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Abstract—As quality of service gains more and more attention, 
bandwidth controllers gradually become one of the most impor-
tant network systems used in modern Internet environment. The 
demand for high-performance in-line bandwidth controllers is 
driven by the growing bandwidth available in the last mile WAN 
links as well as the sophisticated packet processing functions that 
become essential in current computer networks. In this paper, we 
propose an adaptive clustering scheme to scale the throughput of 
in-line devices and implement the bandwidth control functions 
over a cluster of in-line devices. The proposed scheme aggregates 
the processing power of multiple in-line devices in the cluster by 
making incoming traffic self-dispatched in a transparent fashion, 
and incorporates a flow migration mechanism that keeps the load 
of each device balanced. The resulted cluster is also able to toler-
ate device failures and hence is run-time reconfigurable. Based 
on the proposed scheme, we successfully design a distributed 
policy adjustment algorithm, the proportional bandwidth alloca-
tion algorithm, and implement a clustered bandwidth controller 
over embedded Linux. The results of performance evaluation 
suggest that the proposed traffic redistribution mechanism and 
distributed policy adjustment algorithm can be used together to 
realize high-performance and reconfigurable bandwidth control-
lers. 

Keywords-traffic dispatching; in-line device; bandwidth 
controller; proportional bandwidth allocation; fault tolerance; load 
balance 

I.  INTRODUCTION 
Since its invention, computer networks have gradually be-

come an essential part in our daily lives. Not only applications 
including peer-to-peer (P2P) file sharing, voice over Internet 
protocol (VoIP), instant messaging (IM) are getting more and 
more popular and start to change our personal life styles, but 
companies and organizations also take advantages of computer 
networks to greatly reduce the cost of information exchange 
and resource management, and sometimes even rely on them to 
carry out critical business transactions. 

However, the Internet is so designed that network resources 
are shared by all applications that generate packets. Under such 
circumstances, applications that send packets faster are served 
with higher probability, and applications that send packets at 
lower rates may experience starvation in a congested network. 
For example, an HTTP bulk file transfer may consume all 
available bandwidth and forbid another VoIP application from 

operating properly. This is why bandwidth management (BM) 
mechanisms are invented to help by providing guarantees to 
various quality-of-service (QoS) requirements needed by vari-
ous applications. With BM mechanisms, network administra-
tors are able to set up policies according to which network 
packets are processed so that mission critical applications can 
be protected from the over-consuming behavior of less critical 
but demanding applications. 

Researchers [1,2] and vendors [3,4] have figured out differ-
ent approaches to augment existing local area networks (LANs) 
with the advantageous BM functions mentioned above. A 
straightforward way is to replace each and every edge router 
with its new, BM-enabled generation, and this is surely less 
preferred, especially when the cost of model revisions and the 
complexity of router configuration migration in the installed 
base are considered. A much better way is to engineer stand-
alone bandwidth controllers in the form of in-line devices that 
sits right in front of edge routers and works transparently to 
other nodes on individual networks. Thus, the standalone 
bandwidth controllers can be nicely and easily inserted into 
existing LANs with minimal disruptions to the original net-
works. Figure 1 shows a typical deployment of such transpar-
ent, in-line bandwidth controllers that may effectively shape 
the traffic passing through the link between a LAN and a wide 
area network (WAN). 

Bandwidth controllers perform sophisticated tasks like 
queue management, statistics maintenance, and classification 
upon packet arrival. Such operations consume much of the 
processing power but still in an acceptable level with small 
scale networks and limited bandwidth. The performance re-
quirement of bandwidth controllers primary depends on the 
bandwidth available at the last mile (i.e., the link between the 
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edge routers, as depicted in Figure 1). As communication tech-
nology keeps advancing, broadband services such as fiber to 
the building (FTTB)/fiber to the home (FTTH) [5] gradually 
become more and more popular, and the bandwidth available 
on the WAN link has grown to a rate of tens or even hundreds 
of megabits per second (Mbps). Therefore, the time available 
for bandwidth controllers to process a single packet has de-
creased to the level of few microseconds or less. On the other 
hand, as Internet applications keep evolving, bandwidth con-
trollers need to recognize more and more difference protocols, 
and the time required to process each packet grows. These two 
factors have made bandwidth controllers, which have to deal 
with aggregate traffic transmitted to and from individual hosts, 
become the new performance bottleneck. 

In this paper, we propose an adaptive clustering scheme to 
scale the throughput of in-line devices. The proposed scheme 
aggregates the processing power of multiple in-line devices in a 
cluster by transparently making incoming traffic self-
dispatched, and it also incorporates the flow migration mecha-
nism in our previous work [6] to keep the load of each device 
in the cluster balanced. In addition to load balancing, the pro-
posed scheme also encompasses the ability of fault tolerance 
and hence makes the resulted cluster run-time reconfigurable. 
Based on this clustering scheme, we successfully design a dis-
tributed policy adjustment algorithm and implement a clustered 
bandwidth controller over embedded Linux. 

The rest of the paper is organized as follows. Section II 
gives a brief review of the literatures related to improving the 
performance of BM devices. Section III elaborates the pro-
posed clustering scheme, and describes additional details spe-
cific to the clustered bandwidth controller. Section IV then 
presents the results of performance evaluation. Finally, we con-
clude the paper by summarizing our achievements and discuss-
ing the future work in Section V. 

II. RELATED WORK 
Each solution proposed to improving the performance of 

network devices generally follows one of the two approaches. 
The first one is the scale up approach [7], which aims at in-
creasing the processing power of a single device by upgrading 
hardware components or optimizing algorithms, and the second 
one is the scale out approach [7], in which several devices col-
laborate to form a cluster and then together provide more proc-
essing power to handle higher volume of network traffic. Al-
though the most common scale up solutions such as the hard-
ware-based ones using application specific integrated circuits 
(ASICs) have been long proven in the field to be capable of 
delivering high throughput for well-defined operations, they are 
also infamous for their inflexibility in that the revision of 
hardware chips is both time consuming and costly. Besides, the 
enhancement of hardware may quickly hit various physical, 
electrical, and thermal limitations. Therefore, we follow the 
scale out approach and propose a scalable clustering scheme to 
improve the performance of bandwidth controllers by aggregat-
ing multiple devices to form a cluster. The proposed scheme 
does not suffer the limitations mentioned above, and it does not 
interfere with hardware enhancement and hence can be com-
bined with the scale up approach to achieve even higher per-
formance. 

In order to fully utilize the capability of each device in the 
cluster, the incoming traffic need to be properly dispatched 
among the devices. In general, traffic dispatching mechanisms 
fall into two categories, the centralized and the decentralized 
ones. For the centralized approach, traffic dispatching mecha-
nisms are usually implemented in a dedicated dispatcher. The 
dispatcher may redirect individual packets to different in-lines 
devices in simple ways such as round robin, or it can be as 
flexible as evaluating complicated criteria like selecting the 
device with least load over the past ten seconds. The major 
advantage of the centralized approach is its simplicity that the 
issue of load distribution is isolated and taken care of solely by 
the dispatcher. However, the shortcomings of the approach are 
also obvious in that the dispatcher itself is likely to become the 
performance bottleneck and a single point of failure. 

As for the decentralized approach, the devices in the cluster 
may perform special processing on ARP [8] requests in order 
to distribute the input traffic among themselves. For example, 
the clustered units in [9,10] can be configured to answer ARP 
requests either with a nonsexist Ethernet address or with a 
layer-2 multicast address so that the switch residing between 
the cluster and the hosts will always flood the frames sent to 
the cluster. The clustering scheme proposed in [6] first gener-
ates a number of virtual MAC addresses and uses them as the 
answers when replying ARP requests. These mechanisms make 
the cluster transparent to other nodes on the same network and 
all member nodes in the cluster jointly create an undistinguish-
able illusion of a device. Section III presents the decentralized 
traffic dispatching mechanism we propose for the in-line device 
cluster, and also our implementation of the BM functions based 
on our traffic dispatching mechanism over embedded Linux. 

The traffic control framework designed for Linux integrates 
various components needed for traffic policing, shaping, and so 
on. The framework consists of three basic elements, which are 
queueing disciplines, classes, and filters [11,12]. Queueing 
disciplines are algorithms that schedule the packet transmission 
of a network interface, classes are subsidiaries of queueing 
disciplines that can be defined to specify different QoS re-
quirements, and filters are used for classifying packets into 
classes. Many queueing disciplines, including the famous class-
based queueing (CBQ) [13], the well-known token bucket filter 
(TBF), are already implemented in the mainstream Linux ker-
nel [14], and also widely used by Linux-based bandwidth con-
trollers. We choose hierarchical token bucket (HTB) [15] as the 
primary queueing discipline in our implementation for its flexi-
bility, stability, and accuracy. 

III. THE PROPOSED SCHEME 
In this section, we first present the system architecture, and 

then describe the proposed clustering scheme that follows the 
scale out approach and makes use of a decentralized traffic 
dispatching mechanism in great detail. We also extend the flow 
migration techniques proposed in [6] to achieve the goals of 
both load balancing and fault tolerance. In the end of this sec-
tion, an adaptive algorithm for dynamic and distributed policy 
adjustment, the proportional bandwidth allocation (PBA) algo-
rithm, is proposed. 
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Figure 2. (a) A typical deployment of a bandwidth controller in LAN 

environment, and (b) System architecture of a clustered band-
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comprise the cluster. 
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Figure 3.  Six steps of the proposed traffic dispatching scheme. 

A. The System Architecture 
Figure 2(a) depicts a typical deployment of a bandwidth 

controller implemented in the form of an in-line device, which 
is located between the hosts and the edge router (i.e., the gate-
way to the Internet). In order to achieve higher throughput 
while enforcing BM policies, the single in-line device is re-
placed with a cluster of multiple devices as illustrated in Figure 
2(b). The cluster is constructed by surrounding all member 
devices with two Ethernet switches and also adding a third 
network interface to each device for the inter-device communi-
cation. Note that the third interfaces, the switch used for inter-
device communication, and the cables are not explicitly shown 
in Figure 2(b). 

For the reason of keeping the in-line-device cluster working 
transparently, each device is deployed as a bridge. In order to 
fully utilize the capability of each device in the cluster, we ex-
pect the frames sent by different hosts be forwarded to different 
devices so that the traffic can be dispatched evenly to each de-
vice as shown in Figure 2(b). Following the scale out approach, 
such design of the system architecture above is straightforward, 
but the system architecture alone cannot achieve the design 
goals because of the following reasons. First, the loop topology 
of the designed architecture does not allow broadcast frames 
send to it, or infinite frame forwarding loops may occur. Sec-
ond, due to the self-learning behavior [16] of the Ethernet 
switches, the port mapping of a MAC address corresponds to 
only one of the interfaces of the switch. Therefore, while all 
hosts send frames to a same MAC address, the Ethernet switch 
forward all the frames to a same interface. In other words, all 
frames are forwarded to a single device of the cluster, and the 
behavior like this violates the desired objectives. 

B. Design Fundamentals and Notations 
The proposed traffic dispatching scheme is adapted from 

the proxy ARP scheme [17] and incorporates additional 
mechanisms that create the illusion of a single, high-
performance in-line device with multiple underlying in-line 
devices. Each device in the cluster acts as a proxy between the 
hosts and the edge router by means of the frame rewriting tech-
niques, and avoids infinite frame forwarding loops with the 
help of frame filtering. In addition, the scheme also actively 
influences the self-learning behavior of the surrounding 
switches so that frames sent by individual hosts can be assigned 
to one of the clustered devices in a controlled manner. As for 
fault tolerance, a heartbeat mechanism is proposed so that de-
vices in the cluster communicate with one another through a 

private inter-communication channel. Based on the information 
exchanged, devices are able to detect node failure and then 
activate traffic redistribution. As a result, the cluster has the 
features of load balancing and fault tolerance and is hence run-
time reconfigurable. 

Some notations that are going to be used in the following 
sections are described as follows. 

• Each in-line device of the cluster is assigned a unique 
integer as its ID. 

• Each device maintains its own LV, a set of virtual 
MAC addresses. 

• Two sets, VL and VR, of predefined unique virtual 
MAC addresses, respectively, where |VL| = NL and |VR| 
= NR. The values of NL and NR should be sufficiently 
large numbers. 

• Two hash functions, hL and hR, taking a MAC address, 
m, as input and map it to respective virtual addresses in 
VL and VR. That is, hL: M → VL and hR: M → VR, 
where M = {m | m ∈ Z, 0 ≤ m ≤ 248 – 1}. 

C. The Traffic Dispatching Scheme 
The proposed traffic dispatching scheme comprises six 

steps depicted by Figure 3. ARP request packets are sent at the 
1st step when the hosts want to send packets to the Internet. 
Since the ARP request packet in the 2nd step is broadcast to all 
the devices in the cluster, a frame filtering mechanism, which 
we name as responsibility check, is designed to prevent the 
infinite frame forwarding loops. The responsible device of a 
particular ARP request is determined in the responsibility 
check by taking the source MAC address of the ARP request as 
input and mapping it to one of the IDs. Once an ID is com-
puted, only will the device with that ID forward the frame, 
while others simply ignore the request. 

As a transparent proxy sitting between hosts and the edge 
device, in the 3rd step, the source MAC address of the for-
warded frame is replaced with a virtual MAC address vL, which 
is generated by hL and is an element of VL. In the 4th step, when 
the ARP reply sent to vL is received by the same responsible in-
line device, the device records the mapping of the IP and the 
MAC address of the responder. In the 5th step, a proxy-ARP 
reply is sent back to the host. The destination and source MAC 
addresses of the reply are set to the MAC address of the host 
and a virtual MAC address vR, respectively. The vR is generated 
by hR and is an element of VR. At the same time, the vR is also 
added to the LV of the responsible device. Throughout the first 
five steps, the network traffic sent from different hosts can be 
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Figure 4.  The network architecture for all experiments. 

dispatched to corresponding devices according to MAC ad-
dresses of hosts. In the final step, the source MAC address of 
an outbound data packet is replaced with one of the virtual 
MAC addresses in VL. In addition, the destination MAC ad-
dress of the packet is replaced with the real MAC address of 
the destination IP address, which is stored in the 4th step. On 
the other hand, the source MAC address of an inbound packet 
is replaced with one of the virtual MAC addresses in VR and 
the destination MAC address of it is set to the MAC address of 
the sending host. 

D. The Fault Tolerant Mechanism 
Following the six steps in the previous scheme, network 

traffic is dispatched to devices according to results of the re-
sponsibility check. Since the responsibility check is a hash-
based operation, the traffic may not be guaranteed to dispatch 
evenly. Therefore, we apply the flow migration technique pro-
posed in our previous work [6] to balance the workload of the 
cluster by migrating virtual MAC addresses among all the col-
laborative devices. 

In this work, we use a heartbeat mechanism to detect fault 
nodes in the cluster. Each node in the cluster periodically 
broadcasts a heartbeat message, which contains the ID and the 
LV of the node, using the private inter-communication channel. 
By collecting all the heartbeat messages, a device hence knows 
the global information of the cluster, which includes the total 
number of active devices N, the health state of each node, and 
the virtual MAC addresses that an arbitrary node handles. The 
information is important for the construction of a fault tolerant 
mechanism. When a node fails, all the virtual MAC addresses 
originally handled by the failed one must be migrated to other 
active devices. To do this in a distributed manner, each node 
has to compute its rank before the redistribution of those or-
phaned virtual MAC addresses. A node’s rank is defined as the 
ascendant order of its ID among all the active nodes. Therefore, 
the node with the smallest ID has a rank of zero and the one 
with the largest ID has a rank of N−1. An example of the rank 
computation is given as follows: Suppose that there are three 
active nodes in the cluster and the IDs of them are 2, 4, and 5, 
respectively. As a result, the rank of the three nodes will be 0, 
1, and 2, respectively. With the rank, an active device can de-
cide to handle an orphaned virtual MAC address if the remain-
der of the hashed address dividing N matches the rank of the 
device. Furthermore, those selected addresses can be really re-
dispatched to the device using the previously introduced flow 
migration technique. 

E. The Proportional Bandwidth Allocation Algorithm 
Implementing a bandwidth management mechanism over 

our host-based in-line cluster is much different from over a 
single bandwidth controller. Since a cluster contains several 
collaborative devices, policies on each device should be con-
figured carefully. Suppose that a total amount of U Mbps 
bandwidth is reserved for all hypertext-transfer-protocol 
(HTTP) connections in a cluster of N bandwidth controllers, a 
naïve configuration may be to let each device allow at most 
U/N Mbps bandwidth. However, the solution may not accurate 
enough. Since our clustering mechanism divides clients into 
several subgroups, it is obvious that the bandwidth consump-

tions of HTTP connections from different subgroups are di-
verse. As a result, the reserved bandwidth U Mbps cannot be 
fully utilized if and only if one of the subgroups does not con-
sume the U/N Mbps bandwidth. The bandwidth utilization be-
comes even worse if all the HTTP clients are only dispatched 
to certain devices in the cluster. 

Here we present an effective mechanism to solve the above 
problem. By dynamically adjusting policies on each device, we 
expect the reserved bandwidth can be better utilized. The 
mechanism is called the proportional bandwidth allocation 
(PBA) algorithm. With the algorithm, all devices have to moni-
tor the received traffic statistics for all the policies and ex-
change the monitored results via the inter-communication 
channel periodically. The upper bound of the bandwidth limita-
tion for each policy on all devices is tuned dynamically accord-
ing to the proportional traffic received by each device. Given 
the number of the devices N and the monitored received traffic, 
S1, S2, …, SN

 
 for a given policy on all devices, the PBA algo-

rithm configures the upper bound bandwidth limitation of the 
policy on the ith

 
 device as U×Si/(S1+S2+…+SN). 

IV. PERFORMANCE EVALUATION 
To evaluate the performance of our scheme, we implement 

all the proposed mechanisms on a Linux system, which runs a 
kernel of version 2.4.31. The traffic dispatching scheme and the 
fault tolerant mechanism are implemented as kernel modules. 
The bandwidth management mechanism leverages those func-
tions provided by the iproute2 package with tc, the traffic con-
trol utility. The policy of the traffic controller is configured on 
each device according to the PBA algorithm described previ-
ously. In this section, the experiment environment is explained 
first and then the performance results are presented later.  

A. The Experiment Environment 
The network architecture of the experiment environment is 

depicted in Figure 4. The cluster is comprised by four Intel 
IXP425 platforms. The LAN side clients and the WAN side 
gateways are simulated using the SmartBits, which is one of 
the world-recognized test equipment. The SmartBits is config-
ured to simulate 120 different clients sending traffic to the 
simulated gateway. Each client is assigned a unique IP address 
and a unique MAC address. All the configurations on the 
SmartBits are setup using the SmartFlow application (version 
5.0).  
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Figure 5.  The scenario and the parameter settings for Experiment-II. 
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Figure 6.  The zero loss throughput measured using different combina-

tions of cluster sizes and frame sizes. 

There are two experiments in our work. Experiment-I is 
used to verify the effectiveness of the traffic dispatching 
scheme. Experiment-II is used to confirm the effectiveness of 
the traffic redistribution scheme, the fault tolerant mechanism, 
and the PBA algorithm. In the former one, we configure the 
cluster to dispatch the received LAN-to-WAN traffic to each 
device in the cluster evenly and then measure the zero loss 
throughput on the SmartBits. The experiment is repeated with 
different combinations of cluster sizes (one, two, three, or four 
devices) and frame sizes (64 or 1,518 bytes). In the latter one, 
the link with a capacity of 100 Mbps is used to simulate the 
limited WAN link, which is only one-tenth in capacity of the 
simulated LAN. 

The scenario and the parameter settings for Experiment-II 
are illustrated in Figure 5. The frame size is set as 1,024 bytes. 
The horizontal axis indicates the elapsed time of the experi-
ment. We take a snapshot of measured results in a time interval 
of 30 seconds. The size of the cluster varies due to a node join-
ing or a node leaving. The numbers shown on the top of every 
two time intervals are the size of the cluster (i.e., the number of 
collaborative devices at that time). The vertical axis indicates 
the amount of LAN-to-WAN traffic generated by the Smart-
Bits. The bold line in the figure shows the total amount of the 
generated traffic. The total amount of the traffic is generated in 
an ascendant manner. It begins from 40 Mbps, steps 40 Mbps 
every time interval, and holds when it reaches 200 Mbps. The 
purpose of using such incremental strategy is to warm up the 
devices in the cluster.` 

All the generated traffic is classified into four different 
classes, namely T1, T2, T3, and TC. The TC class, which is 
simulated for mission critical use, is generated using a constant 
rate of 10Mbps. The other three classes, T1, T2, T3, are gener-

ated in a ratio of 2:3:4, respectively. The amounts of different 
traffic classes are expressed as the height of the bars in Figure 
5. 

In Experiment-II, the bandwidth usage for mission critical 
traffic is not limited. On the contrast, the expected bandwidth 
consumptions for the traffic classes T1, T2, and T3 are limited 
to 20 Mbps, 30 Mbps, and 40 Mbps, respectively. With the 
different combinations of the cluster size and the offered traffic 
work load, we measure the throughput of each class of traffic, 
monitor the CPU load on each device, and observe the influ-
ence of the change of the cluster size. 

B. Experiment Results 
Figure 6 shows the results of Experiment-I. It is obvious 

that the overall throughput can be scaled linearly using our 
traffic dispatching scheme. Take the experiment using a frame 
size of 1,518-byte as an example. When the size of the cluster 
increased from one to two, the zero loss throughput also in-
creases accordingly from 68.26 Mbps to 134.12 Mbps. When 
we activate all four devices in the cluster, the zero loss 
throughput increases to 271.63 Mbps, which is 3.98 times 
compared with the zero loss throughput of a single device. The 
results show that first, the effectiveness of the in-line traffic 
dispatching scheme really scales and second, the overhead in-
curred by the scheme are negligible. 

The results of Experiment-II are shown in Figure 7 and 
Figure 8. The former shows the measured average throughput 
and the latter illustrates the monitored CPU load on each de-
vice. During the time interval from the 0th second to the 300th 
second, because the traffic load on node 1 can be migrated to 
later joined nodes, the CPU load of the node 1 gradually de-
creases. When the four nodes are all activated, the CPU loads 
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of these nodes are almost the same (roughly 80% CPU in use). 
This shows that our traffic redistribution scheme has success-
fully distributed workloads to all the nodes evenly. We can also 
find that the bandwidth usage of the four traffic classes during 
the traffic redistribution process is still kept stable, which 
means that the PBA algorithm also works properly. 

The effectiveness of the fault tolerant mechanism can be 
observed from the 300th second to the 600th second. When node 
3 and node 4 are inactive, the CPU loads of node 1 and node 2 
increases because the original LAN-to-WAN traffic handled by 
the leaving nodes is gradually migrated to the two active nodes. 
When node 3 and node 4 later join the cluster, the workload is 
again evenly shared between all the nodes and hence the CPU 
loads of these nodes are re-balanced. It should be noted that the 
throughput of each traffic class decreases when a node in the 
cluster becomes active or inactive. Nevertheless, the decreased 
throughput can be recovered within the interval of 30 seconds. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed an adaptive clustering scheme to 

construct a scalable bandwidth management service. We take 
the advantage of the transparency of in-line devices and im-
plement BM mechanisms as an in-line device cluster so that the 
standalone bandwidth controllers can be nicely and easily in-
serted into existing LANs with minimal disruptions to the 
original networks. 

The results show that the traffic dispatching scheme can 
linearly improves the throughput according to the number of 
nodes in the cluster. The traffic redistribution scheme keeps the 
load of each device balanced. In addition, it handles the node 
failure problem and provides more flexibility to the use of the 
cluster. Finally, the proposed PBA algorithm keeps the accu-
racy of bandwidth management. The collaboration of the above 
components consequently achieves a high-performance and 
reconfigurable bandwidth-controller cluster. The in-line clus-
tering scheme proposed in this paper is not limited for band-
width management. Applications that require more computa-
tion power, such as intrusion detection/prevention systems 
(IDS/IPS), may also benefit from our scheme. In the future, we 
will try to investigate possible applications and integrate them 
with the proposed scheme. 
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