Observe Internet Peer-to-Peer Activities at Home™

Chun-Ying Huang!, Shang-Pin Ma'!, Ching-Hong Wu!, Chi-Ming Chen', and Chih-Hung Lin?
! Department of Computer Science and Engineering, National Taiwan Ocean University
2Networks and Multimedia Institute, Institute for Information Industry
Email: {chuang,albert} @ntou.edu.tw, {chwu,cmchen}@snsl.cs.ntou.edu.tw, chlin@iii.org.tw

Abstract—Peer-to-peer networking is a popular topic for
network researchers. A fundamental step before digging into
understanding peer-to-peer network behavior is to collect a
sufficient amount of peer-to-peer traffic traces. However, it is not
really easy to obtain traces. Due to privacy concerns, researchers
usually have to either sign non-disclosure agreements or choose
to use anonymous/obfuscated traces, which may hide important
details of the traces. In this paper, we explore the possibility
of observing peer-to-peer networks at home. A virtual machine
based trace collection system is developed. We then show that
with a limited resource, i.e., equipments and network nodes, it
is possible to sample a number of peer-to-peer traffic traces and
then make further analysis. Based on the traces we collected, a
preliminary analysis is also made to show what can be observed
in the traces. We believe it is helpful for researchers whom
are interested in observing peer-to-peer activities and Internet
dynamics.

Index Terms—Internet measurement, peer-to-peer network,
trace collection

I. INTRODUCTION

It is generally recognized that Napster[2] is the first peer-
to-peer system. The first generation peer-to-peer system is
basically a centralized service. A big directory is stored in a
central server to maintain the relationships between files and
hosts. Hence, peer-to-peer end users are able to lookup files
via the central server and then download files directly from
involved hosts. However, due to performance and scalability
issues, peer-to-peer techniques have evolved from centralized
services to distributed services'. That is, there is not a central
server maintaining the file-to-host relationships. Instead, all
peer-to-peer nodes form a structured overlay network in a
distributed manner. Searching and downloading activities are
done through message exchanges over the overlay network.
Modern peer-to-peer applications often implement both mod-
els, i.e., centralized and distributed models, to maximize the
availability of the peer-to-peer network.

To peer-to-peer network researchers, a fundamental require-
ment for network traffic analysis researches is to collect a
number of network traces. However, it is not really easy to
obtain network traces. The difficulty is usually because of

*This work was supported in part by National Science Council under the
grant number NSC 97-2218-E-019-004-MY2, NSC 99-2218-E-019-001-M Y2,
and by Taiwan Information Security Center at NTUST(TWISC@NTUST)
under the grant number NSC 99-2219-E-011-004.

It may be also because of copyright issues since an unlicensed central
server providing references to copyrighted materials is usually considered as
illegal.

privacy issues. Most users would not like their network con-
nections being watched, stored, or even analyzed. Therefore,
to legally obtain large scale peer-to-peer network traces, a
researcher often has to sign non-disclosure agreements (NDAs)
with network operators or even end users. It is worse that even
an NDA is signed, the obtained traces may be anonymized or
obfuscated, which may hide important details of the traces. In
addition to the difficulty of obtaining traces, another important
issue for confidential network traces is that they can not
be shared. It makes researchers difficult to compare their
researches with others because data used by one group can not
be shared with other groups. Therefore, it is not able to create
a universal standard to evaluate various peer-to-peer network
researches.

In this paper, we explore the possibility of observing peer-
to-peer networks at home. Thanks to the distributed design
of peer-to-peer networks and dynamic IP address assignment
policies. The two techniques make this work possible. In
a distributed peer-to-peer network, a node usually has to
maintain a list of contacted neighbor nodes. The list is often
called the host cache [1]. With the cache, a peer-to-peer node
is able to expand its view of networks and hence accelerate
peer-to-peer network operations including joining the network,
searching for files, and even downloading files. However, due
to the dynamic IP address assignment policy in most Internet
service providers (ISPs), an IP address stored in a host cache
may become invalid at any instant. This is because the address
can be reclaimed due to expired lease time or disconnected
hosts. The proposed system collect peer-to-peer network traces
based on the above two observations. It tries to obtain IP
addresses that is previously assigned to a peer-to-peer node.
Then, it just passively waits requests from other peers and
collect the trace. We show that with a limited number of nodes
and resources, it is possible to collect a large number of traces
from world-wide peer-to-peer nodes.

The rest of this paper is organized as follows. In Section II,
we introduce the assumptions and the implementation of the
proposed system. In Section III, we make some preliminary
observations to the collected traces and show what can be
observed. Finally, a concluding remark is given in Section IV.

II. THE PROPOSED SOLUTION

A. Assumption

There are two assumptions used in the proposed system.
First, the ISP used to collect traces must assign public IP
addresses to its clients. Only public IP addresses are able to

Peer-to-

Peer
Peer-to-
Network E Peer
Network C

Peer-to-
Peer
Network D

Network A

Bridged Networking

Virtual Virtual Virtual
Machine Machine Machine
#1 #2 #N

Monitor Host Machine

Fig. 1. The proposed system architecture.

passively receive incoming packets and connections. Second,
the ISP should always assign dynamic IP addresses to its
clients. If an on-line client disconnects itself from the Internet
and then gets on-line again, the client should get an IP address
different from that one used in the previous session. This
assumption should be true in most ISPs because the number of
IPv4 addresses are limited but the number of Internet users are
tremendous. A just released IP addresses can be immediately
assigned to another user and hence the IP address becomes
unavailable.

B. Overview

The proposed system architecture is shown in Figure 1. Each
traffic collector is implemented on a virtual machine, which
is connected to the real network using a bridged interface.
When a virtual machine boots, it first connects to the Internet
and obtain an IP address by using a predefined user name and
password. Then, a crafted program is executed to intercept all
incoming data from the Internet. The program just passively
listen for UDP packets and TCP connections, it does not
response to anything. For UDP packets, the program simply
stores everything it receives. For TCP connections, since data
can be only sent after a connection is successfully established,
the program accepts all incoming TCP connections and then
waits for incoming data.

A TCP connection is said to be idled if there is no thing new
received. If a established TCP connection is idled for more
than a given threshold (7. seconds), the connection is closed
by the program. Similarly, an on-line virtual machine is said
to be idled if it does not receive any packets from the network.
If an on-line virtual machine has idled for a given threshold
(T, seconds), the IP address in-use is treated as an inactive IP
address and the virtual machine reboots. In addition to reboot
virtual machines on detection of inactive IP addresses, a virtual

iptables -t nat -A PREROUTING
-d $IP -j DNAT \
—-—to-destination $IP:S$PORT

iptables -t nat —-A PREROUTING -p udp \
-d $IP -3 DNAT \
-—to-destination $IP:$PORT

-p tcp \

Fig. 2. Firewall rules used to redirect all TCP and UDP traffic to the sink

program.

machine also reboots periodically. In the proposed system, a
virtual machine is rebooted after 7). seconds since it is on-line.
Hence, it is possible to collect as many traces as possible from
different IP addresses.

C. Implementation

The proposed system is implemented on a Linux operating
system. We install a Ubuntu Linux 9.04 server in each virtual
machine and run our program over the Linux operating system.
One difficult encountered during the implementation is that the
program has to intercept all incoming connections and stored
the data. Since network requests for all TCP and UDP ports
have to be stored properly, we have tried to bind multiple net-
work ports using either a single process or multiple processes.
However, these methods do not work. If a single process
binds all network ports, it may run out of available system
descriptors. In addition, handling incoming connections from
a large number of network ports is inefficient. It requires O(n)
time to iteratively check the state of each bound ports using
either the select (2) or poll (2) system call. If multiple
processes are used to bind all network ports, although the
single process problem can be mitigated, the additional costs
incurred by creating processes and context-switches degrade
the performance of the system. The available memory space
for each virtual machine is often limited. If a large number of
processes is created, the overall system performance drops a
lot.

To implement the system properly, there are some tricks.
First, two traffic sink programs, tcpsink and udpsink,
are written to handle only TCP and UDP traffic, respectively.
The tcpsink program handles only TCP traffic received on
a fixed port p. Similarly, the udpsink does the same thing
for UDP traffic. The two programs do nothing but just read
received data from the network and then drop it. The purpose
of the two programs is to prevent the traffic sender from
receiving ICMP host or port unreachable messages. In order to
handle all TCP and UDP traffic from the Internet, two firewall
commands, as shown in Figure 2, are used to redirect all TCP
and UDP traffic to the sink programs. With the support of the
Linux firewall system, the sink programs are able to act like
accepting traffic destined for a single port but they actually
accept traffic destined for all network ports. Finally, to collect
traces for the obtained IP address, all involved network traffic
is stored by a background tcpdump program [3] in a form
of raw packets.

TABLE I
DOMINANT PEER-TO-PEER PROTOCOLS.

Protocol Requests Percentage
edonkey 115,385 4.7%
bittorrent 1,412,925 57.7%
gnutella 920,017 37.6%

III. TRACE COLLECTION AND OBSERVATION
A. Environment

Before introducing what has been observed, we have to
introduce the real environment used to collect peer-to-peer
traffic traces first. The proposed system installs in two different
locations, but they are both using the same ISP. Each system
runs four virtual machines because the ISP allows a maximum
of four hosts connecting to the Internet simultaneously. The
timers’ threshold are given as follows:

e TCP connection idle timeout 7, = 30 seconds.

e On-line virtual machine idle time 7},, = 1800 seconds (30
minutes).

e Virtual machine reboot timeout 7. = 1800 seconds (30
minutes).

To improve system efficiencies, we do not really reboot a
virtual machine every 7, seconds. Instead, we just ask the
virtual machine to disconnect itself from the Internet and then
on-line again to obtain another new IP address. The entire
trace collection experiment runs for more than 3 months (120
days).

In addition to peer-to-peer traffic, it is possible that an IP
address also receives many non-peer-to-peer packets. These
packets may be used to probe opened network ports or even
launch attacks. Therefore, to filter out these noises, we use
two strategies to recognize peer-to-peer traffic. First, we adopt
patterns from the L7filter [6] project to identify unencrypted
peer-to-peer traffic. The traffic identification program is based
on one of our previous work [4]. Second, if a network
connection can be recognized as a peer-to-peer connection,
all packets send to the same destination are considered as
the same type of peer-to-peer traffic. Here the destination is
defined by the used transport layer protocol, the destination
IP address, and the destination port number. Based on the two
strategies, we find out three major peer-to-peer protocols in
the collected traces, as show in Table I.

B. Traffic Sinks

During the entire experiment period, the proposed system
connects to the Internet using 5,772 distinct IP addresses,
which are used to collect peer-to-peer traces. Almost all these
IP addresses, 97% of them receive peer-to-peer traffic. Figure 3
shows the overall statistics for the number of requests send to
trace collection IP addresses. The x-axis indicates the number
of requests that the trace collection IP addresses have received
and the y-axis is the cumulative distribution function for the
number of distinct I[P addresses. The left plot in Figure 3 is
the big picture and the right plot in the figure enlarges the part
for the request numbers ranging from 1 to 200. In the figure,

1.0

0.6 0.8

The number of distinct IP address (C.D.F)
0.4

The number of distinct IP address (C.D.F)

0.2
|

T T T T T T T T T T T
0 5000 15000 25000 0 50 100 150 200

Number of requests Number of requests

Fig. 3. Statistics for the number of requests send to trace collection IP
addresses.
8
o |
o o
a a
e)
(2] 123
¢ g | 8
g o 3
© ©
o o
5 B
£ £
2 2
hel el
s 8 s
8 ° 8
E £
=] =]
< <
(o} Q
& 2
[[
v
8
o
T T T
0 500 1000 1500
Number of requests Number of requests
Fig. 4. Statistics for the number of requests sent from the source IP addresses.

we can see that the number of requests that a trace collection
IP address receives is diverse. It is possible that an IP address
receives less than ten requests but it is also possible that one
receives more than 25,000 requests. From the figure, we can
also see that more than 40% of IP addresses have received
more than 60 requests during the period of observations. Since
the T, timer is set to 30 minutes, it means that 40% of IP
addresses have a request incoming rate higher than 1 request
per minute.

C. Traffic Sources

The proposed system monitored 1,998,049 source IP ad-
dresses that generate peer-to-peer requests. Similar to the sink
addresses, Figure 4 shows the overall statistics for the number
of requests sent from the source addresses. The left plot in
the figure is the big picture and the right plot in the figure
enlarges the part for the request numbers ranging from 1 to
30. In the figure, we can see that 99% of peers sent less than 5
requests during the entire observation periods. Since our trace
collection system does not response to incoming requests, a
remote peer should treat the sink IP address as a dead peer

Fig. 6. Observed World-wide peer-to-peer users. The circles on the map indicate the location of observed peers. The larger the circle, the larger number of

distinct IP addresses are observed.

o _
™
[To T
[aV]
—_ o |
o\° [aV]
Q
S
S =
o
(0]
o
o _|
o
o DDDI.DD..IIIII--

TW CN HK US JP ES FR CA RU GB PL BG IT BR TH MY DE RO IN AU Misc
Location Name

Fig. 5. Source countries of requests.

and stop sending more requests to the IP address. However,
we can still find that about 1% peers use a more aggressive
strategy to communicate even if its peer is actually a dead
peer.

We also monitor the geographic location of peer-to-peer

Requests (%)
4

2

- JULLTRAI

0 2 4 6 8 10 12 14 16

18 20 22

Hour

Fig. 7. Aggregated 1-day plot for requests.

request sources. The IP-to-location database is obtained from
ipinfodb.com website [5]. Figure 5 shows the originating
countries and the percentage of the requests. The top 20
locations contributes 80% of requests. It is obviously that the
monitored peer-to-peer traces have a high spatial locality. This
is because traces are collected at a single place and the peers
that sent requests to the trace collection IP addresses should
have similar interests in common. However, we can still find
that more than 60% of IP addresses come from many other
different places. It also shows that the proposed system is able
to reach peers all around the world. To be more intuitive, a
world map plot can be done to give images about how these
peers are distributed over the world, as shown in Figure 6.

o _
S
s =
%]
(0]
3
o
€ ©

o J

sun mon tue wed thu fri sat
Day of week
Fig. 8. Aggregated 1-week plot for requests.

D. Temporal Locality

We also observe the temporal locality of peer-to-peer behav-
iors. Figure 7 and Figure 8 shows the observed temporal local-
ity from the collected traces. In the both figures, we interprets
request timestamps by using the time-zone of request senders.
We believe that interpreting timestamps using the senders’
time-zone should be a more accurate choice to understand user
behaviors. It is intuitive that peer-to-peer applications should
be usually run in daytime. This intuition matches the result
shown in Figure 7. However, if we see the one-week plot in
Figure 8, we find that there are not much differences between
weekdays and holidays.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we propose and implement a peer-to-peer
trace collection prototype to show that it is possible to collect
representative peer-to-peer traces at home. With a limited
number of network nodes and resources, a number of peer-
to-peer traces can be collected and analyzed. Our prelimi-
nary observations also show that the quality of the traces,
the spatial locality distributions, and the temporal locality
behaviors matches common understandings to regular peer-to-
peer behaviors. This work can be further improved in several

ways. Since it is able to reach a large number of real peers, the
system can be designed to interact with those peers. Then, it is
possible to understand what are shared in the network, to make
more advanced statistics for peer-to-peer protocols, or even
compromise parts of the network. In addition to monitoring
peer-to-peer network behaviors, the proposed system collects
many non-peer-to-peer traces as well. These traces include
network attacks, requests to dynamic proxies and servers, and
many unknown traffic. It may be also a good material to
understand the traffic and protocol dynamics on the modern
Internet.

V. ACKNOWLEDGEMENT

This work was conducted under the “Next Generation
Security Technology Deployment and Enablement Project”
of Institute for Information Industry which is subsidized by
the Ministry of Economy Affairs of the Republic of China.
We also thank the anonymous reviewers for their valuable
comments and suggestions.

REFERENCES

[1] S. A. Baset and H. G. Schulzrinne. An analysis of the skype peer-to-
peer internet telephony protocol. In Proceedings of the 25th INFOCOM
Conference, pages 1-11, Barcelona, Spain, 2006. IEEE.

[2] B. Carlsson and R. Gustavsson. The rise and fall of napster - an
evolutionary approach. In AMT ’01: Proceedings of the 6th International
Computer Science Conference on Active Media Technology, pages 347—
354, London, UK, 2001. Springer-Verlag.

[3] F. Fuentes and D. C. Kar. Ethereal vs. tcpdump: a comparative study
on packet sniffing tools for educational purpose. J. Comput. Small Coll.,
20(4):169-176, 2005.

[4] C.-Y. Huang and C.-L. Lei. Bounding peer-to-peer upload traffic in
client networks. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages
759-769, Washington, DC, USA, 2007. IEEE Computer Society.

[5] ipinfodb.com. Free ip address geolocation tools. [online] http://ipinfodb.
com/.

[6] M. Strait and E. Sommer. Application layer packet classifier for linux.
[online] http://17-filter.sourceforge.net/.

