
Secure Multicast Using Proxy Encryption�

Yun-Peng Chiu, Chin-Laung Lei, and Chun-Ying Huang

Department of Electrical Engineering,
National Taiwan University

{frank, huangant}@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

Abstract. In a secure multicast communication environment, only valid
members belong to the multicast group could decrypt the data. In many
previous researches, there is one “group key” shared by all group mem-
bers. However, this incurs the so-called “1 affects n problem,” that is,
an action of one member affects the whole group. We believe this is the
source of scalability problems. Moreover, from the administrative per-
spective, it is desired to confine the impacts of changing membership
events in a local area. In this paper, we propose a new secure multi-
cast architecture without using a group key. We exploit a cryptographic
primitive “proxy encryption.” It allows routers to convert a ciphertext
encrypted under a key to a ciphertext encrypted under another key, with-
out revealing the secret key and the plaintext. By giving proper keys
to intermediate routers, routers could provide separation between sub-
groups. Therefore the goals of scalability and containment are achieved.

Keywords: Secure multicast, multicast key management, cipher se-
quences, proxy encryption, ElGamal cryptosystem.

1 Introduction

Since the commence of multicast communications in the late 1980s [1], se-
cure multicast communication have been frequently addressed in the literature.
Rafaeli and Hutchison’s paper [2] provided a detailed survey on secure multicast.

Quite a few researches in this area made use of a group key, which is shared
among all group members. The sender encrypts the multicast data using this
group key, and all valid members use the same group key to decrypt. However,
the existence of this group-wise key incurs the so-called “1 affects n problem” [3],
which means an action of one member affects the whole group. More specifically,
since the group key is known by all members, whenever a member joins or leaves
the group, everyone remains in the group must acquire a new group key.

To build a practical secure multicast architecture, we focus on scalability
and containment issues. Scalability means that the processing overhead of each
security action should be minimized in terms of number of group members.
Containment means that a security event occurs in one subgroup does not affect
other subgroups.
� This work was supported in part by Taiwan Information Security Center (TWISC),

National Science Council under the grants NSC 94-3114-P-001-001-Y.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 280–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Secure Multicast Using Proxy Encryption 281

To aim at the above issues, we adopt two techniques. First, distribute the
computation loads to intermediate routers. This makes the whole architecture
scalable. And second, make a dependency between keying material and the topol-
ogy of the multicast network. This dependency assures the containment of secu-
rity exposures.

A naive method to provide containment is to decrypt and then encrypt again
at intermediate routers [3]. This method requires fully trust to routers because
routers have the ability to decrypt the plaintext, which is an undesirable feature.

In this paper, we propose a new secure multicast architecture for large and
dynamic groups. Specifically, we focus on the one-to-many communication pat-
tern. We exploit a cryptographic primitive “proxy encryption.” By using this
primitive, a proxy (router) could convert the ciphertext for one person into the
ciphertext for another person without revealing secret decryption keys or the
plaintext. Therefore the goal of scalability and containment could be achieved.

The rest of this paper is organized as follows. Related works and the basic
concept of proxy encryption are discussed in Section 2. Section 3 describes the
proposed secure multicast architecture based on proxy encryption. We analyze
the proposed scheme, and compare it with related works in Section 4. Finally,
Section 5 concludes this paper.

2 Related Works

In this section, we discuss some previous researches. Logical Key Hierarchy
(LKH) may be the most representative research in this area; many researches
followed their methodology and tried to enhance it. The cipher sequences frame-
work (CS) tries to solve the multicast security problem using a different method-
ology. The most important advantage of CS is the containment. We also discuss
Mukherjee and Atwood’s researches, which also make use of proxy encryption.

2.1 Logical Key Hierarchy

Logical Key Hierarchy (LKH) is separately proposed by Wallner et al. [4] and
Wong et al. [5]. In this approach, all group members form a “logical” tree.
The root node represents the group key shared by all group members, the leaf
nodes are members, and each inner node represents a key encryption key (KEK).
Besides the group key, a member also has a set of KEKs, including the KEK
of each node in the path from its parent to the root. For example, in Fig. 1,
member u5 will have k5, k56, k58, and the group key, k. Therefore, in a balanced
tree, a member will have (log2 N)+1 keys, where N is the group size, and log2 N
is the height of the tree. When a rekeying is needed, these KEKs could be used
to encrypt new KEKs. For example, if member u5 leaves the group, we must
change those keys it knows. Therefore new KEKs k′

5, k′
56, k′

58 and the new group
key k′ are generated. These new keys are encrypted using KEKs and transmitted
to remaining members. We encrypt new k′

56 using k6, and encrypt new k′
58 using

k′
56 and k78, respectively. Then k′ is encrypted using k′

58 and k14, respectively.

282 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

k

k14

k12

k1

u1

k2

u2

k34

k3

u3

k4

u4

k58

k56

k5

u5

k6

u6

k78

k7

u7

k8

u8

Fig. 1. An LKH tree

Finally these encrypted keys are multicast to the whole group. All remaining
members could get new KEKs and the group key from these encrypted keys.

2.2 Cipher Sequences

The cipher sequences framework (CS) was proposed by Molva and Pannetrat [6].
By distributing secure functions to intermediate nodes, keying material has a
dependency on the multicast network topology. Therefore the containment of
security exposures is assured.

Assume S0 is the information to be multicast. Each node Ni is assigned a
secret function fi. Ni receives multicast data from its parent node Nj , computes
Si = fi(Sj), and forwards the result Si to its children. A leaf eventually receives
Si

n. Each leaf is given a reversing function hi, and it can use hi to get the original
multicast data by calculating: S0 = hi(Si

n).
For example, Fig. 2 depicts a simple tree with five cipher sequences. We

follow one cipher sequence from the root to the leaf M5. First, the root computes
f1(S0) and sends the result to its children inner nodes. R2 receives S4

1 = f1(S0),
computes and sends f5(S4

1) to R5. Then R5 receives S4
2 = f5(S4

1) and sends
f6(S4

2) to the leaf M5. Finally, the leaf M4 receives S4
3 = f6(S4

2) and recovers
the original multicast data by computing S0 = h4(S4

3).

2.3 Proxy Encryption

Proxy encryption was first introduced by Blaze, Bleumer, and Strauss in 1998 [7].
The basic idea is that a proxy, given a proxy key, could convert the ciphertext for
one person into the ciphertext for another person without revealing the secret
decryption keys or the plaintext.

In traditional public-key encryption schemes, a message m encrypted using
A’s public key EKA could only be decrypted using A’s private key DKA. On the
contrary, in a proxy encryption scheme, a new role, proxy P , is introduced. P is
given a proxy key πA→B , and P could convert a ciphertext originally for user A
to a message which could be decrypted using user B’s private key. P could not
decrypt the ciphertext, nor gain information about A’s or B’s private keys.

Secure Multicast Using Proxy Encryption 283

S

f1

R1

f2

M1

h1

R3

f3

M3

h2

R4

f4

M4

h3

R2

S4
1

f5
R5S4

2

f6

M5

S4
3

h4

M2

h5

Fig. 2. An example of CS tree

In this paper, we use the “unidirectional ElGamal encryption scheme” pro-
posed by Ivan and Dodis [8] as an example of underlying proxy encryption scheme
in our architecture. Our architecture is not limited to it, and other proxy en-
cryption schemes could also be used.

Assume an ElGamal encryption scheme is defined as a three-tuple: (KeyGen,
Enc, Dec). The key generation algorithm KeyGen outputs a public key EK =
(g, p, q, y) and a private key DK = (x), where q is a prime number, p is a
prime number of the form 2q + 1, g is a generator in Z

∗
p, x is randomly cho-

sen from Zq, and y = gx mod p. The encryption algorithm Enc is defined as
c = Enc(m, EK) = (gr mod p, mgxr mod p), where r is randomly chosen from
Zq. r is chosen by the sender, and r should be used only once. The decryption
algorithm Dec decrypts the ciphertext by computing mgxr/(gr)x = m (mod p).

The unidirectional ElGamal encryption scheme proposed in [8] could be de-
fined as (KeyGen, Enc, Dec, ProxyKeyGen, ProxyEnc). The key generation algo-
rithm KeyGen outputs a public/private key pair as the original ElGamal en-
cryption scheme. The encryption and decryption algorithms are also the same
with the original version. ProxyKeyGen splits DKA = x into two parts x1 and x2,
where x = x1 + x2. Then x1 is given to the proxy, and x2 is given to user B.
Using ProxyEnc, P could convert a message originally for user A to a message
for user B. ProxyEnc has two parameters: c and πA→B, here c = Enc(m, EKA),
and πA→B = x1. On receiving c = (gr mod p, mgxr mod p), the proxy computes
mgxr/(gr)x1 = mg(x−x1)r = mgx2r, and then sends (gr mod p, mgx2r mod p) to
user B. Finally, user B can decrypt this converted message as mgx2r/(gr)x2 = m.

2.4 Mukherjee and Atwood’s Researches

Mukherjee and Atwood proposed a key management scheme exploiting the proxy
encryption technique in [9]. In their scheme, there are Group Manager (GM),

284 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

Group Controllers (GCs), and participants (members). When a group is created,
a node is set up as the GM. The GM is configured with group and access control
information, and it generates the encryption/decryption keys. In a multicast
tree, there may be several GCs, and each GC is associated with a subtree of the
distribution tree. GCs perform key management functions and transform the
ciphertext using proxy encryption. Participants join the GC nearest to them,
and get keys from the GC.

When a rekeying is required, the GC “splits” the group decryption key to
the “proxy encryption key” and the “proxy decryption key.” For example, in the
unidirecional ElGamal encryption scheme, the group decryption key x is split
into x1 and x2, such that x = x1 + x2. Then the GC applies transformations.

When a member joins, the GC sends the proxy decryption key to the joining
participant over a secure channel protected using a shared key Kg, and multi-
cast the proxy decryption key to other members. When a member leaves, the GC
sends the proxy decryption key to the remaining participants by: unicasting the
proxy decryption key to each participant over separate secure channels, or, en-
crypting the proxy decryption key using each participant’s Kg and multicasting
an aggregated message.

In this scheme, a group key is still used. Proxy encryption is used only be-
tween a membership change event and a periodic rekeying. After a periodical
rekeying, a new group key is used and the transformation is stopped. On the con-
trary, in our scheme, proxy encryption is always used to transmit data. Moreover,
in their scheme, intuitive methods are used to to deliver the proxy decryption
key to participants, which brings a large burden to GCs.

3 The Proposed Scheme

In this section, we propose a new secure multicast architecture making use of the
proxy encryption mechanism discussed in the previous section. In the following
subsections, we first extend the unidirectional ElGamal encryption to a proxy
sequence. Then our multicast model is described in Section 3.2. Finally we extend
the unidirectional ElGamal encryption to a multicast tree in Section 3.3.

3.1 Extend to a Proxy Sequence

In this subsection, we extend the original unidirectional ElGamal encryption
scheme to a case with a sequence of proxies, as shown in Fig. 3. The sender S
sends the message along the path. Routers R1 and R2 play the role of proxies.
The final destination is M .

Here we introduce a new concept “segment key.” Each link between two nodes
is called a “segment.” Each segment is assigned a public/private key pair by a
trusted server (TS). These segment keys are actually stored in TS . Moreover,
TS calculates proxy keys according to segment keys, and distributes proxy keys
to intermediate routers by secure channels.

We show an example of using the unidirectional ElGamal encryption scheme
in Fig. 3. All parameters are the same with those in the unidirectional ElGamal

Secure Multicast Using Proxy Encryption 285

S

gS1

R1

S1 − S2

R2

S2 − SM

M

SM

Segment 1

(gr,mgS1r)

Segment 2

(gr,mgS2r)

Segment M

(gr,mgSM r)

Fig. 3. Proxy sequence using unidirectional ElGamal encryption

encryption scheme. We let the proxy key between Segment A and Segment B be
the difference of their corresponding private key, i.e., πA→B = A − B, where A
and B are private keys of Segment A and Segment B, respectively. At first, S
encrypts message m using Segment 1’s public key, gS1 , and sends the ciphertext
(gr mod p, mgS1r mod p) to R1. TS gives R1 a proxy key, πS1→S2 = (S1 − S2),
therefore R1 computes mgS1r/(gr)(S1−S2) = mgS2r, and then sends (gr mod
p, mgS2r mod p) to R2. Similarly, R2 has πS2→SM = (S2−SM), so it converts the
received ciphertext into (gr mod p, mgSMr mod p). Finally, M has SM , therefore
it could compute mgSMr/(gr)SM = m to decrypt the ciphertext.

3.2 Multicast Model

Our multicast model is similar to that in the cipher sequences framework. We use
Fig. 2 again to describe our multicast model. In a multicast routing protocol,
routers form a multicast tree to transmit multicast traffic. The root S is the
source, intermediate nodes Ri, where i is an integer, are routers, and every leaf
node represents a set of local subgroup members attached to the same router.
Mi is the set of local subgroup members attached to Ri. Each router may have
local subgroup members and/or downstream routers. Note in the cipher sequence
framework, intermediate routers do not have local members.

In LKH schemes, all keying operations are done by senders and members;
routers are not involved. Instead, in our scheme, we make use of routers, because
this reduces the loads of senders and members. The trade-off is that we must
grant some trust to routers. We assume routers faithfully transfer and convert
encrypted multicast data.

3.3 Extend to a Multicast Tree

Based on Section 3.1, now we further extend to a multicast tree, for example as
shown in Fig. 4. We assume that TS knows the overall topology of the multicast
tree. Although TS seems to be centralized, we think the tasks of TS could be
easily distributed over several network entities. As mentioned, TS generates keys
and distributes them to intermediate routers by secure channels.

We define a term “downstream-segment set,” which is a set includes segments
among a given router and all its downstream routers. (Note the segment between
a router and its local subgroup is not included in this set.) For instance, in
Fig. 4, Segment 3 and Segment 4 are in the same downstream-segment set. In
our scheme, segments belong to the same downstream-segment set are given the
same segment key.

286 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

S

EKS1

R1

πS1→S3

πS1→SM1Se
gm

en
t
1

En
c(

m
,E

KS 1
)

M1

DKSM1

Enc
(m

,E
KS M1

)

R3

πS3→SM3

Segment 3

Enc(m,EKS3)

M3

DKSM3

Enc(m,EKSM3
)

R4

πS3→SM4

Segment 4

Enc(m
,EK

S
3)

M4

DKSM4

Enc(m,EKSM4
)

R2

πS1→S5

πS1→SM2

Segm
ent

2

Enc(m
,EK

S
1)

R5

πS5→SM5
Segment 5Enc(m,EKS5

) M5

DKSM5

Enc(m,EKSM5
)

M2

DKSM2

Enc(m,EKS
M2)

Fig. 4. Proxy tree

Each intermediate router is given two keys: the downstream routers conver-
sion key and the local subgroup conversion key. The former is used to convert
the upstream ciphertext to another ciphertext for downstream routers; it is cal-
culated according to the upstream segment’s key and the downstream segment’s
key. On the other hand, the latter is used to convert the upstream ciphertext
for its local subgroup members only; it is calculated according to the upstream
segment’s key and the local subgroup key.

Each local subgroup has its own local subgroup key. Members of local sub-
group use this key to decrypt the ciphertext from the attached router. We as-
sume each local subgroup uses its own secure multicast key distribution pro-
tocol. This permits local policy of choosing a key distribution protocol. Every
subgroup could choose its own key distribution protocol independent from other
subgroups. Since the size of a local subgroup is much smaller than that of the
whole group, using LKH is acceptable in local subgroups.

We also assume every subgroup has a “subgroup controller,” who is respon-
sible for local subgroup key management. It maintains logical keys for the local
subgroup, and securely transmits the local subgroup key to TS . After members
of local subgroup have determined their subgroup key, the subgroup controller
securely transports their subgroup key to TS , then TS computes the proxy key
for the attached router according to the local subgroup key.

The key assignment algorithm is described in Algorithm 1. We use Fig. 4 as
an example. S encrypts the message m using Segment 1’s public key, EKS1 , and
sends the ciphertext Enc(m, S1) to both R1 and R2. We send the same encrypted
message to R1 and R2, and this could preserve the benefit of multicast: the same

Secure Multicast Using Proxy Encryption 287

Algorithm 1: Key assignment algorithm
Input: Multicast tree topology
Output: Key assignment on every router
for every segment except that between a router and its local subgroup do

if no segment in the same downstream-segment set is already given a key then
assign a segment key;

end

end
for every router do

if has downstream routers then
assign a downstream routers conversion key according to the upstream segment’s
key and the downstream segment’s key;

end
if has local members then

assign a local subgroup conversion key according to the upstream segment’s key
and the local subgroup key;

end

end

data is sent to different paths. R1 is given πS1→S3 , then it sends Enc(m, EKS3)
to R3 and R4. R1 also has πS1→SM1

, this proxy key allows R1 to convert the
upstream ciphertext into Enc(m, EKSM1

), which could be decrypted only by using
M1’s local subgroup key, DKSM1

. Similarly, R4 is given πS3→SM4
, therefore it

converts Enc(m, EKS3) to Enc(m, EKSM4
). M4 could use its local subgroup key

DKM4 to decrypt the message.
In this way, every intermediate router converts the upstream ciphertext into

the downstream ciphertext or the local subgroup ciphertext. On each link, mul-
ticast data is encrypted, so it is infeasible for an eavesdropper with no proper
keys to decrypt multicast data. Therefore, we achieve secure transmission of
multicast traffic.

3.4 Rekey

When a member joins or leaves the group, the local subgroup key should be
changed. At the same time, the router responsible for this subgroup should also
change a new proxy key according to the new local subgroup key in order to
convert ciphertext for local members use.

When there are downstream nodes/routers interesting to the group, a mul-
ticast router should connect itself (and its downstream routers) to the multi-
cast tree of this group. On the other hand, when a router has no downstream
nodes/routers belong to this group, this router will be removed from the tree.
When a router joins/leaves the tree, related segment keys must be changed;
routers related with these segment keys must also change new proxy keys. New
keys are generated and distributed by TS securely.

In multicast security, forward/backward secrecy are usually discussed, we
follow the definitions in [10]. Forward secrecy is that a passive adversary who
knows a subset of old group keys cannot infer subsequent group keys. Backward
secrecy is that a passive adversary who knows a subset of group keys cannot
infer previous group keys.

288 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

Algorithm 2: Rekey when a router joins/leaves
Input: Multicast tree topology, the ID of joined/left router: R
Output: New key assignment on related router
change R’s upstream segment’s key;
change the segment keys in the same downstream-segment set;
change the downstream routers conversion key of routers connected to those changed
segments;

Algorithm 2 describes the rekeying algorithm when a router joins or leaves.
Look Fig. 4 for example, if all members in M4 leave the group, R4 will be deleted
from the tree. In order to achieve forward secrecy, the related segment key S3

should be changed to S′
3, and the related routers R3 and R4 must change their

proxy keys. R3 and R4 get new proxy keys πS′
3→SM3

and πS′
3→SM4

, respectively.
R1 must also change a new proxy key πS1→S′

3
. On the other hand, if a new router

wants to attach himself to R2, in order to preserve backward secrecy, Segment 5
must be rekeyed. Thus R2’s πS1→S5 and R5’s πS5→SM5

must be changed.

4 Analysis

In this section, first we examine the security of our scheme, and then we compare
features and costs of related works and ours.

4.1 Security Analysis

By the definition of proxy encryption, it is infeasible for a proxy to derive traffic
decryption keys with only proxy keys. Therefore intermediate routers could not
decrypt the multicast data.

The local subgroup changes a new key when a member leaves/joins. When a
member joins, the new member cannot infer previous local subgroup keys. Thus
the new member cannot decrypt previous multicast data. On the other hand,
when a member leaves, only remaining subgroup members get this new key.
Thus the left member cannot decrypt subsequent multicast data. When a router
leaves/joins, its upstream segment changes a new key. New keys are given to
related routers by TS securely, and the left/new router cannot infer those keys.
Therefore the router will not be able to transform subsequent/previous multi-
cast data. As we can see, forward/backward secrecy is ensured in our protocol.
Moreover, because every local subgroup is isolated with each other, members in
the different subgroups gain no more information through collusion.

4.2 Comparisons of Features

The comparisons of features are shown in Table 1. In LKH, no intermediate
nodes are involved, so no containment is provided. All other three schemes share
computation loads to routers, and grant limited trust on routers. Thus contain-
ment is provided in these schemes.

Secure Multicast Using Proxy Encryption 289

Table 1. Comparisons of features

Trust to intermediate nodes Containment
LKH No intermediate nodes NO
CS Limited trust YES

Mukherjee Limited trust YES
Our scheme Limited trust YES

4.3 Comparisons of Costs

In this subsection, we analyze various costs of our scheme, and compare with
related works. We assume the size of the whole group is N , and the size of local
subgroup is M. Furthermore, N � M. The number of downstream routers
connected to a router is P . Assume we use LKH as our local key distribution
protocol in our architecture.

In CS, every member needs a reversing function, and the sender and every
intermediate node need a secret function. This seems efficient, but in fact, the
trade-off is that the central server assigns every member a reversing function.
Therefore the rekeying cost of the central server is O(M).

In Mukherjee and Atwood’s scheme, each member stores two keys. One is
group decryption key or proxy decryption key; the other is the key shared with
its GC, Kg. A GC shares Kg with each member, so it stores M keys. And the
sender needs one key.

In our scheme, a member requires (log2 M+ 1) keys. By contrast, a member
in the original LKH scheme stores (log2 N + 1) keys. Because LKH is only used
in local subgroups, and N � M, members in our scheme store fewer keys than
those in the original LKH schemes. Moreover, in our scheme, the sender only
stores one encryption key, and intermediate routers only stores one conversion
key. The result is shown in the left three columns of Table 2. As we can see, our
scheme is efficient in storage.

Table 2. Comparisons of costs

Member storage Sender storage Intermediate node storage Rekeying cost
LKH log2 N + 1 N No intermediate nodes O(log2 N)
CS 1 1 1 O(M)

Mukherjee 2 1 M O(M)
Our scheme log2 M + 1 1 1 O(log2 M)

In our scheme, because we use LKH as our local key distribution protocol,
the cost to rekey a subgroup is O(log2 M). When a router joins/leaves, TS must
change P segments keys, and then change P proxy keys. Therefore the cost of
rekeying when a router joins/leaves is O(P). The result of comparison of rekeying
cost is shown in the last column of Table 2. As we can see, our scheme is also
efficient in rekeying.

5 Conclusions and Future Work

In this paper, we proposed a new secure multicast architecture. We eliminated
the usage of the group key, because it is the source of scalability problems. We

290 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

exploited proxy encryption to allow intermediate routers to transform the ci-
phertext without revealing the secret key and the plaintext. By giving proper
conversion keys to intermediate routers, the impacts of changing membership
events are confined in a local area. Thus we achieved the goal of containment
and scalability. Moreover, we have shown the rekeying procedure is secure and ef-
ficient. Therefore, our scheme is scalable for large and dynamic multicast groups.

Our architecture is not limited to the unidirectional ElGamal encryption
scheme; other proxy encryption schemes could also be used. In the future, we will
find more efficient cryptographic primitives suitable for our architecture. For ex-
ample, the unidirectional identity-based encryption scheme proposed in [8] may
be a good candidate. Currently, most proxy encryption schemes are for public-
key cryptosystems, but there is also a research using symmetric ciphers [11].
Because of the efficiency of symmetric ciphers, that would also be a promising
candidate.

References

1. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and
extended LANs. ACM Transactions on Computer Systems 8 (1990) 85–110

2. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys 35 (2003) 309–329

3. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: Proceedings of
the ACM SIGCOMM ’97 conference on Applications, technologies, architectures,
and protocols for computer communication. (1997) 277–288

4. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues
and architectures. RFC 2627 (1999)

5. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Transactions on Networking 8 (2000) 16–30

6. Molva, R., Pannetrat, A.: Scalable multicast security with dynamic recipient
groups. ACM Transactions on Information and System Security 3 (2000) 136–
160

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Proceedings of Advances in Cryptology - EUROCRYPT ’98: Inter-
national Conference on the Theory and Application of Cryptographic Techniques.
Volume 1403 of LNCS. (1998) 127–144

8. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of the tenth
Network and Distributed System Security Symposium. (2003)

9. Mukherjee, R., Atwood, J.W.: Proxy encryptions for secure multicast key man-
agement. In: Proceedings of the 28th Annual IEEE International Conference on
Local Computer Networks. (2003) 377–384

10. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for
dynamic collaborative groups. In: Proceedings of the 7th ACM conference on
Computer and communications security. (2000) 235–244

11. Cook, D.L., Keromytis, A.D.: Conversion and proxy functions for symmetric key
ciphers. In: Proceedings of the IEEE International Conference on Information
Technology: Coding and Computing, Information and Security Track. (2005) 662–
667

	Introduction
	Related Works
	Logical Key Hierarchy
	Cipher Sequences
	Proxy Encryption
	Mukherjee and Atwood's Researches

	The Proposed Scheme
	Extend to a Proxy Sequence
	Multicast Model
	Extend to a Multicast Tree
	Rekey

	Analysis
	Security Analysis
	Comparisons of Features
	Comparisons of Costs

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

