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Abstract. The fast-flux service network architecture has been widely
adopted by bot herders to increase the productivity and extend the lifes-
pan of botnets’ domain names. A fast-flux botnet is unique in that each
of its domain names is normally mapped to different sets of IP addresses
over time and legitimate users’ requests are handled by machines other
than those contacted by users directly. Most existing methods for de-
tecting fast-flux botnets rely on the former property. This approach is
effective, but it requires a certain period of time, maybe a few days,
before a conclusion can be drawn.

In this paper, we propose a novel way to detect whether a web service is
hosted by a fast-flux botnet in real time. The scheme is unique because
it relies on certain intrinsic and invariant characteristics of fast-flux bot-
nets, namely, 1) the request delegation model, 2) bots are not dedicated
to malicious services, and 3) the hardware used by bots is normally
inferior to that of dedicated servers. OQur empirical evaluation results
show that, using a passive measurement approach, the proposed scheme
can detect fast-flux bots in a few seconds with more than 96% accuracy,
while the false positive/negative rates are both lower than 5%.

Key words: botnet, Internet measurement, network delay, processing delay,
queuing delay, supervised classification

1 Introduction

A botnet is a collection of compromised Internet hosts (a.k.a. bots), that have
been installed with remote control software developed by malicious users. Such
software usually starts automatically when a parasite host boots. As a result,
malicious users (a.k.a. bot herders), can coordinate large-scale Internet activities
by controlling the bots (the victims). Bot herders always attempt to compromise
as many hosts as possible. According to the report of the FBI’s “Operation Bot
Roast” project [7], more than one million victim IP addresses had been identified
on the Internet by the end of 2007, and the number continues to increase. Botnets
allow bot herders to engage in various malicious activities, such as launching
distributed denial of service (DDoS) attacks, sending spam mails [24], hosting
phishing sites [13], and making fraudulent clicks [5]. Statistics show that botnets
yield great economic benefits for bot herders [15,16]; for example, Gartner [8]
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estimated that the economic loss caused by phishing attacks alone is as much as
US$3 billion per year.

To help legitimate users avoid malicious services (mostly in the form of web-
sites) hosted on a bot, researchers and practitioners have investigated ways to
determine whether a host is part of a botnet [9-11,20]. If a bot is detected, the
website owner can remove the remotely controlled software by using malicious
software removal tools, or the network ISP can disconnect the bot if the website
owner does not take appropriate action. Obviously, bot herders take counter-
measures to keep their botnets alive and productive. For example, the Fast-Flux
Service Network (FFSN) architecture can be used to increase the productivity
and extend the lifetime of domain names linked to the bots.

Usually, a bot herder applies for a domain name for each of his bots and dis-
tributes the domain names (normally in the form of URLSs) via various channels,
such as spam mails or web blogs. However, if a machine is in down time, the
bot cannot be controlled and the URL will be temporarily unavailable. More-
over, control of the bot may be lost due to removal of the malicious software. In
this case, the bot herder will not gain any more benefits from the domain name
unless it is re-mapped to another IP address (of another bot).

An FFSN-based botnet (called a fast-fluz botnet for short), solves the above-
mentioned problems because of two architectural innovations: 1) the mapping
between domain names and IP addresses, and 2) the way legitimate users’ re-
quests are processed.

— First, in a fast-flux botnet, a domain name is mapped to a number of IP
addresses (possibly hundreds, or even thousands) rather than a single IP
address. As a result, if the mapping is handled properly, i.e., a domain name
is always resolved to a controllable and live bot, the productivity (in terms
of the access rate of malicious services) will be higher than that of a tradi-
tional botnet. In addition, if it is known that a bot has been detected, the
domain name’s link to the bot can be terminated immediately so that their
relationship cannot be discovered.

— Second, legitimate users’ requests are handled by other machines called moth-
erships, rather than the bots the users contact directly. In other words, when
a legitimate user accesses a service provided by a fast-flux botnet via a URL,
the bot that the URL connects to and receives requests from does not handle
the requests itself. Instead, it serves as a proxy by delegating the requests to
a mothership, and then forwarding the mothership’s responses to the user.
By so doing, bot herders can update a malicious service (content) anytime
because they have more control over the mothership and the number of
mothership nodes is relatively small compared to that of bots. In addition,
since malicious services do not reside on bots, it is easier for bot herders to
reduce the footprint of the malicious software so that it is less likely to be
detected by anti-malware solutions.

To obscure the link between a domain name and the IP addresses of available
bots, fast-flux botnets often employ a strategy that resolves a domain name
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Fig. 1. An example of how a fast-flux botnet rapidly changes the IP addresses mapping
to its domain names. These two consecutive DNS lookups are 300 seconds apart.

to different sets of IP addresses over time. For example, we observed that the
malicious service £07b42b93. com, which hosts a phishing webpage that deceives
users by getting them to reveal their iPhone serial numbers, adopts this strategy.
As shown in Fig. 1, during a DNS query at time ¢, the domain’s DNS server
replies with 10 A records, any of which will lead users to the phishing webpage.
The short time-to-live (TTL) values, i.e., 300 seconds, indicate that the records
will expire after 300 seconds, so a new DNS query will then be required. At
t+300 seconds, we re-issued the same query and obtained another set of IP
addresses. In total, there are 19 IP addresses with one duplication in the two sets,
which indicates that the bot herder currently owns a minimum of 19 bots. The
duplication could occur because the DNS server returns IP addresses randomly,
or the bot herder does not have enough bots and cannot provide any more unique
IP addresses. A single fast-flux botnet domain name may be resolved to a huge
number of IP addresses. For example, we observed a total of 5,532 IP addresses
by resolving the domain name nlp-kniga.ru between October 2009 and March
2010. The larger the IP address pool, the higher will be the “productivity” of
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the botnet. As a result, the link between any two bots that serve the same bot
herders will be less clear, which is exactly what the bot herders desire.

A number of approaches have been proposed to detect fast-flux botnets.
By definition, a fast-flux botnet domain name will be resolved to different IP
addresses over time because 1) bots may not be alive all the time; and 2) bot
herders want the links between the bots to be less obvious. Therefore, most
studies rely on the number of IP addresses of a domain name by actively querying
a certain domain name [3,12] or passively monitoring DNS query activities for
a specific period [25] (normally a few days). This approach is straightforward
and robust; however, the time required to detect bots is simply too long. A bot
herder may only require a few minutes to set up a new domain name and a
malicious service to deceive legitimate users; therefore, we cannot spend a few
days trying to determine whether a certain domain hosts malicious services. In
order to fully protect legitimate users so that they do not access malicious services
unknowingly, we need a scheme that can detect whether a service is hosted by a
fast-flux botnet in real time.

In this paper, we propose such a scheme. The key features of the scheme are
as follows:

1. The scheme can work in either a passive or an active mode. In the passive
mode, it works when users are browsing websites; while in the active mode,
it can also issue additional HTTP requests and thereby derive more accurate
decisions. Irrespective of the mode used, the scheme can determine whether
a website is hosted by a fast-flux bot within a few seconds with a high degree
of accuracy.

2. The scheme relies on certain intrinsic and invariant characteristics of fast-
flux botnets, namely, i) the request delegation model; ii) bots have “owners,”
so they may not be dedicated to malicious services; and iii) the network
links of bots are not normally comparable to those of dedicated servers.
Among the characteristics, the first one exists by definition; while the other
two, fortunately, cannot be manipulated by bot herders. Consequently, bot
herders cannot implement countermeasures against the scheme.

3. The scheme does not assume that a fast-flux botnet owns a large number
of bots (IP addresses). Thus, even if a botnet only owns a few bots, as long
as it adopts the “request delegation” architecture, our scheme can detect it
without any performance degradation.

The remainder of this paper is organized as follows. In Section 2, we discuss
existing solutions for detecting fast-flux botnets. The intrinsic properties of fast-
flux botnets are analyzed in Section 3. The proposed solution is introduced in
Section 4. Section 5 evaluates the proposed solution. Section 6 considers practi-
cal issues related to the proposed solution. Section 7 contains some concluding
remarks.
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2 Related Work

To the best of our knowledge, the Honeynet project [22] was the first research to
study the abuse of fast-flux botnets. The authors explained the hidden operations
of botnets by giving examples of both single and double fast-flux mechanisms.
Single fast-flux mechanisms change the A records of domains rapidly, while double
fast-flux techniques change both the A records and the NS records of a domain
frequently.

Holz et.al. [12] monitored domain name service (DNS) activities over a seven-
week period and proposed a fast-flux botnet domain name detection scheme
based on the fluxy-score. The score is computed by counting the number of
unique A records in all DNS lookups, the number of NS records in a single DNS
lookup, and the number of unique autonomous system numbers (ASNs) for all
DNS A records. A number of detection schemes [14, 17,18, 25] detect fast-flux
botnet domain names by monitoring how frequently a domain name changes
its corresponding IP addresses. However, these solutions often have to observe
DNS activities for a long time (months). Although the observation period can be
reduced by using both active and passive monitoring techniques [3], the approach
still needs several minutes along with the help of a data center to determine
whether a domain name is controlled by a botnet.

The proposed fast-flux botnet detection scheme is fundamentally different
from all previous approaches. Since DNS-based detectors often require a long
time to identify fast-flux botnets, the proposed solution does not monitor DNS
activities. Instead, it relies on several basic properties that can be measured at
the network level. As a result, it can detect fast-flux botnets accurately and
efficiently.

3 Intrinsic Characteristics of Fast-Flux Bots

In this section, we consider the intrinsic characteristics of fast-flux bots, which
serve as the basis of the proposed detection method described in Section 4.
Since these characteristics are intrinsic and invariant, they are common to fast-
flux bots. Therefore, bot herders cannot manipulate them in order to evade
detection by the proposed scheme.

3.1 Request Delegation

As mentioned in Section 1, a fast-flux bot does not process users’ requests itself.
Instead, it acts as a proxy by delegating requests to the mothership, and then
forwards responses from the mothership to the users. The purpose of this design
is twofold: 1) to protect the mothership from being exposed or detected; and 2)
to avoid having to replicate malicious services and content to every bot, which
would increase the risk of being detected and also slow down the collection of
fraudulent information (e.g., obtaining users’ confidential data via phishing).
The request delegation design is illustrated in Fig. 2. When a client sends a
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Fig. 2. An example of how a fast-flux botnet delivers malicious content secretly to a
client.

request to a fast-flux bot, the request is redirected to a mothership node, as
shown in the figure. The node processes the request (mostly by reading a static
webpage from a hard disk), and sends the response to the bot. The bot, as a
proxy, forwards the response to the requester as if it had handled the request
itself.

Because of this design, a client may perceive a slightly longer delay between
issuing a request and receiving the response when the “service provider”! is
a fast-flux bot. The increase in the response time is roughly the same as the
message forwarding delay between the bot and the mothership. As long as the
request delegation model is employed, technically, the increase in response time
cannot be avoided.

3.2 Consumer-Level Hardware

Bot herders expand their collection of bots by compromising as many computers
as possible. Most botnets are comprised of domestic PCs [23]. One reason is
that such PCs are not well-maintained normally; e.g., the anti-virus software
may be out-of-date and/or the operating system and applications may not be
patched. Domestic PCs are normally equipped with consumer-level hardware
and usually connect to the Internet via relatively low-speed network links, e.g.,
ADSL and a cable modem. As a result, compared to dedicated web servers, like
those of Google and Yahoo, most bots have relatively low computation power
and network bandwidth to access the Internet, which may cause the following
phenomena:

— Because of a bot’s relatively low computation power, the message forward-
ing operation at a bot may experience significant delays if any foreground
application is running at the same time (see the next subsection).

— Because of a bot’s relatively low network bandwidth, and the fact that do-
mestic network links may be shared by a number of users (e.g., users in the
same building), it is highly likely that network queuing will occur. This will
induce variable queuing and make a request’s response time more variable.

1 We use the term “service provider” because, although a fast-flux bot is the ser-
vice provider from the end-user’s viewpoint, the actual service is provided by the
mothership behind the bot.
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Obviously, bot herders cannot alter the level of a bot’s equipment for network
bandwidth access. For this reason, we consider such characteristics intrinsic and
the phenomena should be observable; in other words, longer message forwarding
delays and more variable network delays should be widely observable in fast-flux
botnets.

3.3 Uncontrollable Foreground Applications

Ideally, bot herders should be able to control bots via remote control software;
however, bots are not controlled exclusively by bot herders: They are personal
computers that may be used by the owners at the same time. For example, a bot
may be serving phishing webpages for bot herders at exactly the same time that
the PC owner is playing an online game or watching a movie. This possibility
indicates that foreground applications run by bot owners and background mali-
cious processes run by bot herders may compete for computing resources, such
as the CPU, memory, disk space, and network bandwidth. In other words, if the
workloads of bot owners and bot herders compete for resources, the performance
of both applications may suffer.

This characteristic implies that the delay incurred by the message forward-
ing operation at a bot, i.e., the time taken to forward a user’s request to the
mothership and the time taken to forward the mothership’s response to the user,
may vary according to the instantaneous foreground workload on the bot. This
effect would be especially significant if a bot’s computation power is low (due
to consumer-level hardware). In this case, any foreground workload would slow
the above message forwarding operation, so a high level of variability in message
forwarding delays will be observed.

Bot herders cannot avoid this situation because malicious software would
be easily detected if it affects the performance of bot owners’ foreground appli-
cations. More specifically, if a bot herder’s malicious software requests a high
priority for computation, bot owners may notice that the performance of their
foreground applications deteriorates and run a scan, which would detect and
remove the malicious software.

3.4 Summary

In Table 1, we list the characteristics that are intrinsic to fast-flux bots, and also
compare fast-flux bots with dedicated severs and traditional bots (i.e., bots that
malicious services are running on, but they do not delegate users’ requests). It
is clear that dedicated servers do not have any of the characteristics of fast-flux
bots. Traditional bots, on the other hand, are similar to fast-flux bots, except
that they do not delegate requests.

The effects of these intrinsic characteristics are also summarized in Table 1.
Because of these properties, we expect to see long delays in fetching documents
(called document fetch delays hereafter), variable network queuing delays, and
long processing delays when users make requests to a malicious service hosted
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Table 1. Comparison of the intrinsic characteristics of bots (dedicated servers, tradi-
tional bots and fast-flux bots).

Dedicated Traditional Fast-flux

servers bots bots Consequence
Requests 0 0 0 Long delays in
delegated fetching documents
Comsumer-level 0 0 0 Low bandwidth &
hardware variable network delays
Uncontrollable .
| g g Long processing delays

foreground tasks

by a fast-flux bot. Measuring the three types of delay forms the basis of our
fast-flux bot detection scheme, which we discuss in detail in the next section.

4 The Proposed Solution

In this section, we introduce the proposed solution for detecting fast-flux bots.
Our scheme assumes that bot herders exploit the bots to execute web-based
malicious services, e.g., phishing pages or other types of fraudulent webpages.
Specifically, the malicious software on the bots includes a HTTP server that
listens to TCP ports 80/443 and accepts HTTP/HTTPS requests. Before de-
scribing the proposed scheme, we explain the rationale behind our design:

— Realtimeness. We expect the scheme to be able to detect fast-flux bots in
real time, e.g., within a few seconds, so that we can prevent legitimate users
from proceeding with malicious services in time.

— Robustness. We expect that the scheme will not be dependent on the sig-
natures of certain botnet implementations. The scheme must be signature-
independent in order to cope with updates from existing botnets as well
as new, unknown botnet implementations without degrading the detection
performance.

— Lightweight. We expect the scheme to be as lightweight as possible so that
it can be deployed on any type of device without using too many computing
resources.

Given the above guidelines, we propose a real-time, signature-independent,
and lightweight detection scheme for fast-flux bots based on their intrinsic charac-
teristics (cf. Section 3). Under the scheme, if a client tries to download webpages
from a web server suspected of being a fast-flux bot, the scheme will monitor the
packet exchanges between the client and the server and issue additional HTTP
requests if necessary. The decision about whether the server is part of a fast-flux
botnet is based on measurements of the packet transmission and receipt times
observed at the client. We call the web server that the client sends HT'TP re-
quests to a “suspect server” or simply a “server.” However, the machine may
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Fig. 3. The measurement techniques used to estimate network delays, processing de-
lays, and document fetch delays based on HTTP requests.

only be a proxy, so it does not handle HTTP requests itself (e.g., in the case of
fast-flux bots).

Next, we define the three delay metrics used to determine whether a suspect
server is a fast-flux bot.

1. Network delay (ND): The time required to transmit packets back and
forth over the Internet between the client and the server.

2. Processing delay (PD): The time required for the server to process a
HTTP request that does not incur any computation and I/O workload.

3. Document fetch delay (DFD): The time required for the server to fetch
a webpage (either from a hard disk or from a back-end mothership).

Network delays occur at the network-level, while the processing delays occur
at the host-level (i.e., at the suspect server). Document fetch delays are more
complicated in that they may occur at the host-level only (at the suspect server)
if the request delegation model is not employed, or they may arise if the server
delegates received requests to a mothership via the Internet. In the latter case,
DFDs involve host-level delays (at the suspect server and the mothership node)
and network-level delays (between the suspect server and the mothership node).
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The measurement techniques used to estimate the three types of delay are shown
in Fig. 3. We discuss the techniques in detail in the following sub-sections.

4.1 Network Delay Measurement

Network delay (ND) is defined as the difference between the time a client sends
out the first TCP SYN packet to the suspect server and the time the client
receives the corresponding TCP SYN+ACK packet from the server. By using
this estimate, a TCP connection only yields one network delay sample. To collect
more samples, when appropriate, our scheme temporarily disables the persistent
connection option in HTTP 1.1, which ensures a separate TCP connection for
each HTTP request; thus, the number of ND samples will be the same as the
number of HTTP requests.

4.2 Processing Delay Measurement

Measuring processing delays (PD) at the suspect server is not straightforward
because HTTP does not support such operations naturally. We need a HTTP
command that will respond to the client without contacting the back-end moth-
ership (if any), irrespective of whether the suspect server is a fast-flux bot. For
this purpose, we attempted to make the following requests:

1. Valid HTTP requests with methods other than GET, e.g., OPTIONS and HEADER
methods.

2. HTTP requests with an invalid version number.

3. HTTP requests with incomplete headers.

4. HTTP requests with an undefined method, e.g., a nonsense HI method.

Our experiments showed that most fast-flux bots still contacted their mothership
in the first three scenarios. On the other hand, most of them rejected HTTP
requests with undefined methods directly by sending back a HTTP response,
usually with the status code 400 (Bad Request) or 405 (Method Not Allowed).

Consequently, we estimate the processing delay at the server by subtracting
the network round-trip time from the application-level message round-trip time.
Specifically, assuming AD is the difference between the time a client sends out
a HTTP request with an undefined method and the time the client receives the
corresponding HTTP response (code 400 or 405), then a PD sample is estimated
by subtracting ND (the network delay) from AD.

4.3 Document Fetch Delay Measurement

We define the document fetch delay (DFD) as the time required for the suspect
server to “fetch” a webpage. Since the fetch operation occurs at the server side,
we cannot know exactly what happens on the remote server. Thus, we employ
the following simple estimator. Assuming RD is the difference between the time
a client sends out a successful HI'TP GET request and the time the client
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Fig. 4. Scatter plots of processing delays, document fetch delays, and their respective
standard deviations. Both the x- and y-axis are in log scale.

receives the corresponding HTTP response (code 200), then a DFD sample is
estimated by subtracting ND (the network delay) from RD. Figure 4 shows the
distribution of DFD, PD and their respective standard deviations measured for
benign servers, traditional bots and fast-flux bots.

4.4 Decision Algorithm

In this sub-section, we explain how we utilize the three delay metrics in our
decision algorithm.

— The objective of measuring network delays is to capture the level of network
congestion between a client and the suspect server. As per Section 3.2, the
ND and sd(ND), where sd(-) denotes the standard deviation, tend to be
(relatively) large if the suspect server is a fast-flux bot rather than a benign,
dedicated web server.

— The processing delay helps us determine the server’s workload and the re-
quired computation power. If there are other workloads on the server, the
estimated processing delays would be high and fluctuate over time. Thus, as
per Section 3.2 and Section 3.3, the PD and sd(PD) tend to be large if the
suspect server is a fast-flux bot.

— The document fetch delay indicates how much time the server takes to fetch
a webpage. Because of the request delegation model (Section 3.1), DFD and
sd(DFD) tend to be large if the suspect server is a fast-flux bot.
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Fig. 5. The distribution of unique autonomous system numbers (ASNs) per domain
name in the dataset of benign servers and fast-flux bots.

For a suspect server, we collect six feature vectors (ND, PD, DFD, and their
respective standard deviations), each of which contains n elements assuming n
HTTP GET requests are issued. For the PD samples, another n HT'TP requests
with an undefined method must also to be issued.

To determine whether a suspect server is a fast-flux bot, which is a binary
classification problem, we employ a supervised classification framework and use
linear SVM [4] as our classifier. A data set containing the delay measurement
results for both benign web servers and web servers hosted on fast-flux bots is
used to train the classifier. When a client wishes to browse pages on an unknown
website, our scheme collects the delay measurements and applies the classifier
to determine whether the suspect server is part of a fast-flux botnet.

5 Methodology Evaluation

In this section, we evaluate the performance of the proposed fast-flux bot detec-
tion scheme. First, we describe the data set and examine whether the derived
features differ significantly according to the type of suspect server. Then, we
discuss the detection performance of the scheme and consider a passive use of
the scheme.

5.1 Data Description

To evaluate the performance of the proposed scheme in real-life scenarios, we
need a set of URLs that legitimate users can browse. Our dataset contains the
following three categories of URLs, which point to different kinds of servers:

— Benign servers: The top 500 websites listed in the Alexa directory [1].
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Table 2. The trace used to evaluate the detection performance of the proposed scheme.

Host type #domain #IP address #session #connection
Benign servers 500 3,121 60,936 565,466
Traditional bots 16,317 9,116 79,694 943,752
Fast-flux bots 397 3,513 213,562 726,762

— Traditional bots: URLs that appear in the PhishTank database [19] with
suspicious fast-flux domains removed (see below).

— Fast-fluz bots: URLs that appear in the ATLAS Global Fast Flux database [2]
and the FastFlux Tracker at abuse.ch [6].

Between January and April 2010, we used wget to retrieve the URLs in
our dataset at hourly intervals. During the web page retrieval process, we ran
tcpdump to monitor all the network packets sent from and received by the client.
After retrieving each web page, we sent out a HTTP request with the undefined
method “HI” to measure the processing delays that occurred at the suspect
server, as described in Section 4.2.

We found that some URLs in the PhishTank database actually point to
fast-flux bots, and some URLs listed as pointers to fast-flux bots may actually
point to traditional bots. Therefore, after collecting the data, we performed a
post hoc check based on the number of distinct autonomous system numbers
(ASNs). Figure 5 shows the distributions of distinct ASNs of benign domain
names and fast-flux domain names over the trace period. Nearly all the benign
domain names were associated with three or fewer ASNs, while most fast-flux
domain names were associated with many more ASNs over the three-month
period. Based on this observation, we set 3 ASNs as the threshold to determine
whether or not a domain name was associated with a fast-flux botnet. Thus, if a
domain name was reported as a non-fast-flux bot, but it was associated with four
or more ASNs (or vice versa), we regarded the domain name as questionable.
We simply removed such domain names from our trace to ensure its clarity and
correctness.

In addition, if a URL was unavailable due to domain name resolution failures,
packet unreachable errors, HT'TP service shutdown, or removal of corresponding
web services for 10 successive attempts, we removed it from the dataset.

The three-month trace is summarized in Table 2, where a connection refers to
a TCP connection, a session refers to a complete web page transfer (including the
HTML page and its accessory files, such as images and CSS files). As we turned
off the HTTP 1.1 persistent connection option in order to acquire more samples
for the delay metrics (cf. Section 4), the number of connections is much higher
than that of sessions because a web page often contains several accessory files
(maybe even dozens). Figure 6 shows the top 10 (out of 19) top-level domains
and the top 20 (out of 127) countries associated with the observed fast-flux bots.
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Fig. 6. (a) The top 10 top-level domains and (b) the top 20 countries associated with
the fast-flux domain names in our dataset.

5.2 A Closer Look at the Derived Features

We now examine whether the empirical delay measurements derived during web
browsing can be used to distinguish between fast-flux bots and benign servers.
First, we investigate whether, as expected, consumer-level hosts incur higher
and more variable processing delays and more variable network delays (cf. Sec-
tion 3.4). To do this, we use a common technique that infers whether a host is
associated with dial-up links, dynamically configured IP addresses, or other low-
end Internet connections based on the domain name of reverse DNS lookups [21].
For example, if a host’s domain name contains strings like “dial-up,” “adsl,” and
“cable-modem,” we assume that the host is for residential use and connects to
the Internet via relatively slow links. Figure 7 shows the distributions of the six
features for normal and consumer-level hosts. The plots fit our expectation that
consumer-level hosts of fast-flux botnet incur a much higher number of variable
network delays, longer processing delays, and more variable processing delays
than those of dedicated servers. In addition, we consider that the longer and
more variable document fetch delays are due to lower computation power and
longer disk I/O access latency on the consumer-level hosts.

Figure 8 shows the distributions of the six features for benign servers, tradi-
tional bots, and fast-flux bots. Clearly, fast-flux bots lead to much higher values
for all six features compared with the other two server categories, manifesting
the effects of the intrinsic characteristics of fast-flux bots. The magnitudes of
the six features of traditional bots are generally lower than those of fast-flux
bots, but higher than those of benign servers except for the standard deviation
of network delays. We believe this is because benign servers usually have more
visitors than the other two categories of servers; therefore, network links to be-
nign servers tend to be busy and it is more likely that a slightly higher degree
of network queuing and delay variations will be observed.
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Fig. 7. The cumulative distribution functions of network delays, processing delays,
and document fetch delays, and their respective standard deviations of normal and
consumer-level hosts were measured based on 5 probes.
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Fig. 8. The cumulative distribution functions of network delays, processing delays,
and document fetch delays, and their respective standard deviations of three server
categories were measured based on 5 probes.
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Fig. 9. (a) The relationship between the classification accuracy and the number of sam-
ples; (b) the ROC curve of the SVM classifier using 5 probes; and (c¢) the relationship
between the area under the curve and the number of probes.

5.3 Detection Performance

The graphs in Figure 8 confirm that the six features we derived may vary signifi-
cantly according to the type of web server a user browses. In this sub-section, we
examine supervised classification using SVM based on the derived six features.

Although we focus on the detection of fast-flux bots, we also include tradi-
tional bots in our evaluation. This is because, according to our analysis (Sec-
tion 3), traditional bots also behave differently to benign servers in terms of most
of the defined delay metrics. We perform two types of binary classification using
SVM, namely, benign servers vs. fast-flux bots and benign servers vs. traditional
bots. Figure 9(a) shows the relationship between the classification accuracy and
the number of samples observed (which may vary according to the number of
accessory files of webpages), where the accuracy is derived using 10-fold cross
validation. The results show that our scheme achieves more than 95% accuracy
when we try to distinguish fast-flux bots from benign servers, even when only
one sample (i.e., the TCP connection) is observed. We find that it is more dif-
ficult to distinguish between benign servers and traditional bots because the
classification accuracy is only 70%-80%; however, the accuracy rate increases
when more samples are observed.

Figure 9(b) shows the ROC curves of the two types of classification based
on 5 samples. The area under the curve (AUC), which distinguishes between
benign servers and fast-flux bots, is 0.993; hence, the proposed detection scheme
performs almost perfectly in this scenario. The AUC degrades to 0.83 when
we try to classify traditional bots from benign servers, which implies that our
detection scheme can detect traditional bots with a moderate degree of accuracy.
As the number of samples may affect the classification performance, we plot the
relationship between the AUC and the number of samples in Fig. 9(c). The graph
shows that the detection performance remains nearly constant regardless of the
number of samples used for fast-flux bot detection (the AUC is always higher
than 0.99). In contrast, the number of samples is more important when we try to
detect traditional bots, as the AUC increases above 0.8 if more than 10 samples
are observed before classification is performed.
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samples, (b) the ROC curve of the SVM classifier using 5 probes, and (c) the rela-
tionship between the area under the curve and the number of probes in the passive
mode.

5.4 Passive Mode

The network delay and document fetch delay can be measured by passive mea-
surements when users are browsing webpages, but an active approach must be
used to measure the processing delay (i.e., by sending HTTP requests with an
undefined method). Since active measurements incur additional overhead, to
keep our method lightweight whenever necessary, we consider that a “passive
mode” would be quite useful when traffic overhead is a major concern.

In the passive mode, instead of using all six features, we only use the average
and standard deviations of network delays and document fetch delays in the
supervised classification. The classification accuracy is plotted in Fig. 10. We
observe that the classification between fast-flux bots and benign servers is hardly
affected by the removal of the “active features,” i.e., processing delays and their
standard deviations, except when the number of samples is quite small. We
believe this indicates that document fetch delays already serve as a powerful
indicator for distinguishing the two server categories. On the other hand, the
classification accuracy between benign servers and traditional bots is slightly
affected by the removal of active features, as processing delays play an important
role in distinguishing between the two types of servers. The ROC curves and the
AUC:s of different numbers of samples shown in Figure 10 also indicate that the
passive mode of our scheme yields accurate detection results, especially when a
fast-flux-bot detection method is required.

6 Discussion

In this section, we discuss several issues that are worth investigating further.

6.1 Content Delivery Network

One concern raised in a previous work on fast-flux bot detection [17] is that
content delivery networks (CDNs) share a similar property with fast-flux botnets;
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that is, the nodes in CDNs and fast-flux botnets are associated with multiple IP
addresses rather than a single IP address. This leads to confusion if a fast-flux
botnet detection scheme is based on a number of IP addresses (or autonomous
systems) that are associated with a certain domain name [3,12,17,25]. However,
this is not a problem in our proposed method because it does not count the
number of IP addresses.

6.2 Proxy Server

Although proxy servers also employ the request delegation model, we argue
that the proposed scheme does not confuse fast-flux bots with proxy servers.
The reason is that proxy servers are clearly visible to the end users, and the
users’ clients are aware that they are fetching web documents from a web server
with the help of a proxy server. On the other hand, a fast-flux bot does not
pretend to be a proxy server because the HT'TP proxy protocol does not hide
the identity of back-end web servers unless a transparent proxy is used; therefore,
the mothership nodes will be revealed, which is a situation that bot herders strive
to avoid. Furthermore, if a transparent proxy is used, the proposed method will
not be affected because the roles in the request delegation model are different.
This is because the suspect servers contacted by users do not delegate requests
to others; instead, the request-delegation operation is performed by a hidden
man-in-the-middle (i.e., a transparent proxy server), which may only reduce
document fetch delays. Therefore, proxy servers along the paths between users
and suspect servers will not be detected as fast-flux bots.

6.3 Deployment

Our scheme can be deployed in a number of situations. First, because of its
lightweight property, it can run on end-users’ machines, such as personal com-
puters or mobile devices. In this case, it can be implemented as a browser add-on
or stand-alone software that monitors users’ web browsing activities and warns
users when they are browsing a website hosted by fast-flux bots.

Second, it may be more convenient if the scheme is deployed at a gateway
router to protect users in a local area network. Since the transmission latency
between a gateway router and a host is usually negligible, the delay metrics
measured on the router would be roughly the same as those measured on users’
computers. Therefore, we can simply monitor all outgoing HTTP requests, mea-
sure the delays, and notify users if the measurements indicate that a certain
HTTP request has been sent to a fast-flux bot. We consider this to be an effi-
cient way to deploy the proposed detection scheme to protect legitimate users.

6.4 Limitations

Although the proposed detection scheme achieves high accuracy, as shown by
the results in Section 5, it has some limitations. Recall that fast-flux bots are
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normally equipped with consumer-level hardware and connect to the Internet
with (relatively) narrower network links. The proposed scheme may fail in the
following cases:

1. A bot herder may compromise powerful servers and incorporate them into
a fast-flux botnet.

2. A benign server may not be equipped with high-level hardware like the
dedicated web servers provided by Internet service providers.

In the first case, we believe that bots with consumer-level hardware would
still dominate because high-level and high-connectivity servers are normally well-
maintained and patched; hence, they are less likely to be infected and controlled
by malicious software. If this should happen, we would observe short processing
delays at the suspect server. The second case may occur when web servers are
set up for amateur and casual use. Then, we would observe long and variable
processing delays and network delays when users access webpages via such web
servers. In both cases, our method relies on all three intrinsic characteristics in
the active mode (or two in the passive mode) rather than a single characteristic.
Therefore, a compromised server could still be detected using other characteris-
tics, especially the “long document fetch delay” property.

7 Conclusion

We have proposed a novel scheme for detecting whether a web service is hosted
by a fast-flux botnet in real time. Evaluations show that the proposed solution
achieves a high detection rate and low error rates. Unlike previous approaches,
our scheme does not assume that a fast-flux botnet owns a large number of bots
(IP addresses). Thus, even if a botnet only owns a few bots, as long as it adopts
the “request delegation” architecture, the proposed scheme can detect the botnet
without any performance degradation.

In addition to being efficient and robust, the proposed solution is lightweight
in terms of storage and computation costs. Therefore, it can be deployed on
either fully fledged personal computers or resource-constrained network devices
to provide Internet users with complete protection from bot-hosted malicious
services.
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