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Abstract— The growth of the bandwidth available in WAN
links stimulates novel usage of traditional network systems. By
extending the boundary of cluster file systems to the customers’
premise, it is now possible to provide home users efficient,
dependable, and responsive network storage. In this paper, we
identify the primary issue of network latency when implementing
cluster file systems across the last miles, and propose a solution
by replacing the round-based data transmission protocol of Coda
file system with a rate-based one. The performance evaluation
of the prototype system shows significant improvements of
both throughput and response time for file-transfer operations,
especially under high network latency. The result is a latency-
resistant cluster file system.

Keywords: Cluster File System, Last Mile, Network Latency,
Coda, UDT.

I. INTRODUCTION

The advancement of computer and communication networks
has made data transmission reach the speed of multiple
gigabits per second, and next-generation optical technologies
together with the breakthrough of modern routing and switch-
ing techniques are going to further increase the transmission
bandwidth to provide even faster links in the backbone. Similar
elevation of link speed also takes place in the so-called last
miles. Although there is still a gap between the data rate on the
edge and in the backbone of the Internet, emerging services
like FTTH (Fiber to the Home) and FTTB (Fiber to the
Building) usually provide more than sufficient bandwidth and
hence enable various new applications. A commonly referred
example is the construction of computational grids [1], within
which multiple nodes are interconnected via high-speed links
and accomplish computation-intensive tasks in a collaborative
manner.

This kind of revolutionary change also encourages novel
usage of traditional network systems. One of the killer ap-
plications will come from the unleashed power of cluster file
systems: since the last miles are no longer highly bandwidth
constrained, it becomes a good idea to extend the boundary
of a cluster file system to the customers’ premise so that it
can be used to provide home users efficient, dependable, and
responsive network storage.

Migrating existing cluster file systems to the coming net-
work paradigm places several challenges in the protocol
design. In particular, as bandwidth constraints vanish, the
inherent transmission latency of last-mile WAN (Wide Area
Network) links becomes the primary issue. In this paper,
we investigate the implications and consequences of network
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latency, and provide quantitative evaluation of the impact on
a cluster file system. We also propose an adequate solution
and present a prototype implementation based on Coda file
system.

The rest of the paper is organized as follows. Section
II gives a brief introduction to Coda file system and a
detailed examination of the corresponding data transmission
protocol, SFTP (Simple File Transmission Protocol). Section
III considers the issue of network latency and evaluates the
impact on the performance of Coda file system, followed
by the explanation of the proposed solution in section IV.
Section V then concludes the paper by summarizing our major
achievements.

II. CODA FILE SYSTEM

Various cluster file systems have been proposed in the last
decades, and Coda file system is one of the most popular. The
well-known Linux operating system even includes Coda file
system as part of its standard implementation [2]. Therefore,
Coda file system becomes a reasonable choice as a represen-
tative candidate for the evaluation of cluster file systems.

The Coda file system, which is based on AFS2 (Andrew
File System v2) [3], is developed since 1987 by the group led
by Prof. M. Satyanarayanan at Carnegie Mellon University. To
achieve the goals of constant data availability and scalability,
Coda incorporates several features which are not found in
other systems, such as client-side persistent cache, write-back
caching, network bandwidth adaption, disconnected operation
for mobile clients, failure resilience, Kerberos-like authen-
tication, ACLs (Access Control Lists), well-defined sharing
semantics, and so on [4]–[6].

Since our goal is to improve the performance of file transfer
in Coda, here we will focus on its client-server architecture
and the file transfer protocol which it uses. Further discussions
on Coda are left in the literature.

A. Client and Server Architecture

The Coda server, Vice, is a user-level process using existing
kernel services. Therefore, the Coda server can be run on
unmodified kernels. However, to run the Coda client, like
other file systems, a computer needs kernel support to access
Coda files. Some Coda-specific changes are required to be
made to the kernel, which add Coda-specific definitions to
the vnode layer in the kernel. This is necessary for satisfying
the requirements of the VFS (Virtual File System) layer in the
kernel, that is, Coda provides a VFS interface which translates
user-generated system calls into file system requests. As a



Fig. 1. The Coda client/server architecture.
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Fig. 2. The RPC2-SFTP architecture.

result, the Coda client consists of two components: the kernel
module and the user space cache manager, Venus. The former
functions as described above, while the latter is responsible for
maintaining the local cache in the client side and contacting
with the servers upon cache misses.

The interaction among Coda kernel module, Venus, and
Vice is shown in Fig. 1. The communication between Venus
and the Coda kernel module occurs by allowing Venus to
read the request from the character device /dev/cfs0, which
provides the kernel with access to Venus for handling the
VFS vnode kernel interface. Venus and Vice communicate
via RPC2 (Remote Procedure Call v2) [7], [8], which is in
turn associated with a specialized protocol called SFTP [9] to
perform efficient file transfers.

B. SFTP Protocol

SFTP is a specialized protocol used as a side effect as-
sociated with an RPC2 connection. The side effects can be
viewed as function calls with special purposes in a RPC2
connection, where application-specific network optimizations
can be performed. SFTP provides efficient file transfers either
from an RPC2 server to an RPC2 client or vice versa.

Initially, an RPC2 channel is established via UDP sockets
with a SocketListener at each end to monitor the channel.
The RPC2 server and client use this channel to process the
initialization steps of file transfer. When the initialization is
complete, another pair of sockets comprises an SFTP channel,

which is monitored by a pair of SFTPListeners and takes over
the responsibility of actual file transfer.

As shown in Fig. 2(a), when the source is an RPC2 client,
it first sends a file transfer request to the RPC2 server to
inform it of the file transfer. The server then processes some
initializations, preparing for the file transfer. When it is ready,
the server return a START packet, notifying the client to start
the file transfer.

On the contrary, if the source is an RPC2 server, after
receiving the file transfer request from the client, it processes
some initializations and then starts file transfer without a
START packet as shown in 2(b).

It is noticeable that no matter whom the source is, it is the
RPC2 client that initiates the file transfer. Although it may
seem a little confusing at first glance, just recall that the RPC2
client and server correspond to the Coda client and server
respectively. Therefore, Fig. 2(a) can be thought of the case
where a Coda client wishes to copy a file from the local file
system to the Coda file system, while Fig. 2(b) can be thought
of the case where a Coda client wishes to copy a file from the
Coda file system to the local file system.

SFTP is a round-based protocol, that is, an SFTP file
transfer is basically a cyclic exchange of data and ACK
(Acknowledgment) packets. In each round, the source (sender)
sends a block of data, waits until the ACK is returned from the
sink (receiver), and enters the next round. The ACK contains
information about the sequence numbers of the packets that
has been received by the sink. If there are any lost packet, the
source first retransmit data packets in the lost list, followed by
next packets in the sending queue.

A timeout interval is used to detect packet losses, and
timeout events are always monitored at the RPC2 server side.
In the case where the source is the RPC2 server, occurring
of a timeout means that all data packets transmitted in this
round are lost and it is necessary to put them in the lost list.
Conversely, if the source is the RPC2 client, occurring of a
timeout means that the ACK is lost, and the sink (server) has
to retransmit ACK.

SFTP adopts a simple window-based congestion control
mechanism that the total number of packets which have
been transmitted and not acknowledged can not exceed the
maximum size of the transmission window.

Finally, to tune the performance of file transfer, Coda
adjust the retransmission timeout interval according to the
RTT (Round-Trip Time) of the network link. Initially, the
retransmission interval is set to 2 seconds, but varies depending
on RTT observations collected during file transfers. When a
timeout occurs, the retransmission interval is backed off. SFTP
collects RTT observations by packet timestamps.

III. THE IMPACT OF NETWORK LATENCY

As the available bandwidth increases, the primary issue of
the last mile now goes to the high network latency. In a
high BDP (Bandwidth-Delay Product) environment, traditional
protocols, such as TCP and SFTP, performs poorly due to its
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window-based congestion control algorithm. The link utiliza-
tions are low because of the slowly increased window size.
And the network latency in each round will be “accumulated”
thus further downgrade the overall performance.

Coda tries to overcome this issue by introducing the Discon-
nection Operation, which allows a client to sustain the access
to files in the local cache even when it cannot contact any
server (the effective bandwidth is below 50KB/s [6]). When
the server becomes available again, Coda will automatically
integrate the local modifications to the server. However, this
can be quite inconvenient to users because he/she cannot
access those absent from local caches.

There are many researches regarding this latency issue.
Some of them requires changing to the existing protocols, such
as HS-TCP (High-Speed TCP) [10]. Other approach, such as
XCP (eXplicit Control Protocol) [11], defines a new network
control protocol. Most of them cannot easily be adopted into
the existing infrastructure.

And then third category, namely Rate-based Control Pro-
tocols, attracts our attention. They can be deployed at the
application level without modifications to existing network
infrastructure and can achieve high bandwidth utilization. As
shown in [12], In an experiment with three SABUL connec-
tions running on a channel with 10Gbps link capacity and
110ms RTT, an amazing throughput of 2.8Gbps is reached,
corresponding to 933Mbps per SABUL connection. And the
rate-based control mechanism provides a smooth sending
pattern and is more effective on high-BDP networks.

From the discussion above, UDT/SABUL adopts dynamic
rate-based control mechanism and is proved to have superior
performance. Therefore, it is chosen as the candidate of the
file transfer protocol in our Coda derivative.

A. UDT/SABUL Protocol

UDT (UDP-based Data Transfer protocol) [13], [14] is an
end-to-end unicast transport protocol built on top of UDP.
SABUL (Simple Available Bandwidth Utilization Library)
[12], [15] is an earlier implementation of UDT using two
logical connections for each unidirectional transmission.

In UDT, each entity consists of two components: data
sending component as well as data receiving and control
component, as shown in Fig. 3. Not all of the components
are active in each entity. For example, The data sending
component is inactive in a UDT receiver entity.

There are five timers, maintained by the components of an
UDT entity to schedule packet sending and facilitate rate-
based and window-based control. The rate that the sender
transmits data packets depends on the SND timer, and is inde-
pendent of the ACK packets received. Similarly, the receiver
transmits ACK packets only if the ACK timer expires. The
other three timers are NAK, SYN, and EXP, which are used
for loss report, rate control, and timeout detection, respectively.

During transmission, both the sender and the receiver main-
tain their own loss list. It is because that they may have dif-
ferent knowledge on the lost packets due to the asynchronous
nature of the algorithm.

UDT defines two classes of packets for communication: data
packets and control packets. Control packets can be further
categorized as keep-alive, ACK (Acknowledgment), ACK2

(Acknowledgment of acknowledgment), and NAK (negative
acknowledgment). Their usages are shown in Fig. 3.

Each time the sender receives the ACK packet, it will return
an ACK2 packet immediately. The ACK2 packet can be used
to inform the receiver that the ACK packet it sent previously
has been received by the sender, and each pair of ACK and
ACK2 packets can be used to calculate the RTT, which is
useful in congestion control.

The NAK packet is used for loss report. An NAK packet is
sent when loss is detected during data receiving or when an
NAK timer expires (and the loss list is not empty). The content
of payload depends on which case this NAK packet is sent for.
In the former case, the payload carries the sequence number of
the lost packet. In the latter case, the payload carries a subset
of the loss list.

Since UDT is built on top of UDP, it needs to build its own
congestion control mechanism. UDT employs both window-
based and rate-based mechanisms. The rate control mainly
decides the performance, while the window-based flow control
is for efficiency and fairness.

The progresses of both mechanisms undergoes two phases.
In both phases, sender updates the window size upon receiving
an ACK packet. In the first phase, which is similar to the
“slow start” of TCP, the size of window starts from 2 and is
updated to the total number of acknowledged packets recorded
in an ACK packet. In the second phase, the sender updates the
window size by packet arrival speed which is also recorded in
the ACK packet supplied by the receiver. The first phase ends
when the sender receives an NAK.

The rate control applies to the inter-packet interval and is
also associated with the two-phase progress in the flow control.
In the first phase, the inter-packet interval is initialized to 0,
which means the sender tries its best to send packets. The
protocol enters the second phase because of packet losses
being detected, the sending rate has to be slowed down and
then sped up after the packet loss situation is relieved.

B. Round-Based vs. Rate-Based

In a round-based protocol, such as SFTP, a file transfer is
a cyclic exchange of data and ACKs. The source will enter
next round only when it receives the ACK from the sink or a
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timeout occurs. This can be a performance hit. As in Fig. 4,
the time for a single round is the summations of transmission
time of the data packets, t1, the ACK, t2, plus twice of the
network latency, 2d. And the total transfer time for n rounds
is (t1 + t2 + 2d)× n. If the network delay is increased by d′,
the total transfer time will be increased by n × d′.

On the contrary, the accumulation of network delay does not
exist in UDT. When calculating the total time of file transfer,
the network delay is counted only twice (the first and the last
ACK). Consequently, when the network latency increases, the
effective is “diluted” in the calculation of the total time.

Moreover, as the available bandwidth grows, the transmis-
sion time t1 and t2 will decrease. Therefore, the proportion of
network latency in the time for a single round increases, which
means that the performance degradation due to the network
latency goes even worse. On the other hand, regardless of
the delay increment, if we compare the total transfer time of
SFTP to some other transport protocol which is not round-
based, the accumulative delay will produce a higher transfer
time, and therefore result in a lower effective bandwidth. As a
consequence, we can anticipate that the performance of Coda
will not be satisfactory in a high BDP environment and it is
beneficial to incorporate UDT into Coda.

IV. A LATENCY-RESISTANT CLUSTER FILE SYSTEM

To extend cluster file system, such as Coda, beyond the
last mile, we have to overcome both bandwidth and network
latency issues. In this section, a derivative of Coda that can
still perform well even under high latency is described. As
discussed in Section III-B, the performance of Coda will
downgrade drastically due to the round-based nature of its
SFTP protocol. The SFTP protocol will be replaced with the
UDT protocol in the proposed system, and the performance of
both systems, original and the derivative one, will be evaluated.
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Fig. 6. Details of a file-transfer operation in the prototype implementation.

A. Design and Implementation

In the design of Coda file system, each file-transfer opera-
tion involves the concurrent use of two separate communica-
tion channels between the source and the sink of file data. The
file transfer operations in the two directions between a client
and a server generally follow the same procedure with only
little differences in minor details. To facilitate our discussion,
we take a typical scenario of uploading a file from a client
(i.e., a user at home) to a server as an example. In this case,
the client is the source of file data, and the server is the sink
of file data.

Fig. 2(a) shows the details of the example file-transfer
operation. To initiate the file-transfer operation, the source
acts as an RPC2 client and issues a file-transfer request via
the RPC2 channel. Upon receiving the reply from the RPC2
server, the source invokes the SFTP client as a side effect
mentioned previously and sends the file data through the SFTP
channel.

In the proposed design, the SFTP client and server are
replaced with the UDT sender and receiver, respectively.
Instead of transmitting the file data through the SFTP channel,
the source now transfers the file data through the UDT channel.
Fig. 6 illustrates the new procedure of the improved file-
transfer operation.

Before initiating the file-transfer operation, the source first
instructs the UDT sender to listen on a well-known UDP port,
and then issues the file-transfer request. When the sink receives
the file-transfer request, it replies to the source with the START
packet and also sends out the connection-establishment request
for the UDT channel. Note that it is the convention of UDT
for the receiver of data to issue the connection-establishment
request. Once the UDT channel is established, the source
transmits the file data through the UDT channel.

B. Performance Evaluation

We have conducted a series of tests to understand the
performance characteristics of Coda file system as well as
the effectiveness of the proposed design when transferring file
data across last-mile WAN links. The network configuration
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used in these tests is depicted in Fig. 7. The Coda client, the
traffic controller, and the Coda server are personal computers
interconnected by Gigabit Ethernet, and all of them share
exactly the same hardware configuration of Intel� Xeon 3.06
GHz, 1 GB DDR SDRAM, and 40 GB hard drives. They also
run identical operating systems, Linux with kernel 2.4.20. The
file size is 128 MB. In order to measure the throughput of
file-transfer operations, additional source codes for profiling
have been added to the clients so that statistical information
is reported upon the completion of each file transfer.

In addition to the base operating system, we also run NIST
Net [16] on the traffic-controller box to throttle available
bandwidth of network connections and optionally inject ad-
ditional delay or cause packet losses. For the purpose of
simulating a typical last-mile FTTH/FTTB connection, we set
the limit of available bandwidth to be 100 Mbps. The results
of performance evaluation are depicted in Fig. 8 and 9.

Fig. 8 shows that when SFTP is used as the transmission
protocol, the file-transfer throughput of Coda file system de-
grades dramatically as network latency increases. In contrast,
the increment of network latency only causes slight impact on
the measured throughput of the proposed design. In particular,
the throughput of Coda file system drops below 1 Mbps
when network latency climbs to 100 milliseconds, while the
proposed design still sustains the throughput of more than 70
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Mbps. Fig. 9 compares the resistance to packet losses between
Coda file system and the proposed design. It is clear that the
proposed design also exhibits better resistance to packet losses
than Coda file system does.

We also discover that SFTP seems to be incapable of
achieving high bandwidth utilization. Further tests confirm that
the measured throughput of SFTP barely reaches 100 Mbps
even with a direct Gigabit-Ethernet connection between the
source and the sink.

V. CONCLUSIONS

In this paper, we first identify the primary issue of network
latency when cluster file systems are deployed and used across
the last miles, and provide quantitative evaluation of the
impact on a cluster file system. We also propose an effective
solution and implement it by replacing the round-based data
transmission protocol of Coda file system with a rate-based
one.

The prototype implementation not only serves as a proof
of concept but also gives us an idea about the effectiveness
of the proposed design. The results of performance evalua-
tion show that when the round-based SFTP is adopted, the
throughput of file-transfer operations degrades dramatically as
network latency increases, while the proposed design, which
incorporates the rate-based UDT, is able to sustain superior
throughput even under high network latency.

In addition, the proposed design exhibits better resistance
to packet losses and has much higher utilization of available
bandwidth. All these results together lead us to the conclusion
that the proposed design overcomes the difficulties resulting
from the last-mile WAN links and successfully extends the
boundary of cluster file systems beyond the last miles.
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