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Abstract

A secure multicast framework should only allow authorized members of a group to decrypt received messages; usually,
one “group key” is shared by all approved members. However, this raises the problem of “one affects all”’, whereby the
actions of one member affect the whole group. Many researchers have solved the problem by dividing a group into several
subgroups, but most current solutions require key distribution centers to coordinate secure data communications between
subgroups. We believe this is a constraint on network scalability. In this paper, we propose a novel framework to solve key
management problems in multicast networks. Our contribution is threefold: (1) We exploit the ElGamal cryptosystem and
propose a technique of key composition. (2) Using key composition with proxy cryptography, the key distribution centers
used in secure multicast frameworks are eliminated. (3) For key composition, the framework is designed to resist node fail-
ures and support topology reconstruction, which makes it suitable for dynamic network environments. Without reducing
the security or performance of proxy cryptography, we successfully eliminate the need for key distribution centers. Our
analysis shows that the proposed framework is secure, and comparison with other similar frameworks demonstrates that
it is efficient in terms of time and space complexity. In addition, the costs of most protocol operations are bounded by
constants, regardless of a group’s size and the number of branches of transit nodes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The original design of multicast [1] did not incor-
porate mechanisms that guaranteed the integrity
and confidentiality of messages. Since multicast
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routers simply deliver messages via a tree-like struc-
ture according to group addresses, when an arbi-
trary user registers with a multicast group, he can
receive all the messages from the distributor. This
raises a serious security problem. Therefore, a great
deal of research has focused on security mechanisms
for multicast and group communications. The goal
of these mechanisms is simple: A secure multicast
mechanism should be able to control member access
rights and guarantee the confidentiality of data. Only
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authorized members with a proper key should be able
to decrypt ciphertexts received from the group. Thus,
the secure multicast problem can be reduced to two
questions: (1) How can cryptographic keys be gener-
ated and distributed? (2) Who should have access to
these cryptographic keys to read confidential
messages?

In general, secure multicast mechanisms, can be
classified as centralized, decentralized, or distrib-
uted mechanisms [2]. Centralized mechanisms, such
as [3,4], employ a single entity to control the whole
group and seek to minimize storage costs, computa-
tional power, and bandwidth requirements. How-
ever, since there is only a single entity, the
possibility of a single point of failure increases. In
contrast, methods like [5-8] divide a group into
several subgroups; hence, better scalability and reli-
ability can be achieved because failures are confined
to subgroups. Even so, these methods still require a
centralized controller to coordinate secure data
communications between different subgroups. Dis-
tributed approaches, like [9,10], eliminate central-
ized controllers so that all group members can
contribute to the required cryptographic key, or it
can be generated by one member. The result is a
group key shared by all members; therefore, each
user must be aware of the group membership list.
In addition, computation and communication
requirements may grow linearly as the number of
group members increases.

Each approach has benefits and drawbacks.
However, to construct a large-scale secure multicast
network, especially one that requires the collabora-
tion of nodes in different administrative domains,
we believe a hybrid framework that uses a decentral-
ized model working in a distributed manner is a
good design choice.

In this paper, we propose a new secure multicast
framework that builds on the advantages of decen-
tralized and distributed approaches. The framework
is constructed in two steps. First, we exploit the
mathematics used in ElGamal cryptography [11]
and proxy cryptography [12,13] and extend the cal-
culations to develop a distributed protocol for key
composition. Then, using the protocol, we eliminate
the key distribution centers used in proxy cryptogra-
phy-based secure multicast networks like [7].

The framework adopts a network model similar
to those in [7,8], which are source-based multicast
tree networks. We use proxy cryptography to deli-
ver key encryption keys (KEKs). In proxy cryptog-
raphy, given a sender A, receiver B, and proxy P, a

message encrypted by A4’s encryption key, k4, and
transformed by P’s encryption key, kp, can be
decrypted by B’s decryption key, k. Proxy cryptog-
raphy has several benefits, including low key storage
requirements, message invisibility on intermediate
proxies, and low computational complexity regardless
the number of proxy branches. Since a proxy trans-
forms an encrypted message without understanding
the original message, it is suitable for large-scale
networks, especially when most intermediate nodes
can not be totally trusted.

The remainder of this paper is organized as fol-
lows. In Section 2, we review several related works
that propose solutions for the secure multicast prob-
lem. In Section 3, we introduce the basic compo-
nents used in our framework, and then construct
the framework in Section 4. In Section 5, we evalu-
ate and discuss the proposed approach, and com-
pare its performance with other methods. In
Section 6, we present our conclusions.

2. Related works

Several solutions to the problem of secure group
communications have been proposed. In centralized
approaches, such as [3,4], the authors propose a log-
ical key hierarchy (LKH), whereby a key distribu-
tion center (KDC) maintains a tree of keys.
Except for the root node (the KDC) and the leaf
nodes (the group members), all intermediate nodes
are logical nodes. Initially, each node is assigned a
key encryption key (KEK). The KDC knows the
KEKs of all nodes and a group member knows
the KEKs of nodes on the path from the KDC to
itself. Thus, in a balanced key tree with m members,
each member has to keep O(log(m)) keys. When a
group secret key is being delivered to a member,
the key is encrypted using the KDC’s KEK and is
then sent to all group members by a multicast. If
a member joins or leaves a balanced key tree con-
taining m members, O(log(m)) keys and O(log(m))
encryptions are required to update the correspond-
ing KEKSs in the key tree. Since there is a centralized
key distribution center, the single point of failure
and scalability problems cannot be avoided.

In distributed approaches, members in one group
cooperate to generate a shared secret key. In group
Diffie-Hellman (GDH) [9], the authors extend the
Diffie-Hellman [14] key agreement protocol to n
parties. Given a cyclic group G of order ¢ with a
generator g, each participant i chooses a random
value N; € G. The GDH protocol starts with the
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first member passing a secret number g"' to the sec-
ond member. On receipt of the set of secret numbers
from the (j — 1)th member, the jth member increases
the numbers in the set by adding his secret number
gV and generates a new set for the next member.
After O(n) rounds of computation, the final group
key k of gVt""N» can be generated and delivered to
all participants. Since members in a distributed
secure group communication environment are
required to know the group membership list, such
frameworks may be not suitable for large groups.
In addition, they suffer from the “one affects all”
problem.

To overcome the problems encountered in cen-
tralized and distributed models, several decentral-
ized frameworks for secure multicast have been
proposed. In IOLUS [5], members of a multicast
group are divided into several subgroups. The con-
nectivity between the subgroups is controlled by
group security agents (GSAs) placed on the links
between the subgroups. Each subgroup is relatively
independent; therefore, membership changes can be
confined to the subgroup in which they occur. The
problem with IOLUS is that while an encrypted
message is being transmitted from subgroup A to
subgroup B, the GSA decrypts the message with
A’s secret key and then encrypts it with B’s secret
key. Although this achieves the goal of confidential-
ity, the GSAs must be totally trusted and well pro-
tected to prevent the leakage of confidential
message.

To solve the problem of trusting third parties,
another framework, the dual-encryption protocol
(DEP) [6], has been proposed. In DEP, a multicast
group is also partitioned into several subgroups,
each of which has a corresponding subgroup man-
ager (SGM). Confidentiality is guaranteed by a data
encryption key (DEK) maintained by a group con-
troller (GC). Three key encryption keys (KEKs)
are used to deliver a DEK: KEK is shared by the
GC and the SGM; KEK, is shared by the SGM
and members of its subgroup; and KEK3 is shared
by the GC and members of a subgroup, except the
SGM. Let the encryption and decryption functions
with secret key k be denoted by Enc,(-) and Dec,("),
respectively. The GC delivers the DEK to a sub-
group’s members via the following steps. First, the
GC sends EncKEK](EncKEK3(DEK)) to the SGM.
The received message is decrypted with KEK; and
re-encrypted with KEK,. The new encrypted key
Enckek, (Enckek,(DEK)) is then sent to the sub-
group’s members. Since only those members know

both KEK, and KEKj, they can obtain the correct
DEK. When a member joins or leaves a subgroup,
KEK, is changed by the SGM and sent to all valid
members. The problem with DEP is that the for-
ward and backward secrecy depends on how often
the DEK is updated. Therefore, if the DEK is chan-
ged infrequently, newcomers or ex-members can
decrypt past/current messages easily.

Cipher-sequence (CS) [8] is another decentralized
secure multicast framework that is built over a mul-
ticast tree. Every non-leaf node in the tree is
assigned a cryptography function. When a message
is sent out from a non-leaf node, it is encrypted by
the assigned cryptographic function of that node.
Thus, a message sent from the root of the tree to
a member is encrypted by all nodes on the path.
The encryptions performed by intermediate nodes
form a cipher-sequence. Each leaf node contains
members of a subgroup, all of whom share the same
reverse function to the cipher-sequence. Since differ-
ent paths generate different cipher-sequences, the
reverse function for each subgroup is different.
When a member joins or leaves a subgroup, the last
inner node on the path closest to the subgroup’s
members changes its encryption function; thus, a
new cipher-sequence and a corresponding reverse
function are generated for that subgroup. Although
this framework is secure and scalable for message
delivery, it still requires a centralized key distribu-
tion center to understand the topology, assign
encryption functions to non-leaf nodes, and com-
pute reverse functions for subgroup members.

It is widely recognized that [7] was the first paper
to discuss the possibility of applying proxy cryptog-
raphy to secure multicast communications. The
approach uses a similar network model to that of
cipher-sequence; however, instead of assigning cryp-
tographic functions to nodes, it assigns crypto-
graphic keys. A key control component associated
with the group controller generates encryption and
decryption keys for the sender, receiver, and all
intermediate transformation nodes (proxies). When
a node joins the multicast tree, the group controller
splits the decryption key of the new-comer’s parent
node into an encryption key and a decryption key.
The new encryption key is kept by the parent node
for further message transformation. Meanwhile, the
new decryption key is sent to the new-comer to
decrypt confidential messages. This approach, how-
ever, still requires a controller to handle key distri-
bution, so it has similar drawbacks and limitations
to the cipher-sequence approach.
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Our work differs from previous studies in three
ways: (1) We do not require a centralized key con-
trol component to distribute keys. Encryption keys
are generated by the transformation nodes them-
selves. (2) The decryption keys for message receivers
are obtained by running the proposed key composi-
tion protocol, which should be done in roughly a
single round trip time. (3) Since the key distribution
process is totally decentralized and distributed, the
proposed protocol can be used to construct a gen-
eric security service for multicast networks that
can be shared by different communication groups.

3. Proxy cryptography and key composition

Proxy cryptography [12] comprises encryption
and digital signature schemes. In secure multicast,
we only leverage the encryption part of the tech-
nique. Proxy encryption allows a semi-trusted proxy
to transform a ciphertext from Alice into a cipher-
text for Bob without seeing the underlying plain-
text. The proxy encryption scheme can be imple-
mented using the ElGamal cryptosystem in which
two public parameters, p and g, are shared by all
users, where p is a prime of the form 2¢g+ 1 and g
is a generator in Z;. The sender, 4, randomly selects
a secret key x in Z, and releases its public key as g*
mod p. The message m is then encrypted with a ran-
domly selected secret parameter k£ € Z, and sent in
the form of two cipher values (ci,c¢,), where
¢y = g° (modp) and ¢, = m((g%)") (modp). Decryp-
tion just reverses the process. Therefore, it is easy
for a node that knows —x to recover the original
plain-text by computing m = ¢,/c] (modp).

To implement proxy encryption using the above
example, we assume that the message receiver B
has a secret key y, and an intermediate proxy P
between 4 and B has a transformation key
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(¥ — x). Then, the intermediate proxy P transforms
the cipher values (c¢j,¢;) from A by computing
¢y =cy- "™ and sends (ci,c)) as the new cipher-
text to B. Thus, B can extract the original message
m from the transformed ciphertext with its own
secret key y. To improve flexibility, the single proxy
mechanism can be extended to a multiple proxies
mechanism, as shown in Fig. 1. Assume there is a
sender A, a receiver B, and n intermediate proxies
P; (i=1{1,2,...,n}) on the path between 4 and B.
To deliver a message from A4 to B, the message path
will be 4-P,—P,—---—P,—B. The key distribution
center first assigns secret keys ky and k, to 4 and
B, respectively. Then, it randomly generates
ki,ky, ..., k,—; and computes proxy keys kp, as
k; — k;_, for each proxy on the path. Note that only
the kp, (i=1{1,2,...,n—1}) keys are sent to the
proxies. The k; keys are only used to compute the final
proxy keys, so they are not sent to the proxies.

The concept of chaining proxies can be used to
construct a secure multicast framework easily. In a
multicast network like that in Fig. 2, the key distri-
bution center (KDC) first assigns secret keys k, and
kg,—kg, to node S and R|—Ry, respectively. Then, it
computes proxy keys according to the network
topology. For example, the proxy nodes P, Ps,
and P4 are assigned proxy keys ky — k,, kg, — ki,
and kg, — ky, respectively. When a member joins
or leaves, the proxy closest to the event has to notify
the KDC to perform a re-keying operation by
updating the secret keys of the proxy and all the
members directly connected to it.

Since the above framework requires a centralized
key distribution center, it has several drawbacks.
First, its scalability is restricted by the single key ser-
ver or cluster, which could be overloaded by a large
number of member join/leave requests. Second, it is
common for a centralized service to encounter the
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Fig. 1. An example of chaining proxies. The key distribution center generates cryptographic keys for the sender, the proxies, and the
receiver. On receipt of the transformed message, the receiver can decrypt the ciphertext with its own secret key.
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Fig. 2. An example of applying chaining proxies on a source-
based multicast tree. Node S is the sender, nodes P;—Pgs are
multicast routers, and nodes R,—R, are groups of receivers.

single point of failure problem. Third, since the
secret keys for nodes are assigned by the key distri-
bution center, the latter must be well protected and
totally trusted. Furthermore, if there is a network
dynamics issue, such as a proxy shutdown or a
crash, it is hard for a single point to monitor and
handle the whole network topology.

To eliminate the key distribution center, we pro-
pose a novel technique of key composition for proxy
encryption. The basic idea is simple: all stable nodes,
including the sender and the proxies, decide their own
secret keys. When a receiver joins the group, it
obtains the decryption key by using the proposed
key composition protocol. Suppose there is a sender
A, a receiver B, and the proxies P;—P, sit on the
path between 4 and B. The sender 4 chooses a
secret key ko and each proxy P; (i=1{1,2,...,n})
chooses a secret key k; When the ciphertext
{c1,¢2} = {g",m- g™} of a message m sent from A
finally reaches B, the encrypted and transformed
message will be in the form of

{01702} _ {gr7m X gr(ko+k1+k3+~-+k,,)}7

where r is the random ephemeral key. The reason
for this form is that when an arbitrary proxy P;
receives the ciphertext {c;,c;} from the previous
node, it always computes the new {c|,c,} by
d=c, &b=0c ~c’1"' and then forwards the result
{c|,c,} to the next node. Thus, to decrypt the mes-
sage, the receiver must know the decryption key
with a value k. of (ko + k; +ky, +--- + k). We also
call k. the composed key for receiver B, since all
nodes on the path from the sender to the receiver
contribute to the secret key. In Fig. 3, four different
message paths are extracted from the network
shown in Fig. 2. As the value of a composed key
is contributed by all nodes on the message path,
the composed key for each message path is different.
Members that share the same message path have the
same composed key; hence, they form a subgroup.
Since the composed key varies according to the mes-
sage path, we also call it a path key. In the example

Path | Path Il Path Il Path IV

Subgroup | Subgroup I Subgroup Il Subgroup IV

Fig. 3. The paths extracted from the network in Fig. 2. Each
subgroup has a different composed key because the nodes on each
message path are different.

in Fig. 3, suppose that node S has a secret key k
and node P; has a secret key k;; then, the composed
keys for Ry, R, R;, and R4 are (ko+ ki + k3),
(ko + k] + k4), (k() + kz + k5), and (k() + k2 + k(,),
respectively. With these observations, our problem
is reduced to “How can we securely generate and up-
date the composed key for the group members in an
efficient and distributed manner?”’

4. The framework

In this section, we explain the construction of our
framework. First, we describe the roles and the
assumptions used in this paper. Second, we define
the operations and notations used in our frame-
work. Then, the framework is constructed with
essential group operations, namely, members join-
ing and leaving, re-keying, and message delivery.
Finally, we propose algorithms for handling net-
work dynamics, such as topology changes and node
failures.

There are three kinds of role in our framework:
the sender, the proxy, and the receiver. The sender
delivers messages to the receiver, while the proxies
are responsible for transforming a received cipher-
text into a new ciphertext that can be decrypted with
a different secret key. We make the following
assumptions.

e We assume that both the sender and the receivers
are trustworthy. The definition of a receiver is a
node that is authenticated by the sender and
allowed to join the multicast network. Since a
receiver can always access plain-text messages,
we trust the receivers in our framework. The
issue of leakage of confidential messages by
receivers is not within the scope of this paper.

e We assume that the proxies are only partially
trusted. That is, we trust a proxy to transform a
received ciphertext and forward it to the next



2810 C.-Y. Huang et al. | Computer Networks 51 (2007) 2805-2817

node correctly. Since we use proxy encryption,
the proxies cannot decipher the original plain-
text message concealed in the received ciphertext.
Thus, there is no concern about leakage of confi-
dential messages by proxies. Note that a proxy
can also be a receiver. In this special case like a
receiver, the proxy is totally trusted.

o We assume that a proxy knows about other prox-
ies within a distance of at least two hops. This is a
requirement of dynamic networks. When the
state of a proxy changes from on-line to off-line
or vice versa, it should announce its new state
to all its neighbors within at least two hops.

e We assume that a secure channel can be estab-
lished between any two nodes. This can be done
by using either a symmetric key cryptographic
system or a public key cryptographic system.
Although a secure channel between two nodes
is sometimes required, the use of such channels
should be kept to a minimum since they impact
on the performance of key distribution, key
updating, and message delivery.

Our framework is constructed over a multicast
tree network. Thus, we also assume that there is
already a source-based multicast tree network. As
it is built on an overlay network, there should be
no asymmetric logical link in the multicast tree net-
work. However, messages exchanged between two
adjacent overlay nodes may be transmitted using
asymmetric physical links. Although asymmetric
physical links do not affect the operation of the pro-
posed protocol, it may affect the performance of
communications between overlay nodes. Thus, the
asymmetric physical links between two adjacent
overlay nodes should be minimized. Readers may
refer to [15] for optimizing the asymmetric link per-
formance during multicast tree construction.

4.1. Operations and notations

Given two arbitrary keys, k; and k,, the primitive
operations used in our framework are the key com-
pose operation COMP(ky, k;) and the key decompose
operation DECOMP(ky,k5). The two operations are
defined as

COMP(ky, ky) = ki + ks
and
DECOMP(ky,ky) = ki — ko,

respectively. In the key compose operation, a node
adds its own secret key to a composed key, which
is usually forwarded to the next node securely.
The first key composition operation is always initi-
ated by the sender. Before the composed key reaches
the receiver, it is called a partially composed key
(PCK). To generate the correct key for a receiver,
each node on the path between the sender and recei-
ver iteratively incorporates its own secret key into
the PCK. This chain key composition operation is
called the key composition process. The notations
used in our framework are listed in Table 1.

4.2. The key composition protocol: joining a group

The key composition protocol (KCP) is initiated
when a newcomer, R, requests to join a group. First,
R has to enter the network by sending a network
join request to the closest proxy, which then acts
as the parent proxy of R. After R is admitted, the
join request is forwarded along the upstream path
to the root node. If the sender approves the request,
it sends a session ID SID and a randomly generated
session key, ksp, to R securely via a direct connec-
tion or an indirect relayed channel. At the same
time, the sender initiates a key composition process

Table 1

Notations used in the key composition process

Notation Meaning

R The message receiver

S The message sender

SID Session ID. The SID is used by a receiver to identify the key composition process

P; The intermediate proxy i on the message path that transforms ciphertexts during the message delivery process
k; The secret key of proxy P;

ko The secret key of sender S

ksip A randomly generated session key for the key composition process, which is identified by an SID
PCK Partially composed key, an incomplete key during the key composition process

CCK Complete composed key. The final result of a key composition process
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Fig. 4. An example of joining a group. Node S is the sender,
nodes P;, P,, P3 are the proxies, and node R is the newcomer.

by sending a partially composed key (PCK) of
COMP(ky,ksip) to the first proxy securely. The kg
key is the secret key of the sender. When a proxy
P; receives a PCK, it performs the COMP(received-
PCK,k;) operation and forwards the new PCK to
the next node securely. On receipt of the PCK, the
receiver runs the DECOMP(received-PCK, ks p)
operation to obtain the final key, which is the com-
plete composed key (CCK). Note that during the key
composition process, the composed PCK is sent with
an SID to guarantee that the newcomer can properly
decompose the corresponding ksp and obtain the
final CCK. Also, when the parent proxy of the new-
comer R receives a CCK for R, a re-keying operation
must be performed before computing and returning
the new CCK to R. This operation is discussed in the
next subsection, and an example of a newcomer
joining a group is illustrated in Fig. 4.

The success of the key composition process
depends on whether the sender has delivered the
ksip to the receiver. The sender can reject sending
a kgp key to an unknown client. Thus, access con-
trol can be applied when the sender receives a
request from a newcomer. In our framework, the
generation of kgp and access control can be off-
loaded to other trusted proxies. We discuss load-
sharing with trusted proxies in Section 5.1.

4.3. Leaving a group and re-keying

Leaving a group is much easier than joining, as a
member just needs to notify its parent proxy. The
latter then performs a re-keying operation to change
its own key, and sends the updated key to all mem-
bers, except the departing member. Two problems
in secure multicast are maintaining forward secrecy
and backward secrecy. Maintaining the former
means that a member that has left should not be

able to read future confidential messages, while lat-
ter means that a newcomer should not be able to
read previous confidential messages. Thus, when
the membership of multicast group changes due to
a member joining or leaving, a re-keying operation
is always performed.

In our framework, a re-keying operation can be
confined to a subgroup. Only the parent proxy
and the subgroup members directly connected to
the proxy need to perform the re-keying operation.
Suppose a proxy has a key, k. To perform the re-
keying operation, the proxy first chooses a new
key, k', and computes Ak =k’ — k. Then, it sends
the result of Ak to all connected subgroup members
securely. On receipt of a Ak from the parent proxy,
a member updates its own key by COMP(original-
CCK, Ak). Future ciphertexts can then be decrypted
using the new CCK. A non-leaf node (e.g., the root
node or any non-leaf proxies) may also perform a
re-keying operation. In this case, the non-leaf node
uses the same re-keying methodology as subgroups.
Then, the Ak is multicast to all group members
using the usual message delivery process.

The re-keying operation described above is quite
straightforward. The cost of delivering key updates
to each subgroup member is O(n), where n is the
number of valid subgroup members. This, however,
restricts the scalability of the subgroup. To solve the
problem, we can adopt either distributed or central-
ized group key management mechanisms, such as
TGDH [10] or LKH [3,4], to improve the re-
keying performance of subgroups. Take the LKH
approach as an example. A leaf proxy, which is
the proxy closest to subgroup members, acts as a
subgroup controller and maintains a logical key tree
for all directly connected subgroup members. When
a member joins or leaves the subgroup, the proxy
updates the keys in the logical tree and then multi-
casts the encrypted Ak along with updated logical
keys to all subgroup members. The LKH approach
is efficient because it only requires O(1) multicasts
and O(log(n)) computations to update the secret
keys of all subgroup members.

4.4. The message delivery process

The message delivery process follows the nodes
on a message path, as shown in Fig. 3. During the
process, a message is encrypted by the sender and
then transformed by each node on the path. A
transformation is only performed as a message is
leaving a node. Note that a message can only be
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encrypted/transformed once by the same node,
which means there is no loop during the delivery
process. Given the ElGamal encryption algorithm
Enci(-) and the decryption algorithm Deci(-) with
an arbitrary secret key k, the message delivery pro-
cess on Path-II in Fig. 3 is as follows:

1. The sender S encrypts the plain-text message m
with its own secret key ko and sends out Ency, (m).

2. The transformation node P; encrypts the
received message with its own secret key k; and
sends out Ency, (Ency, (m)).

3. The transformation node P, encrypts the
received message with its own secret key k, and
sends out Ency, (Ency, 44, (m)).

Finally, the receiver gets an encrypted message
Ency, 14,14 (M), which can be decrypted using the
previously obtained CCK of ko + &k + ks.

When deploying proxy encryption or similar
techniques in a secure multicast network, we use a
“hybrid encryption” [16] technique to improve the
overall performance. These techniques are mainly
used to deliver key encryption keys (KEKs). In
our scheme, the sender randomly generates a sym-
metric secret key k. for a symmetric encryption
algorithm Enc;(-) and uses the key to encrypt the
to-be-delivered message, m, as Enc; (m). During
the message delivery process, k. and Enczr(m) are
sent together. However, the symmetric secret key
k, is encrypted and transformed by all the nodes
that it passes. On receipt of the message, the receiver
can decrypt k, with its own CCK and then use £, to
decrypt the message m. In summary, the hybrid
encryption technique uses the subgroup key, which
acts as a key encryption key (KEK), to deliver a
symmetric secret key so that a receiver can decrypt
the encrypted message. The symmetric secret key
should be changed periodically to guarantee both
forward and backward secrecy.

4.5. Handling network dynamics

In a dynamic network, a proxy may join or leave
the multicast tree network at any time. A proxy may
also crash due to unexpected fatal errors. Such
events make it necessary to modify the multicast
tree’s topology, which affects the path keys of
related receivers. Since the receivers do not know
the exact key of the affected proxy, the only way
to update the path keys is to ask all receivers to
run the key composition protocol again. This cre-

ates a substantial extra workload for both the sen-
der and the network, especially when the number
of affected receivers is large. To prevent this situa-
tion, we propose solutions that handle the network
dynamics by only altering the keys of nodes close to
the problematic proxy.

Assume there is already a working secure multi-
cast network, and a new proxy can join the network
as either a leaf proxy or a non-leaf proxy. Joining as
a leaf proxy is fairly easy, since the new proxy only
needs to randomly generate a secret key for itself
and then find the closest available parent proxy to
join the network. However, to join as a non-leaf
proxy, the new proxy must first find the closest
available parent proxy and a child proxy of the
parent proxy. Then, the newcomer has to “insert”
itself on the link between the child proxy and the
parent proxy. The new proxy does not make the
decision about its own secret key. Instead, the key
is randomly generated by the child proxy and
assigned to the new proxy. Assume that the child
proxy randomly generates a secret key k., to the
new proxy. At the same time, the child must alter
its own secret key, kcpig, by DECOMP(keniig, kx)-
The two ways for a proxy to join a network are illus-
trated in Fig. 5. In the Part I of Fig. 5, a new proxy
P, may join as a leaf proxy under proxy P; or as a
non-leaf proxy under the sender S. As shown in Part
II-1, P, can decide its own secret key as k., since
joining as a leaf proxy does not affect any receivers.
In the Part II-2, joining between the link of S and P,
may affect the path keys of R; and R,. Thus, the
secret key of P, is assigned by P as k, securely; then
the secret key of P, is changed to k; — k..

Unlike membership operations, proxy leaving is
more complex than proxy joining. When a proxy
crashes or is off-line, the link between the sender
and several receivers that passes the problematic
proxy is broken. Thus, the proxies close to the prob-
lematic node should be responsible for repairing the
topology. Here we make the following additional
assumption: when a proxy joins a network, it sends
information about its secret key to its parent and its
children securely as kp+ k, and kp — k,, respec-
tively. (kp is the secret key of the proxy and k., is
a randomly generated value.) When the proxy
crashes or is off-line, its parent node chooses one
of its children to replace the problematic node.
Then, the parent node sends kp + k, to the chosen
node securely. The secret key of the chosen node,
Kchosen» 18 then set to COMP(kchosen, kp). Fig. 6 shows
the procedures for handling proxy leaving. Assume
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Fig. 5. Procedures to handle a newly joined proxy in a dynamic network.
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Fig. 6. Procedures for handling a crashed or off-line proxy in a dynamic network.

that the proxy P; will be off-line later. In Part I, P
sends secret key information k; + k. and &y — k, to
its parent and children, respectively. When P is off-
line, the parent node S chooses node P; to replace
P, and sends k; + k, to Ps; then, P sets its own
secret key to ky + k.

As the receivers’ secret keys do not need to be
updated with information about proxies joining or
leaving, after a join or leave operation has been
completed successfully, the receivers can decrypt
encrypted messages as usual.

An important task for handling network dynam-
ics is to detect proxy failures. An off-line node must
broadcast the event to all its adjacent beforehand
for them to prepare well for the possible topology
changes. However, as a failed or a crashed proxy
is mostly unable to complete the sign-out process,
there should be some alternatives to detect failures
of neighborhood proxies. While the failure of a
node can be corrected locally, a simple way to detect

unexpected node failures is to use heartbeat mes-
sages. Since a proxy knows all the adjacent children
proxies, it can always periodically send “ping” mes-
sages to all these children and then wait for the cor-
responding “pong” messages. Thus, a node failure
can be identified within at most the interval of two
“ping” messages. Although heartbeat messages
can detect unavailable children, it cannot tell
whether the problem is on the child itself or is
caused by link failures. No matter what the problem
is, on detecting a child failure, the node will always
try to contact the grandchildren under the problem-
atic child proxy and try to pick one of the grandchil-
dren to replace the possible crashed proxy. This also
isolates only the problematic proxy. Then, an iso-
lated proxy can detect link failures by both (1) it
does not receive heartbeat messages from its parent
and (2) it also does not receive notifications of par-
ent crash from its grandparent. If a link failure is
detected by an isolated node, the node can reenter
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the network by initiating a new network join
request.

It is also worth noting that when a left proxy
comes back, it cannot be placed at its original loca-
tion before it leaves. Such a proxy is treated as a
new comer and it must connect to the network as
a leaf member or a leaf proxy. The reason for this
design is to prevent the tree topology from oscilla-
tions caused by frequently joining or leaving of
unstable nodes.

5. Evaluations and discussions

We now evaluate and discuss several aspects of
the proposed framework. First, we discuss the possi-
bility of sharing the load on the root node. Then, we
discuss the security of our framework in detail. We
also compare the performance of our framework
with that of similar secure multicast frameworks.

5.1. Load-sharing with trusted proxy nodes

In our framework, a receiver initiates the net-
work join process by forwarding a ‘“member join
request” to the sender. As a result, all the join
requests from potential members are gathered at
the root node. However, this may increase the load
on the root node substantially and hence reduce the
overall performance of the framework. To solve the
problem, the loads induced by member join requests
should be shared among several trusted proxies.

To do this, a root node must choose some trusted
proxies. A selected proxy initiates the key composi-
tion protocol to obtain the CCK between the root
and the parent proxy of the selected proxy. After
successfully completing the key composition pro-
cess, the selected proxy becomes a delegated proxy
and handles future join requests generated by all
downstream members. On intercepting a join
request, just like a root node, the delegated proxy
initiates the key composition process. The keys used
for the key composition process are the previously
obtained CCK plus the secret key of the delegated
proxy and a randomly generated session key. An
example of a running delegated proxy is illustrated
in Fig. 7. In the figure, the proxy P, is chosen as a
delegated proxy. Thus, it has to obtain the CCK
between the root S and its parent proxy P, i.e.,
ko + k1. A newcomer R joins the network as usual
and initiates a member join request, which is sent
to the root. However, the request does not reach
the root, as it is intercepted by P,. The remainder

7 =~ ROLTLE
s \ Obtain{ ko+ kq}
«
P_- Intercept
p2 @ Member Join
K b ~ Requests
> (5) SIDA
. .- 7€ @

User = 4
COMPNKo+K;+ Kz, Ksip)
Database - VT
/(8) SID, |
@ COMP(kz+ Kf+ Ko+ ¥sip, Ks)

SID, //
COMP(ks+ k2+/k,+ ko+ Ksip, ki)

MemberJoin( : )

Request

P2
-
- @ Reply
{SID, ksin}

SID,
R DECOMP (Kq+ ka+ Ko+ K1+ Ko+ Ksip, Ksip)

Fig. 7. An example of delegating access control to proxy nodes.

of the key composition process is the same as in
the original (proposed) framework.

It should be noted that the delegated proxy must
be trustworthy because it has the key to decrypt
ciphertexts sent from the root. Besides, since a dele-
gated proxy is responsible for access control, it
should be able to access or at least query the mem-
bership database. The design of proxy delegation in
our framework is inherently reliable. Once it is
detected that a delegated proxy has crashed or is
off-line, network join requests can simply be
forwarded to the root node after the topology has
been repaired. The root node can then choose a
new delegated proxy.

5.2. Security analysis

In this section, we focus on several security
issues. First, we discuss the common criteria that a
secure multicast framework must possess. Then,
we describe the use of ElGamal-based proxy cryp-
tography for message delivery. We also examine
the strength of the key composition process in terms
of security. Finally, we discuss the problem of proxy
compromise. The common criteria that a secure
multicast framework must possess are: guaranteed
of forward/backward secrecy, the ability to prevent
collusion, and the “‘containment’ property. In our
framework, both forward and backward secrecy
are achieved by re-keying at the parent proxy nodes.
When a newcomer joins, or an existing member
leaves, the parent proxy node must change its secret
key and update the decryption keys of members
under its control. With regard to collusion, as the
decryption keys of members under different proxies
are isolated because of different message paths, it is
hard for those members to collude. Also, since
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subgroups are isolated, if one is compromised, it
does not affect the whole multicast network. Hence,
the framework can limit damage to one part of the
network.

Our framework delivers messages using EIGamal-
based proxy cryptography. Suppose an encrypted
message {c(10),C0} ={g ,m-g*} sent from the
root node is being delivered via a message path con-
taining n proxies Py, P», ..., P,, and each proxy has a
secret key k; (1 < i< n). A message transformed by
the kth proxy Py is denoted as {c( k), ¢(2.6)}. When
a transformed message {c(ij_1),c;—1)} sent from
the (j — 1)th proxy passes the jth proxy P;, the latter
transforms the received message to another cipher-
text {can.cepl by {eay.cent = {easmn, cei-1
¢(,-1)s- In this scenario, an adversary could eaves-
drop on network traffic of proxy P; and know about
{ew e} and {cq j—1y, ¢2,i—1)}. However, to break
the secret key of P; the adversary has to solve
C2j) = Cj-1) ° iji,j_ 1)» Which is equivalent to solving
the discrete logarithm problem (DLP); that is, given
a prime number p, a group generator g, and y = g*
(modp), find x. The security of message delivery is
thus guaranteed, since it is infeasible to compute
the DLP, especially when p is large. It is recognized
that the ElGamal cryptosystem is only secure against
CPA (chosen plain-text attacks) [17], and cannot
resist chosen ciphertext attacks (CCA). However,
this is not a problem in our framework because
proxies only transform passed ciphertexts by
encrypting them again. Therefore, attackers cannot
use these proxies as oracles to attack the ElGamal
cryptosystem.

The security of the key composition process is
guaranteed by the randomly generated session key
ksip, which is decided by the message sender. Since
ksip 1s added with real secret keys, the possibility of
guessing kgjp and the real secret keys depends on the
length of the secret keys, which vary from 256 bits
to 2048 bits. Thus, it is impossible to determine
either kgp or the secret keys from the composed
value of kgp and the secret keys.

Two methods can be used to obtain the secret key
of a proxy. One is to compromise the proxy, which
allows an adversary to find out and access the secret
key directly. The other method is to compromise
both the parent proxy and a child proxy of the given
proxy. In this case, if an adversary knows the secret
keys of both the parent proxy and a child proxy, he
can compute the difference between the PCKs of the
parent and the child proxy during the key composi-
tion process. Extending such an attack, an adver-

S

Obtain:
- ki,

Obtain!

Obtain:

- ke,
- ksiot KoHKi+ ka+ Ka+Ky ,
- kéio+ Ko+ Ki47ko+ Ko+ Ky

Fig. 8. An example of proxy compromises. There are two
adversaries 4, and A,. The sender has a secret key k,, and each
proxy P; has a secret key k;. In this example, the adversary 4,
compromises the parent proxy P, and the child proxy P, of proxy
P3. Thus, it obtains the secret key of P;. The adversary 4,
compromises the leading proxy P; and the trailing proxy P4 of
the message path and hence obtains k, + k3.

sary may compromise any two proxies on a
message path and hence know the contributory
secret keys of all proxies between the two compro-
mised proxies. An example of compromising proxies
on a message path is illustrated in Fig. 8. However,
these kinds of compromise do not affect the security
of the framework. Even if an adversary knows the
secret keys of all the proxies on a message path, to
decrypt the message sent out from a sender or
received by the receivers, an adversary still has to
compromise either the sender or one of the receivers
to obtain the encryption key or the decryption CCK,
respectively. The problem of compromising the sen-
der or a receiver is not within the scope of this
paper. If a sender or a receiver is compromised,
the adversary does not need to know the key to
decrypt the ciphertexts, since a decrypted message
can be accessed directly via a compromised sender
Or receiver.

5.3. Performance evaluation and comparison

The performance evaluation of our framework
focuses on the storage, computation, and communi-
cations costs of the message delivery and key com-
position processes. The message delivery process is
very efficient. When a message is being delivered
to a receiver, each proxy passed only applies one
encryption to transform the message. Receivers only
need storage space for CCK, which is the decryption
key. However, the root node and proxies require
storage space for 2 + d keys, where d is the average
number of branches for intermediate nodes, since
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Table 2
Performance comparison with similar frameworks

LKH IOLUS DEP CS/PE Ours
Number of keys per member O(log(m)) 1 2 1 1
Number of keys at key server O(m) 2 O(s) O(s) -
Number of keys at intermediate nodes - d 2 1 2+d
Cost of re-keying O(log(m)) O(d) O(m) O(n) O(log(n))
Number of encryptions by a distributor o(1) O(d) O(s) o(1) o(1)
Need to trust intermediate nodes - Yes No Partially Partially

they need to store extra key information for the use
if the network fails.

The cost of joining or leaving a group depends
mainly on the re-keying cost. In our framework,
the re-keying cost is O(log(n)), where n is the
number of members in a subgroup. An additional
cost of members joining is running the key compo-
sition process because a request must be sent from
the receiver to the root node and then returned
to the receiver. Thus, each proxy has to perform
two forwarding operations. The process should
take roughly a round trip time between the receiver
and the root node.

We further evaluate the performance of our
framework by comparing it with other similar
frameworks. For the ease of comparison, we assume
all these frameworks construct a balanced tree net-
work. Table 2 shows the performance of all the
compared frameworks. In the table, the number of
group members is denoted by m, the number of sub-
groups for a scheme that uses a subgrouping tech-
nique is denoted by s, the number of members in a
subgroup is denoted by n, and the average number
of branches of intermediate nodes is denoted by d.
The performance of our framework is shown in
the column marked “Ours”.

6. Conclusions

In this paper, we have proposed a scalable and
lightweight framework that provides secure multi-
cast communications in a dynamic environment.
The framework is based on a simple and novel tech-
nique called key composition, and can be applied to
any source-based multicast tree network. With the
properties of key composition and proxy encryp-
tion, our framework eliminates the need for key
distribution centers used in proxy cryptography.
In addition, our network’s robustness against fail-
ure enables it to work in a distributed manner.
The proposed framework is also efficient. Each node

only needs to perform one encryption or transfor-
mation to guarantee the confidentiality of a mes-
sage. The storage and computation costs of the
key composition process are both constants. There-
fore, our framework is scalable for large and
dynamic multicast groups. For the above reasons,
it can be easily applied in dynamic networks, such
as peer-to-peer or overlay networks. The perfor-
mance comparison also shows that our framework
is more efficient than the compared frameworks.
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