
Accelerate In-Line Packet Processing
Using Fast Queue∗

Chun-Ying Huang1, Chi-Ming Chen1, Shu-Ping Yu1, Sheng-Yao Hsu1, and Chih-Hung Lin2

1 Department of Computer Science and Engineering, National Taiwan Ocean University
2 Networks and Multimedia Institute, Institute for Information Industry

Email: chuang@ntou.edu.tw, {cmchen,spyu,syhsu}@snsl.cs.ntou.edu.tw, chlin@iii.org.tw

Abstract—It is common for network researchers and system
developers to run packet processing algorithms on UNIX-like
operating systems. For the ease of development, complex packet
processing algorithms are often implemented at the user-space
level. As a result, performance benchmarks for packet processing
algorithms often show a great gap when packets are input from
different sources. An algorithm that performs well by reading
packets from a raw packet trace file may get a worse result
when it reads packets directly from a network interface. Such
a phenomenon gets much worse when the algorithm is going to
process packets in-line.

In this paper, we identify the performance bottleneck of
existing in-line packet processing implementations in the Linux
operating system. Based on the observation, a new software
architecture, named Fast Queue, is proposed and implemented to
show that the identified bottleneck can be effectively eliminated.
Experiments show that the proposed software architecture re-
duces 30% of CPU utilization. In addition, the overall system
throughput can be improved by a factor of 1.6 when it is applied
to the well-known snort-inline open source intrusion detection
system.

Index Terms—Fast Queue, in-line packet processing, zero copy
interface

I. INTRODUCTION

Emerging network applications and threats make networks
harder to be managed well. Undesirable network traffic, in-
cluding multimedia streams, game traffic, peer-to-peer shares,
or network intrusions, often consumes valuable network re-
sources and causes unexpected network damages in commer-
cial networks. Therefore, it is important to properly manage
and filter network flows transmitted in a network. In the
past, flows are usually managed by enforcing policies based
on the so called five tuples, i.e., the source IP address, the
source port, the destination IP address, the destination port,
and the transport layer protocol.However, modern network
applications often bypass these policies by using randomized
port numbers. As a result, it is a must to develop advanced
packet processing algorithms to handle these mutated network
applications.

Packet processing algorithms vary on complexities. A traffic
classification algorithm can be easily done by examining only
the first n payload bytes in a packet [11], [4]. However, it

∗This work was supported in part by National Science Council under
the grant number NSC 97-2218-E-019-004-MY2 and by Taiwan Information
Security Center at NTUST(TWISC@NTUST) under the grant number NSC
99-2219-E-011-004.

can be much more complex because classifying a flow often
requires a number of preprocessing steps before a decision can
be made. For example, intrusion detection systems [10], [9]
use algorithms to handle fragmented packets, data compres-
sions, obfuscated content encodings, and pattern matchings. A
WAN optimization system [2] use algorithms to handle cache
management, packet coalescing, compression, and decompres-
sion. When the complexity of a packet processing algorithm
increases, it would be much easier for developers to implement
the algorithm at the user-space level instead of the kernel-space
level.

Implementing complex packet processing algorithms at the
user-space level has two major benefits. One benefit is the ease
of implementation. Developers are not required to understand
the underlying kernel details to store and process packets.
Another benefit is the confinement of coding errors. If an
implemented algorithm is crashed, the fault can be confined in
the user-space without affecting other parts of the OS kernel.
In addition, testing and debugging at the user-space level is
also much easier. However, performance penalties make it
impractical to implement packet processing algorithms at the
user-space level. Figure 1 shows the extra costs brought by a
user-space implementation of a packet processing algorithm.
The benchmark is done with a Linux operating system running
on a Pentium-III 1000Mhz CPU. The implemented packet
processing algorithm does nothing. It simply intercepts packets
forwarded by the operating system and put them back to the
system, both at the user-space level. The overall throughput
is 120Mbps and the CPU utilization is almost 100% during
the packet forwarding process. From the figure, we can see
that most of the CPU resources are consumed by accessing
packets from the OS kernel and issuing software interrupts.

There are already zero copy solutions that reduce the extra
cost brought by moving data between the user-space and
the kernel-space [1], [3], [5], [7], [6]. However, they do not
completely solve the problem. As we can see in Figure 1, in
addition to data movement, a great portion of CPU resources
is consumed by software interrupts, which are issued twice for
each packet. Thus, we need a new architecture to reduce both
extra overheads incurred by data movements and software
interrupts. In this paper, we propose Fast Queue to improve the
performance of in-line packet processing. By using memory
mapped ring buffers and high-resolution timers, a user-space
packet processing algorithm is able to access packets from

Function name CPU usage
skb_copy_bits 33%
kfree 3.27%
copy_to_user 2.99%
__alloc_skb 2.57%
handle_IRQ_event 2.35%

Fig. 1. Sampled additional costs incurred by kernel-user space interactions.

the operating system with a low overhead interface and hence
improves the overall performance.

The rest of the paper is organized as follows. In Sec-
tion II, previous researches related to the proposed solution
are reviewed and discussed. The proposed solution and a
reference implementation are introduced in Section III. With
the implementation, we evaluate the performance improvement
in Section IV by using two different in-line packet processing
algorithms. Finally, a concluding remark is given in Section V.

II. RELATED WORK

Many researches and implementations have focused on
eliminating the extra overheads brought by user- and kernel-
space interaction. A number of works targeted on the accelera-
tion of socket programming interface. Chu [1] proposed a zero-
copy TCP socket and implemented it on the Solaris operating
system. In addition, this work classifies existing solutions into
four different models, as follows:

1) User accessible interface memory
2) Kernel-network shared memory
3) User-kernel shared memory, and
4) User-kernel page remapping with copy-on-write (COW)

Each model has its own advantages and disadvantages. Chu’s
and a latter implementation on FreeBSD [3] both use the
fourth model, i.e., user-kernel page remapping with COW.
With this model, data sent by a user is directly transferred from
the user’s buffer to the network interface via DMA and vice
versa. No CPU interaction is required. However, all involved
buffers must align on page boundaries and occupy an integral
number of MMU pages. This is not a problem when sending
data since fragmented user buffer can be transmitted using
CPU copy. However, a programmer has to avoid overwriting
buffers that have been written to the socket but not yet freed
by the kernel. To receive data correctly, the data must be at
least a page in size and page aligned in order to be mapped
into the kernel. Therefore, network interface drivers must
arrange receive buffers in such a way that, after DMA, user
payload shows up on a page boundary in the buffer. These
limitations increase difficulties for programmers to manage
buffers properly, restrict the size of MTU, and require supports
provided by network interface hardware.

Maltz et al. [8] proposed a solution to improve the perfor-
mance of application proxy servers implemented at the user-
space level. The authors add several new ioctl commands
that are able to “splice” two established TCP connections at
the kernel-space level. When two TCP connections are spliced,
data received by one connection is immediately forwarded to

the other connection and vice versa. The motivation behind
the solution is straightforward. The authors observe that the
major work of an application proxy server is to forward data
between the two network connections associated by the proxy.
Even if a proxy server has to examine the content transmitted
in a forwarded network connection, it is often done only for
the very first bytes of the connection data stream. Hence, the
data forwarding job can be moved to the kernel instead of
staying at the user-space level. The evaluation shows that the
data forwarding throughput for spliced TCP connections is
almost equivalent to IP packet forwarding. However, when
two TCP connections are spliced, the user-space proxy server
is no longer able to know what is being forwarded by the
kernel.

There are some other solutions to improve the performance
of network services. The sendfile system call [7], [5] is
able to reduce the cost of sending file content through the
network. Traditionally, a network server has to iteratively read
each file data block into a user space buffer and then write the
buffered block to a opened network socket. With sendfile,
the network server is able to do the same job by binding
the descriptors of the file and the network socket, and the
kernel does the rest for the server. Consequently, the two
extra data movements between the user- and the kernel-space
for each buffered data block can be eliminated. The Linux
kernel also provides a performance improved implementation
to reduce the cost of moving data from the kernel- to the
user-space when sniffing packets directly from the network
interface. In the past, programmers use the PACKET_SOCKET
interface [6] to create a descriptor and then read packets by
the read system call. Now, the PACKET_SOCKET interface
supports memory mapped operations. To use the memory
mapped technique, a proper size of a framed ring buffer must
be initialized first to receive packets copied from network
interfaces. The ring buffer is then shared by the user- and
the kernel-space codes. On receipt of a packet by the kernel,
the packet is placed in the current available frame in the ring
buffer, mark the frame as occupied, and signals the user space
program to process packet frames. Packets are dropped if no
frame is available. Once the user space program has processed
a packet, the corresponding frame is then marked as available
and thus the kernel is able to continue receiving more packets.
The famous pcap packet capture library now also leverages
the new memory mapped interface to improve its performance.

Although a number of solutions are able to improve the
performance of socket operations and packet capturing, they
are not enough for in-line packet processing at the user-space
level. There is one fundamental difference for in-line packet
processing. Compare with the above techniques, the user-
space program is not an end point of a packet. When an
intercepted packet has been processed, it must be re-injected
into the kernel as soon as possible. In addition, the number
of user-kernel interactions for each packet must be reduced
because the number of packets can be huge in a busy network.
Therefore, care must be taken when designing the solution.

operating system - kernel network stack

packet data

flags
frame state

.

framed packet buffer

user space

kernel space
next available framelast processed frame

last occupied frame

User space
program

fastqueue kernel module

Fig. 2. The architecture of the proposed solution.

III. THE PROPOSED SOLUTION

A. Architecture

The goal of the proposed solution is simple, i.e., improve
the in-line packet processing performance. Modern UNIX-
like operating systems have their own interfaces to intercept
network packets. For example, the Linux operating system has
the netfilter-queue and the FreeBSD operating system has the
divert socket. However, they are not efficient enough especially
when they are running on low computation power devices
such as embedded systems. The proposed solution improves
the overall system performance by eliminating frequently used
user-kernel interactions. It follows the “user-kernel shared
memory” model to reduce the cost of moving packets between
the user- and the kernel-space level. The proposed system
architecture is depicted in Figure 2. There are three roles in
the architecture. The packet receiver and the packet sender
are both implemented as parts of the kernel. On the contrast,
the packet handler, which implements the packet processing
algorithm, is implemented as a user-space program. All the
three roles share the same memory area in the kernel, which
is configurable by the user space program. The shared memory
is actually a framed ring buffer. Each frame has a frame state,
which can be one of the below three states:
• Available: A frame of this state means that it is vacancy

and is ready to receive packets. When a shared memory
space is just created, all frames’ states are reset to
available.

• Occupied: If a packet has been placed in a vacancy frame,
the frame state is changed to the occupied state. The
received packet then waits for the user-space program
to process it. A notification signal is also sent to a user-
space program if the program is waiting for incoming
packets.

• Processed: If a frame state is set to this state, it means
that the packet stored in the frame should be re-injected
into the network. A frame is usually set to the processed
state right after it has been processed by the user space

/* An infinite loop */
while true do1

while the FO pointer points to an occupied frame do2

Process the frame;3

Set the frame flag to either accept or drop;4

Set the frame state to processed;5

Move the FO pointer to the next frame;6

Call poll or select to wait for incoming packets –7

Enter sleeping state;

Fig. 3. The pseudo-code for the packet handler. This piece of codes is
actually packet-driven since it is waken up only on receipt of packets.

program. When a frame is set to this state, an additional
flag must be set to tell the kernel how to handle the re-
injected packet, i.e., accept or drop the packet.

To manage the ring buffer properly, three pointers are
used to indicate the correct positions to access, as shown in
Figure 2. The three pointers indicate the position of 1) the next
available frame (FA), 2) the last occupied frame (FO), and 3)
the last processed frame (FP). A pointer is used only by one
of the three roles. For example, the packet receiver uses the
FA pointer to find the first available frame in the ring buffer;
the packet handler uses the FO pointer to find the next to-be-
processed frame; and the packet sender uses the FP pointer
to find the next to-be-sent frame. At the system initialization
phase, all the pointers point to the first frame in the ring buffer.
A pointer is moved one frame forward if the corresponding
role has finished processing a packet. With these pointers, a
proper frame can be accessed in a constant time.

Readers should notice that one Fast Queue can be used by
only one user space program. That is, all queued packets are
processed by the same packet processing algorithm. However,
this limitation can be eliminated easily by creating multiple
Fast Queues. Please refer to Section III-C for the details.

B. Algorithms

The three roles mentioned in Section III-A are driven by
different manners. It is naı̈ve that the packet receiver can be
driven by incoming packets, which are triggered on receipt of
network packets by a network interface. Similar to the packet
receiver, the packet handler can be also driven by incoming
packets. The packet handler enters a sleeping state by using
system calls such as poll or select. Then, it can be waken
up as well when an incoming packet is queued. The algorithms
for the packet handler and the packet receiver are depicted in
Figure 3 and Figure 4, respectively.

Compare with the packet receiver and the packet handler,
the design of the packet sender is a little bit different. This
is because when a packet has been processed by the packet
handler, only the state and the additional flag of the processed
frame is affected. Neither interrupts nor events are generated
for memory access operations. Therefore, instead of a packet-
driven design, the packet sender is executed periodically.
During the execution, it checks the ring buffer to see whether

Input: pkt - the received packet.
/* On receipt of a packet */
if the FA pointer points to an available frame then1

Place pkt in the frame;2

Set the frame state to occupied;3

Move the FA pointer to the next frame;4

Wake up the sleeping packet handler;5

else6

/* Take the default action */
Re-inject te packet into the kernel network stack: Ask7

the kernel to drop or accept the packet based on the
default action;

Fig. 4. The pseudo-code for the packet receiver. This is a interrupt
handler registered to handle incoming packets received by the network
interface card.

/* An infinite loop */
while true do1

while the FP pointer points to a processed frame do2

Re-inject the packet into the kernel network3

stack: Ask the kernel to drop or accept the packet
based on the frame flag;
Set the frame state to available;4

Move the FP pointer to the next frame;5

Sleep for a fixed period of time;6

Fig. 5. The pseudo-code for the packet sender.

the FP pointer points to a processed packet. Once a processed
packet is found, the packet is re-inject to the kernel. The
algorithm of the packet sender is depicted in Figure 5.

C. Implementation

The proposed solution has been implemented on a Linux
operating system. It is implemented as a kernel module hook-
ing on the built-in netfilter firewall. There are several benefits
to hook the Fast Queue kernel module on the built-in netfilter
firewall. First, it is able to leverage netfilter packet filtering
rules to filter out packets that are not required to be processed
by the packet processing algorithm. Second, it is also easier
to create multiple Fast Queues and then feed packets to the
queues based on packet tags or packet filtering rules. Queues
with different priorities therefore provide different level of
QoS capabilities. Third, since the Linux netfilter firewall is
able to intercept packets at different places in the operating
system kernel, a packet processing algorithm is hence able to
choose a proper place, e.g., incoming, outgoing, or forward-
ing, to process packets. These benefits make life easier for
programmers and researchers since they can focus only on the
design of the packet filtering algorithm instead of worrying
about where, when, and how to intercept network packets.

Our implementation can be discussed in two parts. For
the user-space part, a character device node placed in
/dev/fastqueue is registered as the interface between
the user- and the kernel-space. Before reading packets from

Linux
(with Fast Queue)

iperf
Server

iperf
Client

Fig. 6. The benchmark environment.

the shared memory, a user-space application must run the
following three initialization steps:

1) Open the /dev/fastqueue device.
2) Use the ioctl system call to allocate a fixed size

memory as the shared ring buffer.
3) Use the mmap system call to map the kernel-space ring

buffer into user-space address.

Then, the user-space program is able to read packet data from
the ring buffer, process it, and then pass the processed result
via the same buffer.

For the kernel-space part, the implemented module use the
nf_register_queue_handler to register a call-back
function for intercepting packets from netfilter firewall packet
queue at the initialization phase. On receipt of a packet, it is
placed in the previously allocated ring buffer. If the ring buffer
has not been allocated or is full, a received packet is dropped
or accepted by the kernel according to default policies. At the
initialization phase, the module also register a timer handler,
which is used to trigger the packet sender periodically so that
processed packets can be finally re-injected into the kernel
network stack. To improve the processing efficiency, we use
a high-resolution timer of 1000HZ to check the availability
of processed packets. Modern hardware already supports high
resolution timers, which is capable of providing an extreme
high clock tick frequency up to 1GHZ. However, it is harmful
to system performance if a extremely high clock tick rate is
used to trigger kernel functions.

IV. EVALUATION

To evaluate the proposed solution, we use two different
packet processing algorithm to benchmark the performance.
One is the NULL packet processing algorithm and another
is the well-known open source snort intrusion detection sys-
tem. Readers should notice that the NULL packet processing
algorithm actually does nothing. It simply intercepts packets
from the operating system and then ask the kernel to accept
the intercepted packets immediately. The use of the NULL
algorithm is to show the effectiveness on reduction of the
overall CPU utilization. The benchmark environment is shown
in Figure 6, the proposed solution and the packet processing
algorithms are run on the middle device. The left side and
the right side device runs the iperf performance benchmark
software client and server, respectively. The TCP throughput
and CPU utilization is measured to see the effectiveness
of the proposed architecture. For hardware configurations,
all network interfaces installed on the devices are gigabit

Fig. 7. CPU utilization (upper) and system throughputs (lower) benchmarked
on a P-III 1G system.

network interfaces. The middle device is an Intel Pentium-
III 1GHZ machine and the left and the right device are virtual
machines running on an Intel Core 2 Duo 2.4GHZ machine.
For software configurations, the ring buffer size and the timer
tick frequency set on the middle device is 2048 packets and
1000HZ, respectively. The client side iperf commands used to
benchmark for the TCP performance are shown below.

iperf --client $SERVER_IP \
--time 180 --interval 5

Figure 7 shows the performance benchmark result for the
proposed Fast Queue (FQ) and the system default implemen-
tation Netfilter IP queue (IPQ). We find that all the CPU
resources are depleted by the packet forwarding process except
the NULL algorithm that intercepting network packets using
Fast Queue. Compare with the built-in queueing mechanism,
we can see that Fast Queue reduces more than 30% of
CPU resources on average. From the benchmarked utilization
results, the performance gap can be easily identified. From the

figure, the overall throughput of the snort intrusion detection
system has been improved by a factor of 1.6, i.e., improved
from an average of 70Mbps to 112Mbps.s

V. CONCLUSION AND FUTURE WORK

In this paper, a software-based high performance packet
queueing mechanism is proposed for packet processing al-
gorithms implemented at the user-space level. It is also im-
plemented on the Linux operating system to show its effec-
tiveness. Benchmark results show that the proposed solution
effectively improves the system performance in terms of both
CPU utilization and system throughput. We believe that the
proposed solution is beneficial for many existing embedded
platforms. It brings performance boosts without changing the
hardware. Although the preliminary implementation already
shows a great improvement on the performance, there are still
some future works can be done. We would like to further
analyze and model the performance of the proposed solution
to find out the proper configuration, i.e., ring buffer size
and clock tick frequency, to match the network performance
requirements. In addition, it is also worth to discuss how
multiple queues affect the system performance and what level
of QoS capabilities can be provided with multiple queues.

VI. ACKNOWLEDGEMENT

This work was conducted under the “Next Generation
Security Technology Deployment and Enablement Project”
of Institute for Information Industry which is subsidized by
the Ministry of Economy Affairs of the Republic of China.
We also thank the anonymous reviewers for their valuable
comments and suggestions.

REFERENCES

[1] H.-K. J. Chu. Zero-copy TCP in Solaris. In Proceedings of the 1996
annual conference on USENIX Annual Technical Conference, Berkeley,
CA, USA, Jan. 1996. USENIX Association.

[2] N. Conner. WAN Optimization for Dummies. Wiley Publishing, Inc.,
May 2009.

[3] A. Gallatin and K. Merry. zero copy, zero copy sockets — zero copy
sockets code. [online] http://www.freebsd.org/cgi/man.cgi?query=zero
copy&sektion=9.

[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel
traffic classification in the dark. In Proceedings of the SIGCOMM 2005
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 229–240, New York, NY, USA,
2005. ACM.

[5] D. G. Lawrence. sendfile - send a file to a socket. [online] http://www.
freebsd.org/cgi/man.cgi?query=sendfile&sektion=2.

[6] Linux man-pages project. packet, AF PACKET - packet interface
on device level. [online] http://www.kernel.org/doc/man-pages/online/
pages/man7/packet.7.html.

[7] Linux man-pages project. sendfile - transfer data between file descrip-
tors. [online] http://www.kernel.org/doc/man-pages/online/pages/man2/
sendfile.2.html.

[8] D. A. Maltz and P. Bhagwat. TCP splice for application layer proxy
performance. Journal of High Speed Networks, 8(3):225–240, 1999.

[9] V. Paxson. Bro: A system for detecting network intruders in real-time.
In Proceedings of the 7th USENIX Security Symposium, Jan. 1998.

[10] M. Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX LISA Conference, pages 229–238, Nov.
1999.

[11] M. Strait and E. Sommer. Application layer packet classifier for linux.
[online] http://l7-filter.sourceforge.net/.

