and logs 

low-level accesses to the system for further analysis. 

It looks like a complete system but the authors did not 

show the performance on analyzing malware and 

therefore we do not how its performance. Due to the 

lack of malware samples, most existing works 

conduct experiments using self-made malware or a 

limited number of real malware. It still requires more 

evidence to prove the effectiveness of these 

solutions. 



     It is of course that the current security model 

adopted by android could be not the best choice. 

Researchers also tried to propose alternatives to the 

existing model. Nauman et al. [9] proposed the Apex 

framework which allows a user to selectively grant 

permissions to applications. The framework includes 

an extended package installer and provided an 

easy-to-use interface for users to set the runtime 

constraints (allow, deny, or conditional allow) for 

each permission. Granting permissions explicitly by 

users may be not a good idea. Roesner et al. [11] 

proposed a user-driven access control where 

permission granting is built into existing user actions 

in the context of an application, rather than added as 

an afterthought via manifests or system prompts. 

Application developers have to modify their codes by 

embedding access control gadgets (ACGs) into the 

user interface (UI) of applications. Then, permissions 

are granted implicitly when a user takes actions via 

the UI. User-driven access control is able to grant 

permission in one time, in a session, in a period of 

time, or permanently depending on the corresponding 

action. It guarantees the least-privilege security 

model without losing its flexibility and ease-of-use 

property. Nevertheless, with existing design, android 

users now can simply make judgments based on the 

permissions, which is coarse-grained and still a 

difficult puzzle. 

 

3   The Proposed Solution 
The overall architecture of the proposed solution is 

shown in Figure 1. Except the web portal, all other 

components reside in a private network. Therefore, a 

user is only able to access the service via the web 

portal. On receipt of an application package (the 

so-called APK file), the hash value of that APK file is 

evaluated and compared against existing repository 

to ensure it is a fresh package. It a submitted package 

is now new, a previously analyzed report is sent back 

to the user immediately. On the contrary, if a fresh 

APK file is received, it is placed into the “APKs and 

Logs” repository and then scheduled to be inspected 

later. The inspection of application behavior is done 

by virtual machines in the pool. Each virtual machine 

is able to run several concurrent inspection instances 

to monitor multiple applications at the same time. 

This would shorten the required time to analyze 

packages in the submission queue. However, if the 

number of virtual machines is not sufficient enough 

to process queued APK files in a reasonable time, 

more virtual machines can be cloned to share the 

workloads. 

     The components of an inspection instance are 

shown in Figure 2. Each instance has four major 

components, i.e., the file system monitor, the system 

call sequence monitor, the network traffic monitor, 

and the static analyzer. The detail of each component 

is introduced later in this Section. 

 

3.1 File System Monitor 
We develop our own file system monitor to log file 

access activities during the execution process of an 

application. As shown in Figure 3, we add a 

transparent intermediate layer between applications 

and the physical file system. At the beginning, we 

choose to use the FUSE (file system in user-space) to 

implement the intermediate layer. Although it is 

easier to code and debug, the FUSE sub-system 

 
Figure 1 The overall architecture of the proposed 

solution. 
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Figure 2 The components of an inspection instance. 
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Figure 3 Access a real file system via a transparent 

intermediate layer. 



cannot handle access permissions from different 

users properly. Therefore, we switched from FUSE to 

UnionFS, which is an in-kernel file system that is 

able to merge multiple mounts in a single view. To 

activate either FUSE or UnionFS, we have to 

re-compile the Linux kernel and modify the start-up 

scripts so that the monitored file system is mounted at 

a different location, e.g., from /data to /mydata, and 

then we can mount our transparent intermediate layer 

to intercept file system operations for a monitored 

mount point, e.g., /data. Currently we monitored 

only for /data and /cache, but more mount points 

can be easily monitored as well. 

     The Android emulator emulates an ARM-based 

CPU. Therefore, we use the official development 

toolkit NDK to conduct cross-compile on x86 Linux 

hosts. Kernel source codes are retrieved from Google 

source [14]. Since UnionFS is not part of the standard 

kernel, we manually merge the UnionFS into the 

kernel source tree. When the cross-compiling of the 

Linux kernel is done, we then modify the init.rc 

file stored under the root directory. This file defined 

fundamental start-up scripts and services. For each 

monitored file system, we alter the default mount 

point defined in init.rc and then mount UnionFS at 

its original path. As a result, we can then intercept 

and log all interested file system activities. 

 

3.2 System Call Monitor 
To implement the system call monitor, we use the 

open source strace tool. The strace tool is a 

command-line tool that intercepts and records the 

system calls that called by a process and the signals 

that are received by a process. The name of each 

system call, its arguments, and its return value are 

printed on standard error or to a specified file. Since 

the Android OS is a Linux-based operating system, it 

is not difficult to port the tool onto Android using the 

NDK. The problem of monitor an Android 

application is that: How to attach the strace tool to 

an Android application process, especially when the 

process is launched in a virtual machine? 

     Readers may have launched an Android 

application in the shell prompt using the am script. 

However, if you use the strace tool to monitor the 

am script, you are not able to monitor any system calls 

called by the application process. To make a 

successful system call monitor, we have to 

understand the process that the Android OS launches 

an application. As shown in Figure 4, a user may 

launch an application by clicking the application icon 

in the launcher or using a shell command such as am 

to start an application. The launch request is sent to 

the activity manager service and then the application 

process is forked by the zygote service, which 

creates a Dalvik virtual machine and then run the 

Java-based application in the virtual machine. 

Therefore, the strace tool should be attached to the 

zygote service instead of the launcher or the am 

script. There are two possible strategies to achieve 

the goal. First, a user is able to modify the init.rc 

file, which also defines the command line to launch 

the zygote service, and append the strace tool 

before that command line. Alternatively, a user is 

able to attach the strace tool to the zygote process 

on demand and then launch the monitored Android 

application. 

     We recommend the second strategy because it is 

much simpler and the output of the strace tool 

contains less noise. 

 

3.3 Network Monitor 
Implement the network monitor is straightforward. 

There are two different solutions. If an application is 

monitored in an Android emulator, the emulator itself 

has an option to save all the network traffic of the 

emulator into a single file using the pcap format, 

Launcher

Activity
Manager
Service

Zygote
Activity Thread

(Dalvik VM)

App
Class

New
Activity

2. LAUNCH_ACTIVITY

1. BIND_APPLICATION

1. onCreate()
2. onStart()

Looper

fork

Process.start()
(returns pid)

looper.loop()

startActivity(intent)

 
 

Figure 4 Android’s application launch process. 

IP 122.225.x.y.80 > 10.0.2.15.41762: Flags 
[S.], seq 164288001, ack 669385195, win 8192, 
options [mss 1460], length 0 
 
0x0000: 0000 0001 0006 5254 0012 3502 0000 0800 
0x0010: 4508 002c 05ec 0000 4006 d040 7ae1 xxyy 
0x0020: 0a00 020f 0050 a322 09ca d601 27e6 01eb 
0x0030: 6012 20 

 

Figure 5 A sample network flow sent from a malicious 

application. 



which is the same as the well-known tcpdump tool. In 

case that an application is not monitored in an 

emulator, we can still cross-compile the tcpdump tool 

and then capture the traffic using that tool. When the 

monitoring of an application is finished, the captured 

network traces is then used for further analysis. 

     A simple screen shot for a captured network flow 

is shown in Figure 5. It is a request sent by a 

malicious application. The application connects to a 

suspicious IP address 122.225.x.y in China using the 

HTTP protocol. For the ease of understanding the 

application behavior, we also write several scripts to 

parse the pcap file and generate comprehensive 

reports such as lists of IP addresses, lists of domain 

names, and data exchanged in unencrypted popular 

application protocols such as HTTP. 

 

3.4 Static Analysis 
Our static analysis implementation majorly relies on 

the androguard tool. Androguard is a reverse 

engineering tool for Android packages. It is written in 

python. It is able to retrieve meta-information from 

an APK file as well as disassemble the package into 

assembly language using Jasmin’s (dedexer’s) syntax. 

Some primitive meta-information of an application 

includes its package ID, API level, activities, services, 

and requested permissions. It is also to statically 

analyze the package and retrieve advanced 

information such as the required (actual) permissions. 

In addition, androguard has several built-in 

signatures that are able to detect some existing 

malicious applications. 

     One important feature of androguard is to create 

control flow graph (CFG) [15] of each function. A 

CFG is a string-represented function structure. The 

syntax of CFG strings is shown in Figure 6. 

Therefore, given a short piece of code in Figure 7, it 

can be converted into a CFG string represented by 

BGBG. Since most android malicious software is 

repackaged software, androguard detects malicious 

software by comparing a CFG string against 

previously collected CFG strings signatures from 

malicious applications, as shown in Figure 8. The 

comparison of CFG string signatures is done by using 

various string similarity algorithms such as 

Kolmogorov complexity, NCD, NCS, and entropy. 

     Although androguard is able to effectively detect 

malicious applications, most of the CFG string 

signatures used by androguard are generated 

manually. It would better if the generation of 

malicious signatures can be done automatically. 

Therefore, our analytical reports also attempt to 

generate the CFG string for all analyzed applications 

Procedure ::= StatementList 
StatementList ::= Statement | Statement 
StatementList 
Statement ::= BasicBlock | Return | Goto | 
  If | Field | Package | String 
Return ::= 'R' 
Goto ::= 'G' 
If ::= 'I' 
BasicBlock ::= 'B' 
Field ::= 'F'0 | 'F'1 
Package ::= 'P' PackageNew | 'P' PackageCall 
PackageNew ::= '0' 
PackageCall ::= '1' 
PackageName ::= Epsilon | Id 
String ::= 'S' Number | 'S' Id 
Number ::= \d+ 
Id ::= [a-zA-Z]\w+ 

 

Figure 6 The syntax of the control flog graph string 

represtation. 

 1: mov X, 4 

 2: mov Z, 5     B 
 3: add X, Z 

 4: goto +50     G 

 5: add X, Z     B 

 6: goto -100     G 

 

Figure 7 An example of generating CFG string from a 

short piece of code. 
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Figure 8 The malicious application detectioin flow of 

androguard. 

 
 

Figure 9 The web portal page of the proposed solution. 



and we expect that by mining the CFG strings for 

both benign and malicious applications would help 

the research on automatic generation of CFG string 

signatures. 

     In addition to androguard, we also use anti-virus 

software to check whether an examined application is 

a malicious application. This information is stored 

along with the report so that a user is able to 

determine whether a submitted APK file is a known 

malicious malware or not. Currently we use the open 

source ClamAV virus scanner and the commercial 

Avira virus scanner in the Linux host. Note that we 

did not scan for virus inside a virtual machine 

instance. Instead, it is performed outside of the VM to 

simplify the implementation of virtual machine 

images. 

 

3.5 The Implementation 
We implement all the inspection instances in a single 

virtual machine image. For the ease of expanding the 

system, we use qemu-kvm as the core of our 

virtualization technique and host virtual machines on 

an Ubuntu Linux operating system. Each virtual 

machine image contains all the introduced 

components. The job dispatching from the web portal 

is done by using HTTP requests as well. On receipt of 

a fresh APK, an inspection request is sent from the 

web portal to a selected VM instance. When an 

inspection is done, the results are then stored into the 

“APKs and Logs” repository. 

     To simplify the design, the web portal provides a 

single file chooser for users to choose a local file and 

upload it to our system. To prevent a malicious file 

from triggering alerts from local anti-virus scanners, 

we recommend a user to temporarily disable the 

real-time virus scanner and encrypt a malicious 

sample APK files as a password protected ZIP file 

with a password of “infected.” Figure 9 shows the 

screenshot for the web portal. Figure 10 shows the 

system call traces obtained from an uploaded 

application for three minutes of monitoring. It has 

made 1,623 system calls but due to the limit of the 

page length, we only leave the head and the tail part. 

 
 

Figure 10 A sample screenshot that shows the system 

call traces monitored by the propsoed system. 

com.rovio.angrybirds:  
0,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,benign 

 

Figure 11 An example of the AngryBird bit-vector for 

the mix of requested and required permissions retrieve 

from the analytical report. 



 

4   Application 
Based on our analytical report for 120 thousands 

android applications, we have designed a preliminary 

quick filter to exclude benign samples from being 

further inspected. The filter is based on a simple 

assumption: Can we identify a suspicious application 

by simply checking the requested and required 

permissions of an application? 

     To answer the question, we retrieve the requested 

and the required permissions reported by the system. 

We then create three data sets: #1) the requested 

permissions; #2) the required permissions; and #3) 

the mix of the requested and the required permissions. 

We translate each data set into a bit vector to indicate 

what permissions are needed by an application. Since 

Android has 139 built-in permissions, both dataset #1 

and dataset #2 have exact 139 bits but dataset #3 has 

278 bits. Figure 11 shows an example for the 

AngryBird game for dataset #3. In addition to the bit 

values, the virus scanning tag is attached at the end of 

the vector. 

     We then create the malicious application filter by 

collecting bit vectors of malicious samples. To 

reduce false positives, a bit vector with more than or 

equal to N bit-1 is preserved. Otherwise, it is dropped. 

The set of all the collected bit vectors is used as the 

quick filter. The number of bit vectors within a filter 

created by using different N is shown in Figure 12. 

Note that duplicated bit vectors are eliminated so the 

bit vectors with in a filter are all distinct. 

     To quickly filter out benign applications, for each 

suspicious application, we retrieve its requested and 

required permissions, create the bit vector V for the 

application, and then make a bitwise AND operation 

iteratively for V and each bit vector V’ in the filter. If 

a V AND V’ operation is equivalent to V’, we believe 

that the application is a possible malicious candidate. 

     Based on the above strategy, we evaluate filters 

created for the three data sets. The results are shown 

in Figure 13. We found that the filters created from 
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Figure 12 The number of bit vectors collected for different value of N (ranging from 1 to 16). 
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(a) Based on requested permissions. 
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(b) Based on required permissions. 
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(c) Based on the mixed permissions. 

 

Figure 13 The performace of the fiilters created using 

different datasets. 



either requested permissions or required permissions 

alone did not perform well. But the filter created from 

the mix of requested and required permissions has a 

good performance if the number N is well-selected. 

When N is set to 9, there are 103 bit vectors within 

the filter. The resulted filter is able to detect 

approximately 96% of malware while the false 

positive rate is only 18%. This also means that the 

filter is able to detect most malicious applications and 

is able to reduce more than 80% workload of the 

backend fully featured malicious software analyzer. 

 

5   Conclusion 
The open design of the Android operating system 

provides its users a great flexibility on selecting the 

source of applications. However, a user still has to 

take the risk of installing a malicious application 

since not all applications have passed security checks. 

We would like to reduce the risk by providing more 

behavioral information about an application to both 

users and researchers. In addition to understand an 

individual application’s behavior, our preliminary 

application also shows that by observing behavior 

from a bunch of application, it is possible to find out 

good solutions to classify applications. We expect the 

analytical reports provided by the proposed service 

can be good materials for researchers to have 

complete pictures of applications’ behavior and 

therefore stimulates studies on the detection of 

malicious applications.  
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