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Abstract

Botnet is one of the most notorious threats to Internet users. Attackers intrude into a
large group of computers, install remote-controllable software, and then ask the com-
promised computers to launch large-scale Internet attacks, including sending spam and
DDoS attacks. From the perspective of network administrators, it is important to iden-
tify bots in local networks. Bots residing in a local network could increase the difficulty
to manage the network. Compared with bots outside of a local network, inside bots can
easily bypass access controls applied to outsiders and access resources restricted to local
users.

In this paper, we propose an effective solution to detect bot hosts within a monitored
local network. Based on our observations, a bot often has a differentiable failure pattern
because of the botnet-distributed design and implementation. Hence, by monitoring
failures generated by a single host for a short period, it is possible to determine whether
the host is a bot or not by using a well-trained model. The proposed solution does not
rely on aggregated network information, and therefore, works independent of network
size. Our experiments show that the failure patterns among normal traffic, peer-to-peer
traffic, and botnet traffic can be classified accurately. In addition to the ability to detect
bot variants, the classification model can be retrained systematically to improve the
detection ability for new bots. The evaluation results show that the proposed solution
can detect bot hosts with more than 99% accuracy, whereas the false positive rate is
lower than 0.5%.
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1. Introduction

Botnet is one of the most notorious threat to Internet users. Based on the statistics
provided by Kaspersky [1], more than 327 million attempts were made to infect users’
computers in different countries worldwide in the first quarter of 2010, which is 26.8%
more than in the previous quarter. Botnet is a serious issue that security experts and
researchers must investigate and solve.

Email address: chuang@ntou.edu.tw (Chun-Ying Huang)

Preprint submitted to Elsevier August 15, 2012



Solutions to detect bot network activities can be classified into two approaches:
misuse-based and anomaly-based. The misuse-based approach uses predefined patterns
or signatures to compare against each network flow and identify malicious activities of
a matching pattern. In contrast, the anomaly-based approach labels empirical network
activities as normal or abnormal. Activities can then be further classified as normal or
abnormal based on past observations. Although misuse-based approaches have benefits
of enhanced performance and higher precision, they fail in detecting bot variants. A
large database is often required to store the patterns and signatures used to detect bots.
Therefore, developing anomaly-based detection techniques is a worthy endeavor.

Numerous anomaly-based detection techniques already exist [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. They detect bot activities based on features such as the amount, frequency,
sequence, regularity, persistence, and similarity of network activities. However, these
solutions have two common drawbacks. First, they must maintain numerous network
flows for a period to extract features properly. Even with the traffic-filtering mechanism
proposed in [11], approximately 30%1 of monitored traffic must be used for detection.
Second, bot designers can easily evade some of these properties. One simple strategy is
to add randomness to bot behavior. If well crafted, a bot can even behave like a human.
Hence, we must still identify intrinsic and inevitable properties that cannot be evaded
easily. An even more robust and systematic bot detection technique can be built on
identified properties.

Based on our understandings and observations of botnet traffic, it is intrinsic and
inevitable for bots to generate network failures. Figure 1 shows two common scenarios
of a bot generating failures. When a bot is awakened and joins a bot network, it must
often find an entry point, either a command and control (C&C) server or a peer, to re-
port its current status and obtain new commands. However, a C&C server is not always
available because it could be shut down because of abuse reporting. The availability for
peer-to-peer based botnets could worsen because peers can be shutdown or temporarily
disconnected from the Internet at any instant. Therefore, attempting to establish com-
munication channels with these computers could lead to failure, as shown in Figure 1(a).
A new bot member may attempt several times to find an entry point. Alternatively, if it
cannot find an entry point, it goes into a sleep state and attempts again after a period.
Even if a bot successfully joins a bot network, it may follow the received commands to
launch specific attacks. However, because most attacks are not limited to specific tar-
gets, it is also common for an attack to fail because the attacked target is temporarily
unreachable, as shown in Figure 1(b).

In this paper, we propose an anomaly-based bot host detection solution based on
the network failure models. We collect network traces from both benign user computers
and live bots, identify failures generated from each host, extract distinguishable features,
and then build a classification model to classify benign hosts and bot hosts. To ensure
that failures generated by distributed peer-to-peer hosts do not affect the accuracy of
the classification model, we also classify peer-to-peer hosts. Our experiment results show
that the proposed solution detects bot hosts with more than 99% accuracy, whereas the
false positive and false negative rates are both lower than 0.5%. We also detect bots
in real campus networks. Inspections show that 76 of 79 detected bot hosts in several

1The numbers are provided by the authors of the document.
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Figure 1: Origin of failures generated by bots.

Table 1: List of monitored failure types.

Protocol Type Description of the failure
TCP i TCP SYN sent, but got TCP resets (RSTs)

i TCP SYN send, but got ICMP unreachables
t TCP SYN sent, but timed out

UDP i UDP sent, but got ICMP unreachables
t UDP sent, but timed out

DNS i A DNS server responds errors to a queried domain

class-C networks are confirmed to be bots, whereas the remaining three hosts are highly
suspected.

The rest of this paper is organized as follows: Section 2 presents a detailed explanation
of the proposed solution; Section 3 provides experimental results in both the laboratory
and the field; Section 4 introduces several related works that inspired our research and
a discussion on the limitations of this work; and finally, Section 5 offers a concluding
remark.

2. The Proposed Solution

Unlike numerous other bot detection algorithms, the proposed solution detects whether
a host is a bot based only on information relevant to that host. It does not rely on ag-
gregated network flows. Detection based only on single host information has two major
benefits. First, the proposed solution works independent of the network size and is able
to detect a bot host, despite only one compromised node residing in the monitored net-
work. Second, detection time can be shortened. Because detection is made for each host,
when the required number of feature samples collected from a single host is large enough,
the decision can be made immediately. In the proposed solution, instead of counting the
number of feature samples, we collect the required feature samples in a fixed period.
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Figure 2: The working flow of the detection system.

Hence, a compromised host can be detected within 2 to 3 minutes. The details of the
proposed solution are introduced as follows.

2.1. Working Flow

Figure 2 shows the working flow of the proposed solution. The flow can be divided into
two parts: the training phase (left vertical path) and the detection phase (right vertical
path). In the training phase, we collect numerous benign traces, peer-to-peer application
traces, and bot traces, filter out non-failures, extract features from failure flows, and
then build the classification model using the C4.5 [13] algorithm. In the detection phase,
the process is similar to the training phase. Classification is made using the previously
trained classification model. The performance of the proposed solution depends on both
the representativeness of the training traces and the usefulness of the selected features.
However, if the number of sampled traces and the number of selected features are large
and diverse enough, the proposed solution would perform well.

2.2. Filter Out Non-Failures

The proposed solution detects bots by inspecting failures generated by hosts. There-
fore, non-failures should be filtered out because they are not used. A good strategy is to
also reduce the system loads of memory storage and computation power. The number
of failures is typically relatively smaller than successful cases on accessing benign net-
work services. Filtering out non-failures greatly reduces the amount of network flows the
system must process.

Table 1 lists the types of failures that the proposed system monitors. For ease of
explanation, we classify all failures into two types: immediate (type-i) and timed-out
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Figure 3: The state diagram used to maintain the connection state of each UDP flow.

(type-t) failures. True to its name, an immediate failure can be detected immediately
after it occurs. In contrast, a timed-out failure can be detected after a period because no
signal is delivered to notify senders. Whether a type-i or a type-t failure, a failure time
stamp is always set to the time of the appearance of the first packet of a failed network
flow.

Type-i failures are easy to identify. However, some tricks are needed to identify type-t
failures. For TCP, it is not difficult because a TCP flow must be established using the so-
called three-way handshaking before any data are exchanged using the flow. Therefore,
we only need to check the response to TCP SYN packets. If a TCP SYN packet is sent out,
but there is no corresponding inbound TCP SYN-ACK packet, a corresponding inbound
TCP RST packet, or a corresponding inbound ICMP unreachable packet received in a
given period, we identify it as a TCP type-t failure. We use a threshold of 120 seconds
to determine that a SYN packet has timed out because it is the default value used by
the open-source Linux kernel’s connection tracking module.

The case of UDP is relatively complex for two reasons. First, it is unnecessary for UDP
flows to set up a connection before exchanging data. Second, UDP can be unidirectional,
that is, packets can be sent in only one direction. To detect UDP type-t failures, we
assume that most UDP-based application protocols are bidirectional. Hence, if only one-
way traffic is observed within a given period, it could be an UDP type-t failure. The
assumption is reasonable because in most cases, a sender has to ensure that a receiver
has received what the sender sends so that additional data or messages can be sent.

Based on this assumption, we maintain the “connection state” for each UDP flow
using the procedures shown in Figure 3. The basic notion is to place failed UDP requests
and successful UDP requests into the pending list (PL) and the connected list (CL),
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Figure 4: Examples of snapshots for a single host. Snapshots are used to calculate feature vectors.

respectively. Suppose we are able to determine the direction of a UDP packet. For an
outbound UDP packet, if the five-tuple2 is new to the system, it is added into the PL.
A timestamp is also associated with the new five-tuple when it is added into the PL.
The five-tuple is placed in the PL until the system receives a matched3 inbound UDP
packet. On receipt of a matched inbound UDP packet, the corresponding five-tuple is
moved from PL to CL. This also indicates that the previously sent UDP request did not
fail because it is bidirectional.

The timestamps of five-tuples placed in the CL are updated if data are exchanged
using these flows. A connection remains active and prevents active five-tuples from being
removed from the CL. If the timestamp of a five-tuple store in the PL or the CL has not
been updated for a period, it is expired and removed from the lists. When a five-tuple is
removed from the PL, a type-t failure is identified. In contrast, if a five-tuple is removed
from the CL, it is treated as the termination of a normal UDP flow. Similar to the TCP
case, we use 120 seconds as the threshold to determine whether a trial to establish an
UDP connection is timed out.

2.3. Feature Extraction

With the identified failures, numerous features are extracted from the observed fail-
ures on a per host basis. Before introducing how to extract features, we define the
snapshot of failures (or simply snapshot) and the measurement time window (∆t). A
snapshot is a list that contains a series of failures generated by a networked host. To
limit snapshot length, at time T , only failures identified between T -∆t and T are included
in the snapshot. A snapshot is taken when a failure is identified, as the example shown
in Figure 4. Because 15 failures are identified in the figure, there should be 15 corre-
sponding snapshots. However, to simplify the illustration, only four of them (snapshots
for the 4th, 8th, 12th, and 15th failures) are shown in the figure.

In the proposed solution, a snapshot is transformed into a feature vector. Numerous
features (or attributes) are calculated based on failures within a snapshot and are listed
in Table 2. The features are classified into the following six categories:

2The five-tuple contains the source IP address, the destination IP address, the source port number,
the destination port number, and the transport layer protocol. For ease of representation, we write a
five-tuple in an abbreviated form of (source-IP, destination-IP, source-port, destination-port, protocol).

3A “match” is defined as follows: With two packets p1 and p2 and their corresponding five-tuples t1
and t2, where t1 = (sip1, dip1, sport1, dport1, proto1) and t2 = (sip2, dip2, sport2, dport2, proto2).
The two packets p1 and p2 are matched if and only if all the following conditions hold: 1) sip1=dip2; 2)
dip1=sip2; 3) sport1=dport2; 4) dport1=sport2; and 5) proto1=proto2.
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• Certain types of failures.

• Average interval between failures.

• Total number of failures.

• Ratio of distinct destination port numbers.

• Ratio of distinct destination IP addresses.

• Average number of failures per destination IP address.

We assume that feature vectors for normal, peer-to-peer, and bot hosts are differentiable.
Hence, by collecting numerous feature vectors and assigning proper labels to feature
vectors, these data can be used to train and build a classification model to differentiate
normal, peer-to-peer, and bot hosts.

In the training phase, the most important task is to assign proper labels to feature
vectors. The proposed solution only has three labels: BOT, P2P, and NORM. To save human
resources, we label feature vectors using the following strategies. For BOT, we first collect
numerous live bots and then launch each bot on a clean virtual machine. The failures
collected from virtual machines are used to build snapshots and are then transformed
into feature vectors. All the output feature vectors are labeled as BOT. For P2P, similar to
BOT, we also run peer-to-peer applications on clean virtual machines. The output feature
vectors are then labeled P2P. NORM is slightly different because it is difficult to define what
is normal and what is not. To obtain feature vectors capable to represent normal traffic,
we assume that network traffic originated from certain computers in our laboratory as
clean. All feature vectors calculated from failure snapshots of these computers are then
labeled NORM. With feature vectors and labels, we feed these data to the C4.5 algorithm
to build the final classification model.

In the detection phase, with the same measurement time window, we take snapshots
of failures from hosts residing in monitored networks. Feature vectors are then extracted
from the snapshots. Each feature vector is classified as either NORM, P2P, or BOT by using
the previously built classification model. Detecting whether a host is a bot is possible
using “one-shot” classification; that is, classifying a host as a bot if and only if one feature
vector is classified as BOT. However, in real-world cases, one-shot classification may lead
to high false positive rates because of incomplete training data. In this case, it would
be better if a decision can be made using majority votes to reduce possible high false
positive rates.

3. Evaluation

3.1. Training Trace

To evaluate the proposed solution, we first built a classification model from normal,
peer-to-peer, and bot traces. The traces were collected in a controlled environment as
described in Section 2.3. The normal traces were collected for five weekdays. We collected
normal traces from four personal computers. All the personal computers were equipped
with an Intel Core 2 Duo CPU and 2 GB of RAM. The installed operating system
was Windows 7 Service Pack 1. We used tshark [14] to identify captured application
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Table 2: List of features extracted from a snapshot of failures.

# Data type Description

1 real number Average interval between two adjacent TCP failures.
2 real number Average interval between two adjacent TCP RESETs.
3 real number Average interval between two adjacent TCP unreachable failures.
4 real number Average interval between two adjacent TCP timeout failures.

5 real number Average interval between two adjacent UDP failures.
6 real number Average interval between two adjacent UDP unreachable failures.
7 real number Average interval between two adjacent UDP timeout failures.

8 real number Average interval between two adjacent DNS failures.

9 boolean Have TCP failures.
10 boolean Have UDP failures.
11 boolean Have DNS failures.

12 integer Total number of TCP failures.
13 integer Total number of TCP RESETs.
14 integer Total number of TCP unreachable failures.
15 integer Total number of TCP timeout failures.

16 integer Total number of UDP failures.
17 integer Total number of UDP unreachable failures.
18 integer Total number of UDP timeout failures.

19 integer Total number of DNS failures.

20 integer Total number of all failures.

21 real number Ratio of distinct destination ports to all destination ports.
22 real number Ratio of distinct destination TCP ports to all destination TCP ports.
23 real number Ratio of distinct destination UDP ports to all destination UDP ports.

24 real number Ratio of distinct destination IP addresses to all destination IP addresses.
(count all network flows)

25 real number Ratio of distinct destination IP addresses to all destination IP addresses.
(count only TCP network flows)

26 real number Ratio of distinct destination IP addresses to all destination IP addresses.
(count only UDP network flows)

27 real number Average number of failures per destination IP addresses.
28 real number Average number of TCP failures per destination IP addresses.
29 real number Average number of TCP RESETs per destination IP addresses.
30 real number Average number of TCP unreachable failures per destination IP addresses.
31 real number Average number of TCP timeout failures per destination IP addresses.
32 real number Average number of UDP failures per destination IP addresses.
33 real number Average number of UDP timeout failures per destination IP addresses.
34 real number Average number of DNS failures per destination IP addresses.
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Table 3: Traffic profiles for the training traces.
ID Total Volume Total Failures TCP UDP DNS

RST Unreachable Timeout Unreachable Timeout
Norm #1 5,666 MB 8,829 4,447 4,292 23 16 10 41
Norm #2 6,317 MB 347 0 0 25 153 134 35
Norm #3 8,631 MB 1,408 32 62 155 22 614 523
Norm #4 9,163 MB 588 39 0 180 26 173 170
P2P #1 575 MB 5,700 306 0 5,166 10 217 1
P2P #2 146 MB 5,716 733 0 4,833 1 149 0
P2P #3 720 MB 20,623 4,734 455 6,283 693 8,443 15
P2P #4 422 MB 303,983 15,707 253 10,869 11,619 265352 183
Bot #1 1,096 MB 5,135 3 0 5,127 0 5 0
Bot #2 78 MB 215,224 56,945 0 143,976 6,399 5 7,899
Bot #3 74 MB 5,403 386 0 4,976 0 2 39
Bot #4 19 MB 21,582 4,765 0 14,665 2,088 5 149
Bot #5 22 MB 6,440 0 0 0 3,190 0 3,250
Bot #6 89 MB 3,761 376 0 3,378 0 7 0
Bot #7 473 MB 10,440 4,935 519 6 0 235 4,745

Table 4: The malware that generates traces.

# MD5 Name
1 783b28c65991292fdca1050cd4ae36ce W32/Ircbot.1!Generic
2 e53d7aa295ce88aa456044343d5e0a66 Trojan-Spy.Win32.Zbot.gen
3 9d2a48be1a553984a4fda1a88ed4f8ee W32/SpyEyes.A.gen!Eldorado
4 7d5e8af26f6acc81ab04a88f7f6ab459 Trojan.Heur.Zbot.emW@c4@nf9c
5 fb367c916f23fd046c1c551a2280dfc4 Backdoor.Bot.90879
6 70125984ed07048359f3bb4e44dc8c50 W32/MalwareF.BOTJ
7 57864118b51d988938535293113e7a38 W32/Mydoom.O@mm

protocols in the trace. The identified application protocols include DNS, FTP, HTTP, MSN,
NFS, NTP, POP3, SMB, SMTP, SIP, SSH, SSL, and TELNET.

The bot traces were also collected for five weekdays. We collected 30 malware samples
from the Offensive Computing Web site [15]. Each malware is run on a virtual machine
connected directly to the Internet. Among the 30 collected bot samples, only seven
could be launched properly to generate network flows. Therefore, we show only the
traces collected from these active bots. The seven bots are listed in Table 4. A malware
can detect whether it is inside a virtual machine. If a virtual environment is detected, it
does nothing to prevent it from being inspected.

The method to collect peer-to-peer traces is the same as described in Section 2.3.
However, each peer-to-peer client runs only for 12 hours for the following two reasons.
First, unlike other applications, peer-to-peer clients are never idle and consistently at-
tempt to complete download tasks. Therefore, it is possible to monitor and collect most
behavior of peer-to-peer applications in a short time. Second, we were unable to run
peer-to-peer clients in our campus network because of a global protocol filter for peer-to-
peer traffic installed in the campus. Running peer-to-peer clients in our campus would
render us unable to monitor the peer-to-peer network traffic. Because of limited power
and network access at home, we ran these peer-to-peer clients for a shorter period. We
used the collected traces to build the detection model and cross-validate the model to
show whether the solution works.

Table 3 shows the trace profile for each collected trace. For a closer look at failure
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Figure 5: Observed failures in the first 12 hours of each trace.
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Figure 6: Decision tree generated from the training traces. The measurement time window (∆t) is set
to 120 seconds.

patterns, we plot the amount of observed failures in the first 12 hours for each trace,
as shown in Figure 5. The “Number of Failures” in the sub-figures of Figure 5 are
cumulative failures in a 10-minute interval. From the figures, we can roughly observe
that the failures for normal, peer-to-peer, and bot hosts are differentiable in amount
and frequency. Figure 5 shows that normal clients generate only a limited number of
failures (except for normal client #1, which is explained later). In contrast, peer-to-peer
clients generate failures periodically and bots generate failures consistently or in a burst.
Failures generated by peer-to-peer clients and bots appear diverse because these traces
are generated by different peer-to-peer clients and bots. However, failures generated by
normal client #1 are significantly different from those of other normal clients. We found
that normal client #1 installed file-sharing client software [16] which is implemented as a
Web-based peer-to-peer client. We did not remove failures generated by normal client #1
from this paper because the experiment results show that it does not affect the detection
performance on bots.

3.2. Evaluation with Training Traces

The benefit of evaluating with training traces is that we know the ground truth.
Therefore, we can determine whether the selected features perform well on detection of
normal, peer-to-peer, and bot hosts. We useK-fold cross-validation to verify the accuracy
of the proposed solution. All of the labeled feature vector samples are partitioned into
K groups randomly and the evaluation is run for K rounds. In each round, K-1 groups
are selected as the training data and the remaining group is used to evaluate accuracy
of the classifier. We choose K = 10 and conduct the experiments using the WEKA [17]
machine-learning software.

In each round, a new decision tree is generated using the C4.5 algorithm. The im-
plementation of the C4.5 algorithm in the WEKA software is named J48. An example
of the decision tree generated by the WEKA software is shown in Figure 6. The feature
samples used to generate the decision tree are measured in a 120-second time window
with 137 nodes in the tree. The maximum tree depth is 14 and the maximum tree width
is 18. In the figure, intermediate nodes are marked in light gray. Leaf nodes, which are
used to detect normal, peer-to-peer, and bot hosts, are marked in green, yellow, and
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Figure 7: Summary of detection performance: Precision, recall, F-measure, and false positive rates.

red, respectively, to detect whether a feature sample is a normal, a peer-to-peer, or a
bot host. The detection algorithm must walk an average of seven to eight steps in the
decision tree before it is able to make a decision.

3.3. Detection Performance

Figure 7 shows the precision, recall, F-measure, and false positive rates of all 10-fold
cross-validation results. These numbers are obtained using the following equations.

precision =
true positives

true positives + false positives
(1)

recall =
true positives

true positives + false negatives
(2)

F-measure = 2 · precision · recall
precision + recall

(3)

FP rate =
false positives

true negatives + false positives
(4)

Precision rates indicate the credibility of the reported detection result, whereas recall
rates indicate the portion of hosts belonging to a specific class that can be identified. We
use different scales of measurement time windows ranging from tens of seconds to half
a day. The performance of each measurement time window is shown in Figure 7 in the
order of 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 10800, 21600, 32400, and
43200 seconds. The results show that a larger measurement time window would result
in enhanced detection performance in accuracy and false positive rate. Although we can
use a large measurement time window such as half a day (43200 seconds), the response
time to detect an unwanted event is also delayed. Based on the detection performance,
to have a balance between the required detection time and the detection performance,
a measurement time window between 180 seconds and 600 seconds would be a good
choice. The detection accuracy shown in these figures is the “one-shot” classification
performance, as explained at the end of Section 2.3.

We also plot the receiver operating characteristic (ROC) curve for small measurement
time windows. Discriminating whether a classifier performs well using ROC curve plots
is common. Figure 8 shows ROC curve plots for measurement time windows of 60, 120,
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Figure 8: ROC curves for small measurement time windows.

Table 5: Comparison of behavior-based botnet detection methods.
Approach Livadas et al. [2] Gu et al. [5] Wang et al. [11] The proposed solution
Core technique Machine learning Spatial-Temporal correlation Fuzzy-pattern Machine learning
Bot samples 1 8 44 7/30

Re-implemented Mixed Real bots Real bots
Rate of traffic reduction N/A N/A More than 70% More than 75%
True positive rate 92% 100% 95% 99%
False positive rate 11-15% 0-6% 0-3% 0-0.2%

and 180 seconds. A perfect classifier would have an area under curve (AUC) of 1.0, but
good classifiers would typically have a larger AUC close to 1.0 [18]. The figures show that
the AUCs for the three small measurement time windows are all greater than 0.999. We
conclude that the proposed solution performs well on classifying normal, peer-to-peer,
and bot-hosts even when the measurement time window is small.

3.4. Performance Comparison

Table 5 shows a comparison of several previous behavior-based botnet detection stud-
ies. The numbers for the previous studies are obtained from the corresponding papers.
Therefore, the comparison of detection accuracies is evaluated independently by devel-
opers of each compared solution. Evaluation with different traces may lead to different
results. However, we believe that evaluation with real traces would be better than with
re-implemented and self-generated traces.

The traffic reduction rate of the proposed solution is estimated by dividing the number
of failed flows by the total number of flows. The actual traffic reduction rate is 76.04%,
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but the traffic reduction rate can be substantially higher because bots and peer-to-peer
clients contribute to most failures, and those hosts are rare in commercial and enterprise
networks. If we inspect the traffic reduction rates for normal, peer-to-peer, and bot hosts
independently, the traffic reduction rates are 99.08%, 42.40%, and 56.52%, respectively.
The traffic reduction rate would be considerably enhanced in a real network because
most clients in a monitored network are normal. The table also shows that the detection
performance of the proposed solution is similar to and even better than previous research.

In addition to good detection performance, the proposed solution requires only limited
resources when online. The proposed solution detects bot hosts using a trained model.
For the C4.5 algorithm, the model is the tree (as shown in Figure 6). If the model is
stored using Weka’s default model file format, it costs only 30K bytes of storage. The
computation costs required by the proposed solution are also limited. To detect bot hosts,
the proposed solution must i) compute the features and ii) classify based on the trained
model. For the first part, each monitored IP address requires only several counters to
count the cumulative number of failures relevant to the monitored address in a time
window. For the second part, the detection is made by traversing the tree model, which
can be done in constant time.

3.5. Representativeness of Training Trace

Choosing the traces to train the proposed solution is important. The representa-
tiveness of training traces affects detector performance greatly. To show how it affects
detector performance, we conduct the following experiments to validate the assumption.

We present 15 different traces collected from normal, peer-to-peer, and bot clients.
For each experiment, we choose one trace as the test trace and the other 14 traces as the
training traces. The model trained with the 14 training traces is then used to classify the
test trace. Suppose a test trace is collected from a normal host. In a perfect classification,
all the feature samples extracted from the test trace should be labeled NORM. However,
if the test trace can be well classified, the representativeness of the test trace is low
because it can be well classified, even if it is new to the classifier. If the test trace cannot
be classified correctly, it can be used to represent and detect certain types of normal
behavior. The heuristic applies to the other two types of traces, that is, P2P and BOT.
Therefore, we are able to know the representativeness of training traces based on the test
results.

Table 6 shows the results of the experiments. Based on the results, we find that traces
of normal client #4, peer-to-peer clients #1, #2, and #3, and bot client #1, #3, #4,
and #6 have lower representativeness. This means that if we discard one of these traces,
it would not affect detection performance significantly because the discarded parts can
be complemented by other training traces. However, if a highly representative trace is
discarded, for example, peer-to-peer client # 4 or bot client #7, we are unable to detect
activities of that type of client. Therefore, it would be better to train the model using
as many samples as possible to enhance detector capability. Table 6 also shows that the
failure pattern of peer-to-peer clients is closer to normal clients and vice versa. If a highly
representative bot is discarded, bot activity is often classified as NORM, and not P2P.

3.6. Detection in a Real Network

We further implement the proposed solution in real networks. Hence, it is able to
evaluate the performance of the proposed solution using real network traces on campus.
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Table 6: Test the representativeness of training traces (window = 120s).

Classified as ...
Excluded Training Trace NORM P2P BOT

Normal #1 51.2% 45.2% 3.6%
Normal #2 71.0% 29.0% 0.0%
Normal #3 63.3% 32.8% 3.9%
Normal #4 99.8% 0.1% 0.1%
P2P #1 2.7% 97.1% 0.2%
P2P #2 9.4% 88.1% 2.5%
P2P #3 0.0% 100% 0.0%
P2P #4 97.6% 2.4% 0.0%
BOT #1 0.0% 0.0% 100%
BOT #2 43.7% 0.2% 56.1%
BOT #3 1.6% 0.0% 98.4%
BOT #4 9.6% 0.1% 90.3%
BOT #5 55.8% 0.0% 44.2%
BOT #6 3.7% 0.0% 96.3%
BOT #7 92.5% 0.0% 7.5%

Internet

Campus

Dormitory

Network

L3 SwitchDetector

Port Mirror

Figure 9: The network setup to detect bots in real campus networks.

15



The network traces are collected on-the-fly using the libpcap [19] library. We implement
traffic reduction and feature extraction in the C++ language. Model training and detection
are conducted with the C4.5 release 8 [20] written by Ross Quinlan. We place the
proposed solution at the edge of a campus dormitory network, as shown in Figure 9.
Approximately 1000 hosts exist within the monitored network. The classification model
is built using those traces collected in the controlled environment and we choose a short
measurement time window of 120 seconds.

Although we do not know whether bots reside in the monitored network, the proposed
solution detects 79 suspected bots in the monitored network in 1 week. We verify whether
an identified IP address is a bot by the following two steps: i) List all non-campus
network IP addresses that have been contacted by an identified IP address; and ii) For
each non-campus network IP address, look it up using search engines and check whether
the address can be found in any blacklist. If an identified IP address has contacted a
blacklisted peer, it could possibly be a bot. In addition to looking up addresses through
search engines, we use publicly available blacklists such as [21] and [22] to shorten the
required time to verify an address. Based on the heuristics, we found that 76 of the 79
identified IP addresses (96%) are confirmed to be bots. Although the remaining three
IP addresses do not contact black-listed peers, they could possibly be bots because they
have similar failure patterns to the trained malware.

We do not investigate false negatives in the experiments of real network detections.
This is because a blacklist only indicates an IP address or if a domain name behaves
maliciously, but it does not tell us why it behaves maliciously. For example, the OpenBL
blacklist [21] lists all hosts that have attempted to scan port 21 (ftp) and port 22 (ssh)
services; the URLBlackList [22] categorizes malicious domain names into categories of
malware, phishing, and spyware. Therefore, we are unable to distinguish whether a
blacklisted address or site is used by a bot or other types of malicious behavior. However,
a black-listed IP address indicates that the IP address of the owner’s machine has been
compromised by attackers. That the machine has also been compromised by bot herders
is highly possible.

4. Related Work

Numerous studies have been devoted to botnet research. For ease of discussion, we
classify bot detection mechanisms into two categories: group-based and individual-based
solutions. Group-based solutions monitor activities from a group of hosts and make a
decision based on aggregated information. In contrast, individual-based solutions detect
bots based on observed events or activities from a single host. Several solutions detect
botnets in a group-based manner. Choi et al. [3, 12] detected botnet activities by moni-
toring group activities in DNS traffic. Assume that a bot must look up the domain names
of C&C servers. If a group of bots look up the domain names, the aggregated activities
can be used to identify a group of bots. Gu et al. [5] detected botnet C&C channels by
inspecting IRC and HTTP traffic. By capturing spatial-temporal correlation and using sta-
tistical algorithms, their system detected bot hosts within the same bot network. Another
work by Gu et al. [6] involved detecting a botnet by clustering similar communication
traffic and similar malicious communication traffic. They then performed cross-cluster
correlation to identify hosts that share both similar communication traffic and similar
malicious communication traffic. Consequently, if hosts within a group conduct similar

16



malicious activities and have similar communication patterns, they are detected as bots.
One benefit of this work is that it does not need to know any bot beforehand.

Several other solutions also detect bots in an individual manner. Most signature-based
detection solutions such as Snort [23] can be classified as individual-based solutions. Gu
et al. [4] proposed BotHunter to detect bots in a monitored network. They first defined
the life-cycle of a bot. If the sequences of identified activities from a monitored host
match parts of the life-cycle, it is identified as a bot. Giroire et al. [10] detected botnet
C&C channels by observing connection persistence. This is because a bot must often
obtain new instructions from a C&C server after a period. A host repeatedly contacting
a remote host would have higher connection persistence. Based on this assumption, a
bot can be detected by identifying hosts with higher connection persistence with little-
known remote hosts. Although well-known remote hosts such as Google or Yahoo would
have higher persistence, with the help of white lists, the false positives can be reduced
to a relatively low value. Gianvecchio et al. [7] detected IRC bots by inspecting the
interval, length, frequency, and payload entropy of chat messages. Suppose the behavior
of an IRC bot differs from that of a human. Their system collects identified network
traffic characteristics and then distinguishes humans from bots using machine-learning
techniques. Zhu et al. [24] proposed detecting bot activities based on application-level
protocol failures. They collected application-level failures generated from DNS, HTTP,
FTP, SMTP, and IRC traffic, measured the amount and frequency of failures, and then
used machine-learning techniques to distinguish bots from benign hosts. Because the
failures are collected at the application-level, they cannot handle encrypted traffic.

Our proposed solution is classified as an individual-based solution and differs from
previous research in several aspects. First, the proposed solution does not need to inspect
payloads4. Because payloads can be encrypted or obfuscated using standard techniques,
reliance on payloads would limit detector ability. Second, we use intrinsic and inevitable
network characters, that is, network failures. As described in Section 1, either joining a
botnet or launching an attack would generate certain failures. Third, the detector does
not need to analyze aggregated activities to make a decision. Even if only one compro-
mised bot is residing in a monitored network, it can be identified. Finally, the proposed
solution is able to detect bot hosts within several minutes, which is advantageous for
a network administrator who wants to stop bots from ruining the network as soon as
possible.

Although the proposed solution performs well on detection of our available bots, there
could be a malware that never generates failures. If such a malware exists, the proposed
solution cannot detect it, even with captured traces generated from that malware. This
type of malware should be treated as an advanced persistent threat (APT) and leave
space for researchers to explore possible new detection techniques for APTs.

5. Conclusion

Botnet is still a serious Internet issue. In this paper, we propose an effective solution
that is able to detect bot hosts based on their network failure models. Bots generating

4We only examine the payloads of DNS traffic delivered at UDP port 53. However, this is not a
problem because even if DNSSEC is applied, DNS payloads are still readable because DNSSEC only
authenticates a message instead of encrypting it.
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network failures because of botnet-distributed design and implementation is intrinsic and
inevitable. Evaluations show that the proposed solution achieves a high detection rate
(more than 99%) and low false positive rates (less than 0.5%). Unlike previous anomaly-
based approaches, the proposed solution does not rely on aggregated group activities,
does not need to examine payloads, and is able to detect bots in a short period.

In addition to being efficient and robust, the proposed solution is lightweight in storage
and computation costs. A portion of network traffic ranging from 42% to 99% can be
filtered out to reduce system loads. Therefore, it can be deployed on either full-fledged
personal computers or resource-constrained network devices to monitor different network
scales.
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