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Abstract— We present two threshold ring signature schemes
with different properties. One focuses on the confessibility (or
signer verifiability) and the denouncibility properties. The other
focuses on the threshold-confessibility. Our schemes are built on
generic ring signature schemes and can be easily adapted to most
existing ring signature schemes. Based on the former works, we
also construct a realization of our schemes as an example. We
prove that our schemes are secure in the random oracle model.

I. INTRODUCTION

Suppose that Alice, Bob, and Charles are employees of
a bank and they plan to leak a juicy fact to the president
Philip about the embezzlement of their manager. To hide their
identities, they generate a (3, 8) threshold ring signature. After
verifying the fact of the embezzlement, Philip would like to
offer a premium to those reporters. Here comes the problems.
In scenario I, Alice want to confess and claim the premium
while the other two tended to be kept hidden. How do Alice
confess to Philip that she was one of the three actual signers?
Moreover, is Alice able or not to denounce Bob and Charles
to Philip? In scenario II, suppose that Alice, Bob, and Charles
have agreed that the confession to Philip must be done by at
least two of them. How to achieve this goal using the double
threshold ring signature?

We will discuss the verifiability of the actual signer iden-
tities in threshold ring signatures in both the scenarios. We
define three new security notions to differentiate from the
ambiguity in verifiability [3], [4], [12], [18]. Notably, in our
scenario II, we offer a ring signature scheme with “double”
threshold structures.

A. Related Work

Ring Signatures. Rivest e al. [15] introduced the notion of
ring signatures. A ring signature scheme is a group signature
scheme without manager and prearrangement. To produce a
ring signature, the actual signer declares an arbitrary set of
innocent signers to form a group of posssible signers including
itself. In particular, the actual signer is able to compute the
signature entirely by itself while the innocent signers may
be completely unaware. Any recipient can only verify that
someone in the group had generated the signature but not
ascertain who it is.
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Threshold Ring Signatures. A (¢,n) threshold ring signature
scheme is a ring signature scheme where each signature is
a proof that at least ¢ of the n possible signers are the
actual signers. Threshold or general access structure of ring
signatures have been discussed in [2], [5], [9].

Separable Ring Signatures. A ring signature scheme is said
to be separable if all participants can choose their keys inde-
pendently with different parameter domains and for different
types of signatures.

Linkable Ring Signatures. Liu et al. [10] introduced the
notion of linkability, which means that anyone can determine
whether two ring signatures on the same message are signed
by the same group member or not.

Verifiable Ring Signatures. Lv and Wang [13] formalized
the notion of verifiable ring signatures, which allow the actual
signer to prove to the recipient that he had generated the
signature if he wishes. The recipient can also verify if the
claim from the signer is true or not. In [12], Lv et al. applied
their former work to the ring authenticated encryption scheme
with verifiability property. Later in [3], Cao et al. found
some weakness in Lv ef al.’s scheme which cannot achieve
signer-verifiability and recipient-verifiability properties. In [4],
they proposed an Identity-based (ID-based) ring authenticated
encryption whose signer-verifiability is obtained by publishing
the random seed. Another ring signature scheme based on
discrete logarithm cryptosystems with the signer-admission
property which is equivalent to the verifiability property ap-
peared in [18].

Actually the original ring signature scheme is implicit veri-
fiable. In [15], the authors mentioned that the actual signer can
prove to any recipient that a signer is innocent by publishing
the random seed used to generated the innocent signer’s part of
the signature. To prove its own involvement, the actual signer
has to publish the seed used to generate all innocent signers’
parts of the signature. Nevertheless, the drawback is that to
confess its involvement, the actual signer must prove all other
signers’ are innocent.

The linkability property in [11], [17] also implies verifiabil-
ity. If the actual signer signed on the same message twice, its
identity is likely to be exposed. Thus the system administrator
can ask all possible signers to simulate the signature generation
and then identify all the actual signers. The drawback is that
the actual signers will loss their spontaneity of confession.

The term verifiability is multivalent in [3], [4], [12], [18].
There are at least the three following meanings. (1) signature
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verifiability: Given the public keys of the ring members, any
recipient can determine if the signature is signed by some
members; (2) signer verifiability or signer-admission: If the
actual signer is willing to confess to a recipient that he really
generated the signature, the recipient can correctly determine
whether it is true; (3) recipient verifiability: Anyone can be
convinced who is the designated recipient by the actual signer
or the legal recipient.

The verifiability properties in above works are either re-
stricted to non-threshold ring signatures or based on some
specific cryptosystems such as RSA, DL, or ID-based.

B. Our Contributions

In this paper, we will discuss the property of verifiability
and then extend it to a threshold fashion. First, to discriminate
the differences among the ambiguity of verifiability [3], [4],
[12], we introduce three new security notions.

Confessibility: The actual signer is able to prove to any
recipient that he is one of the signers who has actually signed
the signature without disclosing his private key. This property
is equivalent to signer verifiability.

Denouncibility: An actual signer U can give possible
signer Up (or anyone even not in the group) the authority
to denounce U4. Then, Up can prove to any recipient U4’s
involvement without disclosing both of their private keys.

Threshold-Confessibility: In a (¢,n) threshold ring signa-
ture scheme, ¢’ (¢ < t)* actual signers or more are able to
jointly prove to any recipient that they had involved in gen-
erating the signature without disclosing their private keys nor
denouncing other signers. The actual signers whose number is
less than the threshold ¢’ will neither convince any recipient
anyone’s involvement nor denounce any possible signers.

Basically, due to the anonymity of ring signatures, the actual
signers have to hold some secret information, which we call
“voucher” to prove that they are not innocent signers. While
confessing or denouncing, the prover is aiming to uncover the
secret voucher of the target actual signer who may be itself
or others.

We proposed two threshold ring signature schemes which
satisfies the requirements. In scenario I which requires con-
fessibility and denouncibility, the actual signers are able to
independently confess to any recipient their involvement in
generating signature. Moreover, with exchange of their se-
cret vouchers, the actual signers are able to denounce each
other’s involvement. In scenario II which requires threshold-
confessibility, by combining the technique of distributed key
generation, the actual signers are able to jointly confess their
involvements in a threshold fashion.

We do not discuss threshold-denoucibility because it seems
a paradox that some actual signer gives the other signer the
authority (signed voucher) to denounce itself whereas they had
agreed on a threshold scheme for confession.

2Note that t' denotes the number of actual signers who are willing to
confess. Thus it is no more than the original number of actual signers ¢ . For
simplicity, we do not consider the situation that ¢’ is higher than ¢, which
means that there are more than ¢ actual signers intentionally to generate only
a t-threshold ring signature, in such case ¢’ will be possibly more than ¢.

The term threshold in our schemes has meanings in two
aspects. One means that the number of the actual signers is
threshold in generating signature, and the other indicates that
the number of the actual signers is threshold in confessing.

Our schemes provide extensible functions for existing

threshold ring signature schemes. Except the subroutine DKG
used to manipulate voucher in scenario II, our schemes are
not based on specific cryptosystems for the core ring signature
schemes. We also modify the schemes in [8], [10] to illustrate
our extension. Following the same heuristic, most present
threshold ring signature schemes can be easily integrated with
our schemes.
Organization: The remainder of this paper is organized as
follows. In Sec. II, we define the notations and settings of our
schemes and introduce a distributed key generation protocol
as building block for scenario II. In Sec III, we present our
generic schemes and later provide an realization in Sec IV.
The security analysis is presented in Sec V. We conclude in
Sec. VL.

II. PRELIMINARIES
A. Notations and Setup

Suppose that there is a (¢, n) threshold ring signature. With-
out loss of generality, we assume that {Up,|m = 1,2,..n},
{Uili = 1,2,...t}, and {U;|j =t + 1,...n} denote the set of
possible signers, actual signers, and innocent signers, respec-
tively. Let Sigm(.) denote the individual signature algorithm
of signer U,,.

The “core” threshold ring signature schemes is not to base
on specified cryptosystems since possible signers may use
different types of keys. As the idea in [16], we denote G,,
as the trapdoor one-way permutation of the possible signer
Up,. G, maybe a encryption algorithm, signature algorithm,
or other operations. The reversal algorithm G,.! should be
computed only by U,,.

Five public known one-way hash functions are used in our
schemes: Hy, H1, Hy, Hs and Hy. We do not define the prac-
tical mapping of these hash functions since their configuration
depend on the real ring signature scheme implemented.

B. Distributed Key Generation Protocol

Distributed key generation allows a set of n members to
jointly generate a pair of public and private keys. The public
key is open and the private key is maintained as a (virtual)
shared secret in (¢',t) threshold scheme where ¢’ < t. We
simplify the protocol in [6] to the DKG protocol, which is a
building block for our scheme. The DKG protocol works as
follows: ¢ player jointly generate a share secret key d. Each
player U; only knows his shadow f3; and the public key v,
(vg = gd) but no one knows d. A number of ¢’ or more players
can publish their shadows and jointly reconstruct d. For lack of
space, we make our DKG scheme as succinct as possible. For
more discussions and variants about distributed key generation,
see [6], [14].

The DKG protocol is used to handle the vouchers in
scenario II. This subroutine is based on discrete logarithm.
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Let p and ¢ be large primes such that ¢|p — 1 and ¢ > 2!
where [ is the security parameter of the scheme. Let g be an
element of Z; with order ¢. To be concise, we omit modular
operation notation in most place.

DKG protocol

Suppose that members in {U;} agree on generating a
shared key in (¢,t) threshold. They run the following pro-
tocol.

1: Each U; randomly chooses 3; € Z, and keeps it secret.
Now they have virtually formed a (¢,t) secret sharing
scheme whose ¢'-degree polynomial f satisfying f/(i) =
3; but no one knows f’.

2: Each U; computes u; = gﬁi and broadcasts wu;.

3: Each U; computes

ve= [] )

0<i<t

where \;(z) is the Lagrange coefficient:

Xi(2) = [[(z =)/ =) @)

J#i

such that v, = ¢¢ = gf'(o).
The vy = g% is the public key while the shared secret key d
is unknown to any one under the assumption of discrete loga-
rithm problem. Following the same heuristic, this protocol can
be extended to elliptic curve or other possible cryptosystem
with homomorphism property, i.e E(a)® Ey(b) = Ex(a+D).
For the simplicity of explanation, in this paper, we only focus

on discrete logarithm.

III. THE GENERIC CONFESSIBLE THRESHOLD RING
SIGNATURE SCHEMES

As described in Section I, scenario I possesses the property
of confessibility and denouncibility and scenario II possesses
the property of threshold-confessibility.

A. Basic Idea

In a threshold ring signature scheme, every possible signer
U,, corresponds to a point f(m) of the polynomial f. The
basic approach of our schemes is to extend the degree of
this polynomial f with extra point f(rg) (0 < k < t). Each
extra point is corresponding to one actual signer. Each actual
signer decides its pair value f(ry) which is derived from its
own voucher. But unlike regular threshold ring signature, the
domain value r; should not be related to the identity of any
signers explicitly, otherwise the anonymity will be lost. So the
key principle is that the definition and choice of 7, is publicly
well-known such that no one can determine the choice of r;.
A simple example is r, = H(k,{Upn}).

Since 7y, is predefined, the actual signers have to agree on
how to assign 7y, to each one. A trivial way is by identity order,
but random order is reasonably more secure. We denote (4) as
a re-ordered index of identity i. For example, a five-member
group indexed as [1,2,3,4,5] is re-ordered to [2,5,1,4,3],
then the new index of the second signer (2) is mapped to 5
and (3) is mapped to 1.

B. Scenario 1

Given a message M, the actual signers {U,;} run the
following algorithm to generate a confessible (¢,n) threshold
ring signature.

Signature Generation

1: Without loss of generality, an arbitrary actual signer (for
example, U;) prepares the signature on behalf of the other
actual signers by performing: (a) randomly chooses a; for
U; and computes ¢; = G;(a;), and (b) broadcasts a; and
¢; to {U;}. Anyone in {U;} can verify if ¢; = G;(a;)
holds.

2: The set of actual signers {U;} agree on a random order
(1),(2),...,(t) of their identities. According to the new
order, each signer U; is paired with its corresponding point
().

3: E(a)ch U, randomly chooses its voucher «; and computes

{ vy = Ha (o, Sigi(u)) 3)
wy = Hi(v))

4: Each U; broadcasts v(;y, w(;), and r(;y to {U;}. Anyone in
T can verify if w(;) = Hi(v(;)) holds. Each signer keeps
its a; and r(;)

5: The set of actual signers {U; } compute hg = Ho(M, N, t)
and construct a polynomial f of degree n such that

f(0) = ho
fG)=¢ “)
flr@) = we
Then f is broadcast to {U;}.
6: Each U; computes ¢; = f(i) and a; = G; *(c;).
7: The set of actual signers {U;} output the signature o =
(Ma {Um}a t, fv {ala 0y an}v {v(l)a “v(t)})
For any recipient of the message M and its signature o, it
can verify the signature by the following algorithm.

Signature Verification
1: Compute hg = Ho(M,{Un},t), 7, and wy, = Hi(vg)
for 0 < k <.
2: Check the following:

f(0) = ho = Ho(M,{Un},1)
f(m) =cm =Gm (am) 5)
flr)=w, 0<k<t

If all conditions hold, accept, otherwise reject.

If the actual signer U is willing to prove to the recipient
V' that he is one of the actual signers, they run the following
algorithm:

Signer Confession
1: 'V verifies the validity of the signature o.
2: Us uncovers his voucher a; and Sigs(as) to V, and tells
V' its corresponding 7).
3: V verifies the signature Sig,(a).
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4: V accepts U, as an actual signer if the all following
conditions hold, rejects otherwise:

V(s) = HQ(as; Sigs(as))
wey = Hyi(v(y)) (6)
f(r) = wes

Signer Denouncement

The property of denouncibility is optional. Suppose that
the actual signer U4 has agreed to give Up the authority
to denounce itself, U4 sends its voucher aa and Siga(aa)
to Up. Then Up can convince anyone U4 was involved in
signing as in Signer Confession. Note that Up need not to be
one of the actual signers. We do not discuss the possibility that
Up might disclose a4 and Siga(ca) to anyone else since we
assume that U, trust Up. The individual signature Sig;(c;)
of the voucher «; is used for denouncement. If denouncibility
is not necessary, Sig;(;) can be omitted.

C. Scenario Il

In this scenario, ¢'(¢' < t) or more members out of the ¢
actual signers can jointly confess their involvement. However,
since the confession can not be done by any individual, we do
not need multiple 7, for each actual signer. Instead, a single
rs is used for confession. A trivial choice for r, is set to be
T1.

Signature Generation

1: The same as the Step. 1 in Scenario I.

2: The set of actual signers {U;} compute the r5(= 7).

3: Each U; generates its voucher «; and computes [3; =
Hs (v, Sigi{a;}) then broadcasts 3; to {U;}.

4: The set of actual signers {U;} runs the DKG protocol with
input 3; and outputs the public key vy = g¢. Note that [3;
is kept secret by Us;.

5s: The set of actual signers {U;} compute hy =
Ho(M,{Up},t,t') and ws = Hy(vs) then construct a
polynomial f of degree n — ¢ + 1 such that

f(0) = ho
f) =¢ (7
f(rs) = Ws

Then f is broadcast to {U;}.
6: Each U; computes ¢; = f(i) and a; = G; *(c;).
7: The set of actual signers {U;} output the signature o =

(Ma {Um}vtatlv fv flv {ala a3 an}vvs)

The verification algorithm is similar to the one in scenario
I with minor difference.

Signature Verification
1: Compute hg = Ho(M,{Un},t,t'), r1, and ws = Hy(vs)
2: Check the following:
f(0) = hg = Hy(M,{Up},t,t')
f(m) =Cm = gm(am) (8)
f(rs) = ws

If all condition hold then accept, otherwise reject .

If part of the original actual signers {Uy} ({Uy} C {U;})
is willing to prove to the recipient V that they arethe actual
signers, they can run the following alogorithm:

Signers Threshold Confession
1: 'V verifies the validity of the signature o.
2: Each U/ opens his voucher a; and Sig; (o) to V, and
tells V' its corresponding 7).
3: V verifies each signature Sig; (/)
4: 'V computes (8 = Hs(ay, Sigi(cur)) and reconstructs
the secret d by

d=f'(0) = Ai(0)Bi. ©)

i€’

s: V checks if v, = g% holds. If it is true, V accepts that
they are the actual signers.

IV. REALIZATION ISSUES

We provide an example modified from [8], [10] to show how
the three properties we proposed can be straightforward added
to most ring signature schemes. We implement a scenario II
scheme based on [8], [10]. Then we show an alternative of
hash function we used to manipulate vouchers.

A. Core Threshold Ring Signature

The construction follows the ideas in [8], [10] which consid-
ered three possibilities: RSA-based, DL-based and ID-based.
If signer U; has a RSA-based keys pair, then its public key
is (e;, N;) and private key is d; where N; is a product of
two equal-length prime numbers and e;d; =1 mod ¢(N;).
There exists a public hash function H; : {0,1}* — Zy,-
If signer U; has a DL-based key pair, then its public key is
(Pi> qi> 9i,yi) and private key is x; € Z; where p;,q; are
primes, ¢;|(pi — 1), gi € Z,,. Finally, if U; has a ID-based
keys, this mean that there exist two cyclic group G ; and Ga;
of order g;. The bilinear pairing is given as é; : G1,; x G1,; —
G2, and a public hash function H; : {0,1}* — G4, — {0}.
U, is under the control of a master entity whose master key is
x; € Zg, and public key is Y; = z; P € G ;. Thus the public
key of U; is PK; = H’l(Ul) and private key is SK; = x; PK;.

For lake of space we only construct the scheme for scenario
11, the construction for scenario I is similar.

Signature Generation

1: Similarly, but now G; denotes the following operations:
(1)For U, it computes

g;j yJC-‘7 mod  pj (DL-based)
zj =14 Hj(c;)+aj mod N; (RSA-based)
ej(aj,Pj) : ej(Yj,chKj) (ID-Based)

(10)

where a; is randomly chosen from {0,1}*, Z,, or G4,
respectively, and c; is picked from {0, 1}'.
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(2)And for {U;}, it computes

g;" mod p; (DL-based)
zi = T (RSA-based) (11
e;(T;, P;) (ID-Based)

where r; is randomly chosen from Z,, and T; from G ;.

2: The set of actual signers {U;} compute the r4(= 71).

3: Each U; generates its voucher «; and computes 3; =
Hs(ay, Sigi{a,}) then broadcasts 3; to {U;}.

4: The set of actual signers {U;} run the DKG protocol with
input (3; then outputs the public key v, = g?. Note that
0; is kept secret by Us.

5. The set of actual signers {U;} compute hy =
Ho(M,N,t,t") and ws = Hy(vs) then construct a poly-
nomial f of degree n — ¢+ 1 such that

f(0) = ho
) =¢ (12)
f(rs) = Ws

Then f is broadcast to {U,}.
6: Each U; computes ¢; = f(¢) but here the G, ! denotes the
following operations:

ri — cix; mod p; (DL-based)
a; =1 (ri — Hi(c;))% mod N; (RSA-based)
T; — ¢;SK; (ID-Based)

(13)

7: The set of actual signers {U;} output the signature o =

(Mﬂ {Ui}vtatla fa flv {alv ) an}a vs)

Signature Verification
1: Compute hy = Ho(M,{U;},t,t'), r1, and ws = Hy(vs)
2: Check the following:

f(O) = hO = HO(Ma {Ui}vtatl)
f(m) =cm

gamycm  mod P, (DL-based)
Zm =14 Hpn(em)+asr mod Ny, (RSA-based)
em(ams Pm) - €m (Yo, e PKy) (ID-Based)

f(rs) = Ws
(14)

If all conditions hold then accept, reject otherwise.

B. Voucher Manipulation

We simply use hash functions H;, Hs to manipulate
voucher. The idea of hash functions suggests the abstraction of
the mechanism when dealing with voucher. The basic principle
is that the vouchers are generated by some one-way function
even for the actual signers may not able to reverse. From our
view in [18], the part of signature {a,b, R, €} has the same
functionality as our voucher and the authors manipulated these
tuple based on discrete-log problem. But in [18], the actual
signer have to run an interactive proof with the verifier to
prove its involvement. Actually many mechanisms possessing
the property of one-way can replace the hash functions we
used in manipulating the vouchers.

V. SECURITY

Theorem 1 (Existential Unforgeability): Provided that each
public key specifies a trapdoor one-way permutation, both our
confessible threshold ring signature schemes are existentially
unforgeable against adaptive chosen message attacks in the
random oracle model [1].

Proof. Intuitively, the vouchers’ roles in both our schemes
are like additional points similar to hy. Except for increasing
the degree of the polynomial f, the core ring signature
schemes remain the same. Since ry are deterministic, it is
impossible for the adversary to compute v (vs in scenario II)
such that wy = Hy(vk) (f(rs) = ws = Hy(vs) in scenario
II) in random oracle model. Provided that the core threshold
ring signature scheme we use is existential unforgeable, for
example in [5], unforgeability property is a matter of course.
For lake of space we omit the tedious proof. In [5], [7],
[8], [10], the authors had provide rigorous proofs of the
unforgeability of ring signatures. Following the proof in Sec.
5 of [10] and Forking lemma in Sec 3 of [7], our claim is
straightforward.

Theorem 2 (Signer Ambiguity): Provided that each public
key specifies a trapdoor one-way permutation, both our con-
fessible threshold ring signature schemes satisfy the property
of unconditional signer ambiguity under the assumption that
discrete logarithm problem is hard in the random oracle model.

Proof. Since for {Up,, }, {an} and all vouchers are randomly
chosen, so {c;} and {vi} (vs in scenario II) are uniformly
distributed. The polynomial f can be considered as a function
chosen randomly from the collection of all polynomial with
degree n (n — t + 1 in scenario II). Hence {c¢;} and then
{a;} are also uniformly distributed. Briefly, for any message
M and {U,,}, the distribution of o are independent and
uniformly distributed no matter which ¢ actual signers are. So
we conclude that even an adversary with all private keys of
{U,,} and unbounded computing resources has no advantage
in identifying any actual signers.

VI. CONCLUSION

We presented two generic threshold ring signature schemes
which satisfy the properties confessibility and denouncibil-
ity, or threshold-confessibility in two scenarios. Due to the
anonymity, ring signatures have many applications in elec-
tronic commerce such as e-lotteries, e-voting, e-cash, etc. Also
ring signatures solve many problems in ad-hoc and sensor
networks or peer-to-peer environments. With the property
of confessibility, our schemes derive many interesting appli-
cations. Future researches include extending the threshold-
confessibility to general access structure or minimizing the
signature size due to confessibility or denouncibility.
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