
Building High-Performance and Reconfigurable
Bandwidth Controllers with Adaptive Clustering

Chien-Hua Chiu, Chin-Yen Lee, Pan-Lung Tsai, Chun-Ying Huang, and Chin-Laung Lei
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

{william, hamblue, charles, huangant}@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

Abstract—As quality of service gains more and more attention,
bandwidth controllers gradually become one of the most impor-
tant network systems used in modern Internet environment. The
demand for high-performance in-line bandwidth controllers is
driven by the growing bandwidth available in the last mile WAN
links as well as the sophisticated packet processing functions that
become essential in current computer networks. In this paper, we
propose an adaptive clustering scheme to scale the throughput of
in-line devices and implement the bandwidth control functions
over a cluster of in-line devices. The proposed scheme aggregates
the processing power of multiple in-line devices in the cluster by
making incoming traffic self-dispatched in a transparent fashion,
and incorporates a flow migration mechanism that keeps the load
of each device balanced. The resulted cluster is also able to toler-
ate device failures and hence is run-time reconfigurable. Based
on the proposed scheme, we successfully design a distributed
policy adjustment algorithm, the proportional bandwidth alloca-
tion algorithm, and implement a clustered bandwidth controller
over embedded Linux. The results of performance evaluation
suggest that the proposed traffic redistribution mechanism and
distributed policy adjustment algorithm can be used together to
realize high-performance and reconfigurable bandwidth control-
lers.

Keywords-traffic dispatching; in-line device; bandwidth
controller; proportional bandwidth allocation; fault tolerance; load
balance

I. INTRODUCTION
Since its invention, computer networks have gradually be-

come an essential part in our daily lives. Not only applications
including peer-to-peer (P2P) file sharing, voice over Internet
protocol (VoIP), instant messaging (IM) are getting more and
more popular and start to change our personal life styles, but
companies and organizations also take advantages of computer
networks to greatly reduce the cost of information exchange
and resource management, and sometimes even rely on them to
carry out critical business transactions.

However, the Internet is so designed that network resources
are shared by all applications that generate packets. Under such
circumstances, applications that send packets faster are served
with higher probability, and applications that send packets at
lower rates may experience starvation in a congested network.
For example, an HTTP bulk file transfer may consume all
available bandwidth and forbid another VoIP application from

operating properly. This is why bandwidth management (BM)
mechanisms are invented to help by providing guarantees to
various quality-of-service (QoS) requirements needed by vari-
ous applications. With BM mechanisms, network administra-
tors are able to set up policies according to which network
packets are processed so that mission critical applications can
be protected from the over-consuming behavior of less critical
but demanding applications.

Researchers [1,2] and vendors [3,4] have figured out differ-
ent approaches to augment existing local area networks (LANs)
with the advantageous BM functions mentioned above. A
straightforward way is to replace each and every edge router
with its new, BM-enabled generation, and this is surely less
preferred, especially when the cost of model revisions and the
complexity of router configuration migration in the installed
base are considered. A much better way is to engineer stand-
alone bandwidth controllers in the form of in-line devices that
sits right in front of edge routers and works transparently to
other nodes on individual networks. Thus, the standalone
bandwidth controllers can be nicely and easily inserted into
existing LANs with minimal disruptions to the original net-
works. Figure 1 shows a typical deployment of such transpar-
ent, in-line bandwidth controllers that may effectively shape
the traffic passing through the link between a LAN and a wide
area network (WAN).

Bandwidth controllers perform sophisticated tasks like
queue management, statistics maintenance, and classification
upon packet arrival. Such operations consume much of the
processing power but still in an acceptable level with small
scale networks and limited bandwidth. The performance re-
quirement of bandwidth controllers primary depends on the
bandwidth available at the last mile (i.e., the link between the

This work is supported in part by the National Science Council under
the Grants NSC 95-3114-P-001-001-Y02 and NSC 95-2213-E-002-009, and
by the Taiwan Information Security Center (TWISC), National Science Coun-
cil under the Grants No. NSC 94-3114-P-001-001Y and NSC 94-3114-P-011-
001.

Edge Router (Provider Edge)

WAN

LAN

Bandwidth Controller

Edge Router (Customer Premises Equipment)
Figure 1. A typical deployment of transparent, in-line band-

width controllers.

0-7695-2699-3/06/$20.00 (c) IEEE

edge routers, as depicted in Figure 1). As communication tech-
nology keeps advancing, broadband services such as fiber to
the building (FTTB)/fiber to the home (FTTH) [5] gradually
become more and more popular, and the bandwidth available
on the WAN link has grown to a rate of tens or even hundreds
of megabits per second (Mbps). Therefore, the time available
for bandwidth controllers to process a single packet has de-
creased to the level of few microseconds or less. On the other
hand, as Internet applications keep evolving, bandwidth con-
trollers need to recognize more and more difference protocols,
and the time required to process each packet grows. These two
factors have made bandwidth controllers, which have to deal
with aggregate traffic transmitted to and from individual hosts,
become the new performance bottleneck.

In this paper, we propose an adaptive clustering scheme to
scale the throughput of in-line devices. The proposed scheme
aggregates the processing power of multiple in-line devices in a
cluster by transparently making incoming traffic self-
dispatched, and it also incorporates the flow migration mecha-
nism in our previous work [6] to keep the load of each device
in the cluster balanced. In addition to load balancing, the pro-
posed scheme also encompasses the ability of fault tolerance
and hence makes the resulted cluster run-time reconfigurable.
Based on this clustering scheme, we successfully design a dis-
tributed policy adjustment algorithm and implement a clustered
bandwidth controller over embedded Linux.

The rest of the paper is organized as follows. Section II
gives a brief review of the literatures related to improving the
performance of BM devices. Section III elaborates the pro-
posed clustering scheme, and describes additional details spe-
cific to the clustered bandwidth controller. Section IV then
presents the results of performance evaluation. Finally, we con-
clude the paper by summarizing our achievements and discuss-
ing the future work in Section V.

II. RELATED WORK
Each solution proposed to improving the performance of

network devices generally follows one of the two approaches.
The first one is the scale up approach [7], which aims at in-
creasing the processing power of a single device by upgrading
hardware components or optimizing algorithms, and the second
one is the scale out approach [7], in which several devices col-
laborate to form a cluster and then together provide more proc-
essing power to handle higher volume of network traffic. Al-
though the most common scale up solutions such as the hard-
ware-based ones using application specific integrated circuits
(ASICs) have been long proven in the field to be capable of
delivering high throughput for well-defined operations, they are
also infamous for their inflexibility in that the revision of
hardware chips is both time consuming and costly. Besides, the
enhancement of hardware may quickly hit various physical,
electrical, and thermal limitations. Therefore, we follow the
scale out approach and propose a scalable clustering scheme to
improve the performance of bandwidth controllers by aggregat-
ing multiple devices to form a cluster. The proposed scheme
does not suffer the limitations mentioned above, and it does not
interfere with hardware enhancement and hence can be com-
bined with the scale up approach to achieve even higher per-
formance.

In order to fully utilize the capability of each device in the
cluster, the incoming traffic need to be properly dispatched
among the devices. In general, traffic dispatching mechanisms
fall into two categories, the centralized and the decentralized
ones. For the centralized approach, traffic dispatching mecha-
nisms are usually implemented in a dedicated dispatcher. The
dispatcher may redirect individual packets to different in-lines
devices in simple ways such as round robin, or it can be as
flexible as evaluating complicated criteria like selecting the
device with least load over the past ten seconds. The major
advantage of the centralized approach is its simplicity that the
issue of load distribution is isolated and taken care of solely by
the dispatcher. However, the shortcomings of the approach are
also obvious in that the dispatcher itself is likely to become the
performance bottleneck and a single point of failure.

As for the decentralized approach, the devices in the cluster
may perform special processing on ARP [8] requests in order
to distribute the input traffic among themselves. For example,
the clustered units in [9,10] can be configured to answer ARP
requests either with a nonsexist Ethernet address or with a
layer-2 multicast address so that the switch residing between
the cluster and the hosts will always flood the frames sent to
the cluster. The clustering scheme proposed in [6] first gener-
ates a number of virtual MAC addresses and uses them as the
answers when replying ARP requests. These mechanisms make
the cluster transparent to other nodes on the same network and
all member nodes in the cluster jointly create an undistinguish-
able illusion of a device. Section III presents the decentralized
traffic dispatching mechanism we propose for the in-line device
cluster, and also our implementation of the BM functions based
on our traffic dispatching mechanism over embedded Linux.

The traffic control framework designed for Linux integrates
various components needed for traffic policing, shaping, and so
on. The framework consists of three basic elements, which are
queueing disciplines, classes, and filters [11,12]. Queueing
disciplines are algorithms that schedule the packet transmission
of a network interface, classes are subsidiaries of queueing
disciplines that can be defined to specify different QoS re-
quirements, and filters are used for classifying packets into
classes. Many queueing disciplines, including the famous class-
based queueing (CBQ) [13], the well-known token bucket filter
(TBF), are already implemented in the mainstream Linux ker-
nel [14], and also widely used by Linux-based bandwidth con-
trollers. We choose hierarchical token bucket (HTB) [15] as the
primary queueing discipline in our implementation for its flexi-
bility, stability, and accuracy.

III. THE PROPOSED SCHEME
In this section, we first present the system architecture, and

then describe the proposed clustering scheme that follows the
scale out approach and makes use of a decentralized traffic
dispatching mechanism in great detail. We also extend the flow
migration techniques proposed in [6] to achieve the goals of
both load balancing and fault tolerance. In the end of this sec-
tion, an adaptive algorithm for dynamic and distributed policy
adjustment, the proportional bandwidth allocation (PBA) algo-
rithm, is proposed.

0-7695-2699-3/06/$20.00 (c) IEEE

(b)

Edge Router

Bandwidth
Controller Cluster

Bandwidth
Controller

(in-line device)

Edge Router
H1

H2

H3

H4

D

H1

H2

H3

H4

D1

D2

D3

(a)
Figure 2. (a) A typical deployment of a bandwidth controller in LAN

environment, and (b) System architecture of a clustered band-
width controller. H1, H2, H3, and H4 denote individual hosts in
the LAN, and D1, D2, and D3 denote the in-line devices that
comprise the cluster.

3 Proxy-ARP Request

Host In-Line Device i

In-Line Device i + 1

1 ARP Request

Host

Host

2 Responsibility Check

2 Responsibility Check

4 ARP Reply

5 Proxy- ARP Reply

6 Network Traffic

LAN Switch (Left) LAN Switch (Right)

Figure 3. Six steps of the proposed traffic dispatching scheme.

A. The System Architecture
Figure 2(a) depicts a typical deployment of a bandwidth

controller implemented in the form of an in-line device, which
is located between the hosts and the edge router (i.e., the gate-
way to the Internet). In order to achieve higher throughput
while enforcing BM policies, the single in-line device is re-
placed with a cluster of multiple devices as illustrated in Figure
2(b). The cluster is constructed by surrounding all member
devices with two Ethernet switches and also adding a third
network interface to each device for the inter-device communi-
cation. Note that the third interfaces, the switch used for inter-
device communication, and the cables are not explicitly shown
in Figure 2(b).

For the reason of keeping the in-line-device cluster working
transparently, each device is deployed as a bridge. In order to
fully utilize the capability of each device in the cluster, we ex-
pect the frames sent by different hosts be forwarded to different
devices so that the traffic can be dispatched evenly to each de-
vice as shown in Figure 2(b). Following the scale out approach,
such design of the system architecture above is straightforward,
but the system architecture alone cannot achieve the design
goals because of the following reasons. First, the loop topology
of the designed architecture does not allow broadcast frames
send to it, or infinite frame forwarding loops may occur. Sec-
ond, due to the self-learning behavior [16] of the Ethernet
switches, the port mapping of a MAC address corresponds to
only one of the interfaces of the switch. Therefore, while all
hosts send frames to a same MAC address, the Ethernet switch
forward all the frames to a same interface. In other words, all
frames are forwarded to a single device of the cluster, and the
behavior like this violates the desired objectives.

B. Design Fundamentals and Notations
The proposed traffic dispatching scheme is adapted from

the proxy ARP scheme [17] and incorporates additional
mechanisms that create the illusion of a single, high-
performance in-line device with multiple underlying in-line
devices. Each device in the cluster acts as a proxy between the
hosts and the edge router by means of the frame rewriting tech-
niques, and avoids infinite frame forwarding loops with the
help of frame filtering. In addition, the scheme also actively
influences the self-learning behavior of the surrounding
switches so that frames sent by individual hosts can be assigned
to one of the clustered devices in a controlled manner. As for
fault tolerance, a heartbeat mechanism is proposed so that de-
vices in the cluster communicate with one another through a

private inter-communication channel. Based on the information
exchanged, devices are able to detect node failure and then
activate traffic redistribution. As a result, the cluster has the
features of load balancing and fault tolerance and is hence run-
time reconfigurable.

Some notations that are going to be used in the following
sections are described as follows.

• Each in-line device of the cluster is assigned a unique
integer as its ID.

• Each device maintains its own LV, a set of virtual
MAC addresses.

• Two sets, VL and VR, of predefined unique virtual
MAC addresses, respectively, where |VL| = NL and |VR|
= NR. The values of NL and NR should be sufficiently
large numbers.

• Two hash functions, hL and hR, taking a MAC address,
m, as input and map it to respective virtual addresses in
VL and VR. That is, hL: M → VL and hR: M → VR,
where M = {m | m ∈ Z, 0 ≤ m ≤ 248 – 1}.

C. The Traffic Dispatching Scheme
The proposed traffic dispatching scheme comprises six

steps depicted by Figure 3. ARP request packets are sent at the
1st step when the hosts want to send packets to the Internet.
Since the ARP request packet in the 2nd step is broadcast to all
the devices in the cluster, a frame filtering mechanism, which
we name as responsibility check, is designed to prevent the
infinite frame forwarding loops. The responsible device of a
particular ARP request is determined in the responsibility
check by taking the source MAC address of the ARP request as
input and mapping it to one of the IDs. Once an ID is com-
puted, only will the device with that ID forward the frame,
while others simply ignore the request.

As a transparent proxy sitting between hosts and the edge
device, in the 3rd step, the source MAC address of the for-
warded frame is replaced with a virtual MAC address vL, which
is generated by hL and is an element of VL. In the 4th step, when
the ARP reply sent to vL is received by the same responsible in-
line device, the device records the mapping of the IP and the
MAC address of the responder. In the 5th step, a proxy-ARP
reply is sent back to the host. The destination and source MAC
addresses of the reply are set to the MAC address of the host
and a virtual MAC address vR, respectively. The vR is generated
by hR and is an element of VR. At the same time, the vR is also
added to the LV of the responsible device. Throughout the first
five steps, the network traffic sent from different hosts can be

0-7695-2699-3/06/$20.00 (c) IEEE

120 Simulated Hosts:
192.168.123.16 -
192.168.123.125

SmartBits

Simulated Gateway:
192.168.123.254

SMC Switch SMC Switch

ixp0

ixp0

ixp0

ixp0

ixp1

ixp1

ixp1

ixp1

Simulated
LAN Link

Simulated
WAN Link

Figure 4. The network architecture for all experiments.

dispatched to corresponding devices according to MAC ad-
dresses of hosts. In the final step, the source MAC address of
an outbound data packet is replaced with one of the virtual
MAC addresses in VL. In addition, the destination MAC ad-
dress of the packet is replaced with the real MAC address of
the destination IP address, which is stored in the 4th step. On
the other hand, the source MAC address of an inbound packet
is replaced with one of the virtual MAC addresses in VR and
the destination MAC address of it is set to the MAC address of
the sending host.

D. The Fault Tolerant Mechanism
Following the six steps in the previous scheme, network

traffic is dispatched to devices according to results of the re-
sponsibility check. Since the responsibility check is a hash-
based operation, the traffic may not be guaranteed to dispatch
evenly. Therefore, we apply the flow migration technique pro-
posed in our previous work [6] to balance the workload of the
cluster by migrating virtual MAC addresses among all the col-
laborative devices.

In this work, we use a heartbeat mechanism to detect fault
nodes in the cluster. Each node in the cluster periodically
broadcasts a heartbeat message, which contains the ID and the
LV of the node, using the private inter-communication channel.
By collecting all the heartbeat messages, a device hence knows
the global information of the cluster, which includes the total
number of active devices N, the health state of each node, and
the virtual MAC addresses that an arbitrary node handles. The
information is important for the construction of a fault tolerant
mechanism. When a node fails, all the virtual MAC addresses
originally handled by the failed one must be migrated to other
active devices. To do this in a distributed manner, each node
has to compute its rank before the redistribution of those or-
phaned virtual MAC addresses. A node’s rank is defined as the
ascendant order of its ID among all the active nodes. Therefore,
the node with the smallest ID has a rank of zero and the one
with the largest ID has a rank of N−1. An example of the rank
computation is given as follows: Suppose that there are three
active nodes in the cluster and the IDs of them are 2, 4, and 5,
respectively. As a result, the rank of the three nodes will be 0,
1, and 2, respectively. With the rank, an active device can de-
cide to handle an orphaned virtual MAC address if the remain-
der of the hashed address dividing N matches the rank of the
device. Furthermore, those selected addresses can be really re-
dispatched to the device using the previously introduced flow
migration technique.

E. The Proportional Bandwidth Allocation Algorithm
Implementing a bandwidth management mechanism over

our host-based in-line cluster is much different from over a
single bandwidth controller. Since a cluster contains several
collaborative devices, policies on each device should be con-
figured carefully. Suppose that a total amount of U Mbps
bandwidth is reserved for all hypertext-transfer-protocol
(HTTP) connections in a cluster of N bandwidth controllers, a
naïve configuration may be to let each device allow at most
U/N Mbps bandwidth. However, the solution may not accurate
enough. Since our clustering mechanism divides clients into
several subgroups, it is obvious that the bandwidth consump-

tions of HTTP connections from different subgroups are di-
verse. As a result, the reserved bandwidth U Mbps cannot be
fully utilized if and only if one of the subgroups does not con-
sume the U/N Mbps bandwidth. The bandwidth utilization be-
comes even worse if all the HTTP clients are only dispatched
to certain devices in the cluster.

Here we present an effective mechanism to solve the above
problem. By dynamically adjusting policies on each device, we
expect the reserved bandwidth can be better utilized. The
mechanism is called the proportional bandwidth allocation
(PBA) algorithm. With the algorithm, all devices have to moni-
tor the received traffic statistics for all the policies and ex-
change the monitored results via the inter-communication
channel periodically. The upper bound of the bandwidth limita-
tion for each policy on all devices is tuned dynamically accord-
ing to the proportional traffic received by each device. Given
the number of the devices N and the monitored received traffic,
S1, S2, …, SN

 for a given policy on all devices, the PBA algo-

rithm configures the upper bound bandwidth limitation of the
policy on the ith

 device as U×Si/(S1+S2+…+SN).

IV. PERFORMANCE EVALUATION
To evaluate the performance of our scheme, we implement

all the proposed mechanisms on a Linux system, which runs a
kernel of version 2.4.31. The traffic dispatching scheme and the
fault tolerant mechanism are implemented as kernel modules.
The bandwidth management mechanism leverages those func-
tions provided by the iproute2 package with tc, the traffic con-
trol utility. The policy of the traffic controller is configured on
each device according to the PBA algorithm described previ-
ously. In this section, the experiment environment is explained
first and then the performance results are presented later.

A. The Experiment Environment
The network architecture of the experiment environment is

depicted in Figure 4. The cluster is comprised by four Intel
IXP425 platforms. The LAN side clients and the WAN side
gateways are simulated using the SmartBits, which is one of
the world-recognized test equipment. The SmartBits is config-
ured to simulate 120 different clients sending traffic to the
simulated gateway. Each client is assigned a unique IP address
and a unique MAC address. All the configurations on the
SmartBits are setup using the SmartFlow application (version
5.0).

0-7695-2699-3/06/$20.00 (c) IEEE

540 480 420360 300 240 180 120 60 0 600
0

40

80

120

160

200

1 2 3 4 4 3 2 3 4 4

D
at

a
Ra

te
 o

f I
np

ut
 T

ra
ff

ic
 (M

bp
s)

Time (second)

Number of Active
Bandwidth Controllers
in the Cluster

Traffic 3

Traffic 2

Traffic 1
Mission Critical Traffic

1 2 3 4 4 3 2 3 4 4

All Traffic

Figure 5. The scenario and the parameter settings for Experiment-II.

T hroughput vs. T ime Elapsed

0
10

20

30

40
50
60

70

80
90

100

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
T ime Elapsed (second)

Th
ro

ug
hp

ut
 (M

bp
s)

T otal T raffic T raffic 1 T raffic 2 T raffic 3 Missoin-Crit ical T raffic

Figure 7. The throughput of each classes of traffic.

T he CP U Load of the Four Devices vs. Time Elapsed

0
10
20
30
40
50
60
70
80
90

100

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

T ime Elapsed (second)

CP
U

 L
oa

d
(%

)

Node 1 Node 2 Node 3 Node 4

Figure 8. The CPU load information of the four clustered devices.

Frame Size: 64 bytes

1 2 3 4

Number of Clustered Nodes

Ze
ro

 L
os

s T
hr

ou
gh

pu
t (

M
bp

s)

Ze
ro

 L
os

s T
hr

ou
gh

pu
t (

M
bp

s)

100

Frame Size: 1,518 bytes

Number of Clustered Nodes

1 2 3 4

0
50

150

200

250

300

0

10

12

8

6

4

2

Figure 6. The zero loss throughput measured using different combina-

tions of cluster sizes and frame sizes.

There are two experiments in our work. Experiment-I is
used to verify the effectiveness of the traffic dispatching
scheme. Experiment-II is used to confirm the effectiveness of
the traffic redistribution scheme, the fault tolerant mechanism,
and the PBA algorithm. In the former one, we configure the
cluster to dispatch the received LAN-to-WAN traffic to each
device in the cluster evenly and then measure the zero loss
throughput on the SmartBits. The experiment is repeated with
different combinations of cluster sizes (one, two, three, or four
devices) and frame sizes (64 or 1,518 bytes). In the latter one,
the link with a capacity of 100 Mbps is used to simulate the
limited WAN link, which is only one-tenth in capacity of the
simulated LAN.

The scenario and the parameter settings for Experiment-II
are illustrated in Figure 5. The frame size is set as 1,024 bytes.
The horizontal axis indicates the elapsed time of the experi-
ment. We take a snapshot of measured results in a time interval
of 30 seconds. The size of the cluster varies due to a node join-
ing or a node leaving. The numbers shown on the top of every
two time intervals are the size of the cluster (i.e., the number of
collaborative devices at that time). The vertical axis indicates
the amount of LAN-to-WAN traffic generated by the Smart-
Bits. The bold line in the figure shows the total amount of the
generated traffic. The total amount of the traffic is generated in
an ascendant manner. It begins from 40 Mbps, steps 40 Mbps
every time interval, and holds when it reaches 200 Mbps. The
purpose of using such incremental strategy is to warm up the
devices in the cluster.`

All the generated traffic is classified into four different
classes, namely T1, T2, T3, and TC. The TC class, which is
simulated for mission critical use, is generated using a constant
rate of 10Mbps. The other three classes, T1, T2, T3, are gener-

ated in a ratio of 2:3:4, respectively. The amounts of different
traffic classes are expressed as the height of the bars in Figure
5.

In Experiment-II, the bandwidth usage for mission critical
traffic is not limited. On the contrast, the expected bandwidth
consumptions for the traffic classes T1, T2, and T3 are limited
to 20 Mbps, 30 Mbps, and 40 Mbps, respectively. With the
different combinations of the cluster size and the offered traffic
work load, we measure the throughput of each class of traffic,
monitor the CPU load on each device, and observe the influ-
ence of the change of the cluster size.

B. Experiment Results
Figure 6 shows the results of Experiment-I. It is obvious

that the overall throughput can be scaled linearly using our
traffic dispatching scheme. Take the experiment using a frame
size of 1,518-byte as an example. When the size of the cluster
increased from one to two, the zero loss throughput also in-
creases accordingly from 68.26 Mbps to 134.12 Mbps. When
we activate all four devices in the cluster, the zero loss
throughput increases to 271.63 Mbps, which is 3.98 times
compared with the zero loss throughput of a single device. The
results show that first, the effectiveness of the in-line traffic
dispatching scheme really scales and second, the overhead in-
curred by the scheme are negligible.

The results of Experiment-II are shown in Figure 7 and
Figure 8. The former shows the measured average throughput
and the latter illustrates the monitored CPU load on each de-
vice. During the time interval from the 0th second to the 300th
second, because the traffic load on node 1 can be migrated to
later joined nodes, the CPU load of the node 1 gradually de-
creases. When the four nodes are all activated, the CPU loads

0-7695-2699-3/06/$20.00 (c) IEEE

of these nodes are almost the same (roughly 80% CPU in use).
This shows that our traffic redistribution scheme has success-
fully distributed workloads to all the nodes evenly. We can also
find that the bandwidth usage of the four traffic classes during
the traffic redistribution process is still kept stable, which
means that the PBA algorithm also works properly.

The effectiveness of the fault tolerant mechanism can be
observed from the 300th second to the 600th second. When node
3 and node 4 are inactive, the CPU loads of node 1 and node 2
increases because the original LAN-to-WAN traffic handled by
the leaving nodes is gradually migrated to the two active nodes.
When node 3 and node 4 later join the cluster, the workload is
again evenly shared between all the nodes and hence the CPU
loads of these nodes are re-balanced. It should be noted that the
throughput of each traffic class decreases when a node in the
cluster becomes active or inactive. Nevertheless, the decreased
throughput can be recovered within the interval of 30 seconds.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an adaptive clustering scheme to

construct a scalable bandwidth management service. We take
the advantage of the transparency of in-line devices and im-
plement BM mechanisms as an in-line device cluster so that the
standalone bandwidth controllers can be nicely and easily in-
serted into existing LANs with minimal disruptions to the
original networks.

The results show that the traffic dispatching scheme can
linearly improves the throughput according to the number of
nodes in the cluster. The traffic redistribution scheme keeps the
load of each device balanced. In addition, it handles the node
failure problem and provides more flexibility to the use of the
cluster. Finally, the proposed PBA algorithm keeps the accu-
racy of bandwidth management. The collaboration of the above
components consequently achieves a high-performance and
reconfigurable bandwidth-controller cluster. The in-line clus-
tering scheme proposed in this paper is not limited for band-
width management. Applications that require more computa-
tion power, such as intrusion detection/prevention systems
(IDS/IPS), may also benefit from our scheme. In the future, we
will try to investigate possible applications and integrate them
with the proposed scheme.

REFERENCES

[1] Bob Braden, David Clark, and Scott Shenker, “Integrated services in the
Intenet architecture: an overview,” RFC 1633, June 1994.

[2] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng
Wang, and Walter Weiss, “An architecture for differentiated services,”
RFC 2475, December 1998.

[3] Packeteer, Inc., “Packetteer > WAN application traffic management,”
http://www.packeteer.com/.

[4] AscenVision Technology, Inc., “AscenVision – the intelligent network
provider,” http://www.ascenvision.com/.

[5] David Kettler, Hank Kafka, and Dan Spears, “Driving fiber to the
home,” IEEE Communications Magazine Vol. 38, No. 11, pp. 106-110,
2000.

[6] Pan-Lung Tsai, Chun-Ying Huang, Yun-Yin Huang, Chia-Chang Hsu,
and Chin-Laung Lei, “A clustering and traffic-redistribution scheme for
high-performance IPSec VPNs,” Proceedings of 12th IEEE International

Conference on High Performance Computing (HiPC 2005), LNCS 3769,
pp. 432-443, December 2005.

[7] Bill Devlin, Jim Gray, Bill Laing, and George Spix, “Scalability
terminology: farms, clones, partitions, and packs: RACS and RAPS,”
Technical Report MS-TR-99-85, Microsoft Research, December 1999.

[8] David C. Plummer, “An Ethernet address resolution,” RFC 826,
November 1982.

[9] “Windows 2000 network load balancing technical overview,” Microsoft
Corporation, http://www.microsoft.com/technet/prodtechnol/windows
2000serv/deploy/confeat/nlbovw.mspx.

[10] Sujit Vaidya and Kenneth J. Christensen, “A single system image server
cluster using duplicated MAC and IP addresses,” Proceedings of 26th
IEEE Conference on Local Computer Networks (LCN 2001), pp. 206-
214, November 2001.

[11] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn
van Oosterhout, Paul B. Schroeder, Jasper Spaans, and Pedro Larroy,
“Linux advanced routing & traffic control HOWTO,” http://lartc.org/.

[12] Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Muller, Marc
Bechler, “The Linux networking architecture: design and
implementation of network protocols in the Linux kernel,” Pearson
Prentice Hall, Inc., ISBN: 0-13-177720-3, April 2004.

[13] Sally Floyd and Van Jocobson, “Link-sharing and resource management
models for packet networks,” IEEE/ACM Transactions on Networking
Vol. 3, No. 4, pp. 365-386 , August 1995.

[14] Kernel.Org Organization, Inc., “The Linux kernel archives,”
http://www.kernel. org/.

[15] Martin Devera, “HTB home,” http://luxik.cdi.cz/~devik/qos/htb.
[16] Rich Seifert, The Switch Book: The Complete Guide to LAN Switching

Technology, John Wiley & Sons, Inc., ISBN: 0-471-34586-5, June 2000.
[17] Smoot Carl-Mitchell and John S. Quarterman, “Using ARP to

implement transparent subnet gateways,” RFC 1027, October 1987.

0-7695-2699-3/06/$20.00 (c) IEEE

	Select a link below
	Return to Proceedings

