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Abstract

Watching a 360◦ sports video requires a viewer to con-
tinuously select a viewing angle, either through a sequence
of mouse clicks or head movements. To relieve the viewer
from this “360 piloting” task, we propose “deep 360 pilot”
– a deep learning-based agent for piloting through 360◦

sports videos automatically. At each frame, the agent ob-
serves a panoramic image and has the knowledge of pre-
viously selected viewing angles. The task of the agent is
to shift the current viewing angle (i.e. action) to the next
preferred one (i.e., goal). We propose to directly learn an
online policy of the agent from data. Specifically, we lever-
age a state-of-the-art object detector to propose a few can-
didate objects of interest (yellow boxes in Fig. 1). Then, a
recurrent neural network is used to select the main object
(green dash boxes in Fig. 1). Given the main object and
previously selected viewing angles, our method regresses a
shift in viewing angle to move to the next one. We use the
policy gradient technique to jointly train our pipeline, by
minimizing: (1) a regression loss measuring the distance
between the selected and ground truth viewing angles, (2) a
smoothness loss encouraging smooth transition in viewing
angle, and (3) maximizing an expected reward of focusing
on a foreground object. To evaluate our method, we built a
new 360-Sports video dataset consisting of five sports do-
mains. We trained domain-specific agents and achieved the
best performance on viewing angle selection accuracy and
users’ preference compared to [53] and other baselines.

1. Introduction
360◦ video gives a viewer immersive experiences

through displaying full surroundings of a camera in a spher-

ical canvas, which differentiates itself from traditional mul-

timedia. As consumer- and production-grade 360◦ cameras

become readily available, 360◦ videos are captured every

minute. Moreover, the promotion of 360◦ videos by so-

cial media giants including YouTube and Facebook further

boosts their fast adoption. It is expected that 360◦ videos

∗indicates equal contribution

Figure 1. Panel (a) overlaps three panoramic frames sampled from

a 360◦ skateboarding video with two skateboarders. One skate-

boarder is more active than the other in this example. For each

frame, the proposed “deep 360 pilot” selects a view – a viewing

angle, where a Natural Field of View (NFoV) (cyan box) is cen-

tered at. It first extracts candidate objects (yellow boxes), and then

selects a main object (green dash boxes) in order to determine a

view (just like a human agent). Panel (b) shows the NFoV from a

viewer’s perspective.

will become a major video format in the near future. Study-

ing how to display 360◦ videos to a human viewer, who has

a limited field of visual attention, emerges as an increas-

ingly important problem.

Hand Manipulation (HM) and Virtual Reality (VR) are

two main ways for displaying 360◦ videos on a device with

a Natural Field of View (NFoV) (typically a 60◦ to 110◦

FoV as shown in Fig. 1). In HM, a viewer navigates a

360◦ video via a sequence of mouse clicks; whereas, in

VR, a viewer uses embedded motion sensors in a VR head-

set for navigation. Note that both HM and VR require a

viewer to select a viewing angle at each frame, while the

FoV is defined by the device. For sports videos, such a

selection mechanism could be cumbersome because “fore-

ground objects” of interest change their locations continu-

ously. In fact, a recent study [32] showed that both HM
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and VR can cause a viewer to feel discomfort. Just imag-

ine how hard it is to follow an X-game skateboarder in a

360◦ video. Hence, a mechanism to automatically navi-

gate a 360◦ video in a way that captures most of the interest

events for a viewer would be beneficial.

Conceptually, a 360◦-video viewer is a human agent: at

each frame, the agent observes a panoramic image (i.e., the

observed state) and steers the viewing angle (i.e. the action)

to cover the next preferred viewing angle (i.e., the goal). We

refer to this process as 360 piloting. Based on this analogy

and, more importantly, to relieve the viewer from constantly

steering the viewing angle while watching 360◦ videos, we

argue for an intelligent agent that can automatically piloting

through 360◦ sports videos.

Using an automatic mechanism for displaying video con-

tents is not a new idea. For example, video summarization–

condensing a long video into a short summary video [58]–

has been used in reviewing hourly long surveillance videos.

However, while a video summarization algorithm makes bi-

nary decisions on whether to select a frame or not, an agent

for 360 piloting needs to operate on a spatial space to steer

the viewing angle to consider events of interest in a 360◦

video. On the other hand, in virtual cinematography, most

camera manipulation tasks are performed within relatively

simpler virtual environments [8, 22, 12, 40] and there is no

need to deal with viewers’ perception difficulty because 3-

D positions and poses of all entities are known. However, a

practical agent for 360 piloting needs to directly work with

raw 360◦ videos. For displaying 360◦ videos, Su et al. [53]

proposed firstly detecting candidate events of interest in the

entire video, and then applying dynamic programming to

link detected events. However, as this method requires ob-

serving an entire video, it is non-suited for video streaming

applications such as foveated rendering [45]. We argue that

being able to make a selection based on the current and pre-

vious frames (like a human agent does) is critical for 360

piloting. Finally, both [53] and recent virtual cinematogra-

phy works [7, 6] aim for smooth viewing angle transition.

Such transition should also be enforced for 360◦ piloting.

We propose “deep 360 pilot”—a deep learning-based

agent that navigates a 360◦ sports video in a way that

smoothly captures interesting moments in the video. Our

“deep 360 pilot” agent not only follows foreground objects

of interest but also steers the viewing angle smoothly to

increase viewers’ comfort. We propose the following on-

line pipeline to learn an online policy from human agents to

model how a human agent takes actions in watching sports

videos. First, because in sports videos foreground objects

are those of viewers’ interest, we leverage a state-of-the-art

object detector [50] to identify candidate objects of interest.

Then, a Recurrent Neural Network (RNN) is used to select

the main object among candidate objects. Given the main

object and previously selected viewing angles, our method

predicts how to steer the viewing angle to the preferred one

by learning a regressor. In addition, our pipeline is jointly

trained with the following functions: (1) a regression loss

measuring the distance between the selected and ground

truth viewing angles, (2) a smoothness loss to encourage

smooth transition in viewing angle, and (3) an expected re-

ward of focusing on a foreground object. We used the policy

gradient technique [62] to train the pipeline since it involves

making an intermediate discrete decision corresponding to

selecting the main object. To evaluate our method, we col-

lected a new 360◦ sports video dataset consisting of five do-

mains and trained an agent for each domain (referred to as

360-Sports). These domain-specific agents achieve the best

performance in regression accuracy and transition smooth-

ness in viewing angle.

Our main contributions are as follows: (1) We develop

the first human-like online agent for automatically navigat-

ing 360◦ videos for viewers. The online processing nature

suits the agent for streaming videos and predicting views for

foveated VR rendering. (2) We propose a jointly trainable

pipeline for learning the agent. Since the main object se-

lection objective is non-differentiable, we employ a policy

gradient technique to optimize the pipeline. (3) Our agent

considers both viewing angle selection accuracy and transi-

tion smoothness. (4) We build the first 360◦ sports videos

dataset to train and evaluate our “deep 360 pilot” agent.

2. Related Work
We review related works in video summarization,

saliency detection, and virtual cinematography.

2.1. Video Summarization
We selectively review several most relevant video sum-

marization works from a large body of literature [58].

Important frame sampling. [33, 19, 43, 27] proposed to

sample a few important frames as the summary of a video.

[47, 54, 63] focused on sampling domain-specific high-

lights. [67, 54, 18] proposed weakly-supervised methods

to select important frames. Recently, a few deep learning-

based methods [66, 66, 65] have shown impressive perfor-

mance. [48, 49, 55] focused on extracting highlights and

generating synopses which showed several spatially non-

overlapping actions from different times of a video. Several

methods [17, 25] involving user interaction have also been

proposed in the graphics and the HCI communities.

Ego-centric video summarization. In ego-centric videos,

cues from hands and objects become easier to extract com-

pare to third-person videos. [30] proposed video summa-

rization based on the interestingness and diverseness of ob-

jects and faces. [36] further proposed tracking objects and

measuring the influence of individual frames. [28] proposed

a novel approach to speed-up ego-centric videos while re-

moving unpleasant camera movements.

In contrary to most video summarization methods which

concern whether to select a frame or not, a method for 360
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piloting concerns which viewing angle to select for each

panoramic frame in a 360◦ video.

2.2. Saliency Detection
Many methods have been proposed to detect salient re-

gions typically measured by human gaze. [35, 21, 1, 46,

59, 64, 46] focused on detecting salient regions on images.

Recently, [34, 24, 9, 44, 5, 61, 60, 57] leveraged deep learn-

ing and achieved significant performance gain. For videos,

[10, 20, 37, 52, 41, 29] relied on low-level appearance and

motion cues as inputs. In addition, [26, 16, 51, 39, 13]

included information about face, people, objects, or other

contexts. Note that saliency detection methods do not se-

lect views directly, but output a saliency score map. Our

method is also different to visual attention methods for ob-

ject detection [38, 3, 42] in that it considers view transition

smoothness as selecting views, which is crucial for video

watching experience.

Ranking foreground objects of interest. Since regions of

interest in sports videos are typically foreground objects,

[55] proposed to use an object detector [4] to extract can-

didate objects of interest, then rank the saliency of these

candidate objects. For 360 piloting, we propose a similar

baseline which first detects objects using RCNN [50], then

select the viewing angle focusing on the most salient object

according to a saliency detector [64].

2.3. Virtual Cinematography
Finally, existing virtual cinematography works fo-

cused on camera manipulation in simple virtual environ-

ments/video games [8, 22, 12, 40] and did not deal with

the perception difficulty problem. [14, 56, 7, 6] relaxed the

assumption and controlled virtual cameras within restricted

static wide field-of-view video of a classroom, video confer-

ence, or basketball court, where objects of interest could be

easily extracted. In contrast, our method handles raw 360◦

sports videos downloaded from YouTube1 in five domains

(e.g., basketball, parkour, etc.). Recently, Su et al. [53]

also proposed handling raw 360◦ videos download from

YouTube. They referred to this problem as Pano2Vid – au-

tomatic cinematography in 360◦ videos – and proposed an

offline method. In contrast, we propose an online human-

like agent acting based on both present and previous ob-

servations. We argue that for handling streaming videos

and other human-in-the-loop applications (e.g., foveated

rendering[45]) a human-like online agent is necessary in or-

der to provide more effective video-watching support.

3. Our Approach
We first define the 360 piloting problem in details

(Sec. 3.1). Then, we introduce our deep 360 pilot approach

(Sec. 3.2–Sec. 3.6). Finally, we describe the training proce-

dure of our model (Sec. 3.7).

1https://www.youtube.com/

3.1. Definitions
We formulate the 360 piloting task as the following on-

line viewing angle selection task.

Observation. At time t, the agent observes a new frame vt,
which is the t-th frame of the 360◦ video. The sequence of

frames that the agent has observed up to this time is referred

to as Vt = {v1, ..., vt}.
Goal. The goal of the agent is to select a viewing angle

lt at time t so that the sequence of viewing angles Lt =
{l1, ..., lt} smoothly capture events of interest in the 360◦

video. Note that lt = (θt, φt) is a point on the 360◦ viewing

sphere, parameterized by the azimuth angle θt ∈ [0◦, 360◦]
and elevation angle φt ∈ [−90◦, 90◦]
Action. In order to achieve the goal, the agent takes the

action of steering the viewing angle by Δt at time t. Given

the previous viewing angle lt−1 and current action Δt, the

current viewing angle lt is computed as follows,

lt = Δt + lt−1. (1)

Online policy. We assume that the agent takes an action Δt

at frame t according to an online policy π as follows,

Δt = π(Vt,Lt−1), (2)

where the online policy depends on both the current and

previous observation Vt and previous viewing angles Lt−1.

This implies that the previous viewing angles affect the cur-

rent action similar to what a human viewer acts when view-

ing a 360◦ sports video. Hence, the main task of 360 pilot-

ing is about learning the online policy from data.

In the following, we discuss various design choices of

our proposed deep 360 pilot where the online policy in Eq. 2

is modeled as a deep neural network.
3.2. Observing in Object Level

Instead of extracting information from the whole 360◦

panoramic frame at each time instance, we propose to focus

on foreground objects (Fig. 2(b)) for two reasons. Firstly,

in sports videos, foreground objects are typically the targets

to be followed. Moreover, the relative size of foreground

objects is small compared to the whole panoramic image. If

processing is done at the frame level, information of object

fine details would be diluted. Working with object-based

observations help our method extract subtle appearance and

motion cues to take an action. We define object-level obser-

vation VO
t as,

VO
t = {vO1 , ..., vOt } (3)

where vOt is given by vOt = conV (Ot, Pt,Mt). (4)

and Ot = conH({oit}), Pt = conH({pit}), (5)

Mt = conH({mi
t}). (6)

Note that conH() and conV () denote horizontal and ver-

tical concatenation of vectors, respectively. The vector
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Figure 2. Visualization of our deep 360 pilot model. Panel (a) shows two consecutive frames. Panel (b) shows the top-N confident object

bounding boxes (yellow boxes) given by the detector. Panel (c) shows the selected main object (green dash box) given by the RNN-based

Selector. Panel (d) shows the final NFoV centered at the viewing angle (cyan box) predicted by the RNN-based regressor.

oit ∈ Rd denotes the i-th object appearance feature, the

vector pit ∈ R2 denotes the i-th object location (the same

parameterization as lt) on the view sphere at frame t and

the vector mi
t ∈ Rk denotes the i-th object motion feature.

If there are N objects, the dimension of Ot, Pt, and Mt are

d × N , 2 × N , and k × N , respectively. Then the dimen-

sion of concatenated object feature vOt is (d+ 2 + k)×N .

Note that our agent is invariant to the order of objects. More

explanation is shown in technical report [23]. In the online

policy (Eq. 2), we replace Vt with VO
t which consists of

object appearance, motion, and location.

3.3. Focusing on the Main Object

We know that as watching a sports video a human agent

gazes at the main object of interest. Assuming the location

of the main object of interest, pi∗t , is known, a naive policy

for 360 piloting would be a policy that closely follows the

main object and the action taken at each time instance is

Δ̂t = pi∗t − lt−1. (7)

Since a machine agent does not know which object is the
main one, we propose the following method to estimate the

index i∗ of the main object. We treat this task as a classifi-

cation task and predict the probability St(i) that the object

i is the main object as follows,

St = π(VO
t ) ∈ [0, 1]N , (8)

where
∑

i St(i) = 1. Given St,

i∗ = argmax
i

St(i). (9)

In this case, the agent’s task becomes discretely selecting
one main object (Fig. 2(c)). We will need to handle this

discrete selecting while introducing policy gradient [62].

We note that the size of VO
t grows with the number of

observed frames, which increase the computation cost. We

propose to aggregate object previous information via a Re-

current Neural Network (RNN).

3.4. Aggregating Object Information
Our online policy is implemented as a selector network

as shown in Fig. 2(b)). It consists of a RNN followed by

a softmax layer. The RNN aggregates information from the

current frame and past state to update its current state, while

the softmax layer maps the current state of the RNN into a

probability distribution via Ws.

ht = RNNS(v
O
t , ht−1),

St = softmax(Wsht) (10)

3.5. Learning Smooth Transition
So far our model dose not take care of the smooth tran-

sition in viewing angle. Hence, we propose to refine the

action from the selector network, Δ̂t = pi∗t − lt−1, with the

motion feature, mi∗
t (Fig. 2(d)), as follows,

μt = RNNR(conV (m
i∗
t , Δ̂t), μt−1).

Δt = WR μt, (11)

Here, we concatenate the motion feature and the proposed

action from the selection network to form the input at time

t to the regressor network RNNR. The RNNR then up-

dates its state from μt−1 to μt. While RNNS focuses on

main object selection, RNNR focuses on action refinement.

The state of RNNR is then mapped to the final steering ac-

tion vector Δt via WR. The resulting viewing angle is then

given by lt = Δt + lt−1.

3.6. Our Final Model
As shown in Fig. 2, our model has three main blocks.

The detector block extracts object-based observation vot as

described in Eq. 4. The selector block selects the main ob-

ject index i∗ following Eq. 10 and Eq. 9. The regressor
block regresses the viewing angle lt given main object loca-

tion pi∗t and motion mi∗
t following Eq. 7, Eq. 11, and Eq. 1.

3.7. Training
We will first discuss the training of the regressor net-

work and then discuss the training of the selector network.
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Finally, we show how to train these two networks jointly.

Note that we use the viewing angle lgtt at each time instance

provided by human annotators as the ground truth.

Regressor network. We train the regressor network by

minimizing the Euclidean distance between the predicted

viewing angle and the ground truth viewing angle at each

time instance. For enforcing a smooth steering, we also

regularize the training with a smoothness term, which pe-

nalizes a large rate of change in viewing angles between

two consecutive frames. Let vt = lt − lt−1 be the viewing

angle velocities at time t. The loss function is then given by

T∑

t=1

‖lt − lgtt ‖2 + λ‖vt − vt−1‖2 (12)

where λ is a hyper-parameter balancing the two terms and
T is the number of frames in a video.

Selector network. As the ground truth annotation for each

frame is provided as the human viewing angle, the main ob-

ject i∗gt to be focused on at each frame is unknown. There-

fore, we resort to the approximated policy gradient tech-

nique proposed in [62] to train the selector network.

Let l(i) be a viewing angle associated with object i that is

computed by the regressor network. We define the reward

of selecting object i (steering the viewing angle to l(i)) to be

r(l(i)) where the reward function r is defined based on the

overlapping ratio between the NFOV centering at li∗t and

the NFOV centering at l(i). The details of the reward func-

tion design is shown in technical report [23]. We then train

the selector network by maximizing the expected reward

E(θ) = Ei∼S(i,θ)[r(l(i))], (13)

using the policy gradient

∇θE(θ) = ∇θEi∼S(i,θ)[r(l(i))] (14)

= Ei∼S(i,θ)[r(l(i))∇θ logS(i, θ)], (15)

where θ is the model parameter of the selector network.

We further approximate ∇θE(θ) using sampling as,

∇θE(θ) � 1

Q

Q∑

q=1

r(l(iq))∇θ logS(iq, θ), (16)

where q is the index of sampled main object, Q is the num-
ber of samples, and the approximated gradient is referred to

as the policy gradient.

Joint training. Since the location of the object selected

by the selector network is fed into the regressor network

for computing the final viewing angle and the reward func-

tion for training the selector network is based on the regres-

sor network’s output, the two networks are trained jointly.

Specifically, we joint update the trainable parameters in

both networks similar to [42], which hybrids the gradients

from the reinforcement signal and supervised signal.

SB Park. BMX Dance BB Total

#Video 56 92 53 56 85 342

#Frame 59K 27K 16K 56K 22K 180K

Table 1. Statistics of our Sports-360 dataset. SB, Park., BMX,

and BB stand for skateboarding, parkour, bicycle motocross, and

basketball, respectively. K stands for thousand.

4. Sports-360 Dataset
We have collected a new dataset called Sports-3602,

which consists of 342 360◦ videos downloaded from

YouTube in five sports domains: basketball, parkour, BMX,

skateboarding, and dance (Fig. 3). Domains were selected

according to the following criteria: (i) high availability of

such videos on YouTube, (ii) the retrieved videos contain

dynamic activities rather than static scenes, and (iii) con-

taining a clear human-identifiable object of interest in most

of the video frames. The third criterion is required to obtain

unambiguous ground truth viewing angle in our videos.

In each domain, we downloaded the top 200 videos

sorted by relevance. Then, we removed videos that were

either in poor resolution or stitching quality. Next, we

sampled and extracted a continuous video clip from each

video where a scene transition is absent (many 360◦ videos

are edited and contain scene transitions). Finally, we re-

cruited 5 human annotators, and 3 were asked to ”label the

most salient object for VR viewers” in each frame in a set

of video segments containing human-identifiable objects.

Each video segment was annotated by 1 annotator in the

panorama view (see Fig. 4a). The annotation results were

verified and corrected by the other 2 annotators.

We show example panoramic frames and NFoV images

centered at ground truth viewing angles in Fig. 3. Our

dataset includes both video segments and their annotated

ground truth viewing angles. The statistics of our dataset

(i.e., number of videos and frames per domain) is shown in

Table. 1. We split them by assigning 80% of the videos for

training, and 20% for testing.

5. Experiments
We evaluate deep 360 pilot on the Sports-360 dataset.

We show that our model outperforms baselines by a large

margin both quantitatively and qualitatively. In addition,

we also conduct a user preference study. In the following,

we first define the evaluation metric. Then, we describe the

implementation details and baseline methods. Finally, we

report the quantitative, qualitative, and human study results.

5.1. Evaluation Metrics.
To quantify our results, we report both Mean Overlap

(MO) and Mean Velocity Difference (MVD). MO measures

how much the NFoV centered at the predicted viewing an-

gle overlaps (i.e., Intersection over Union (IoU)) with that

of the ground truth one at each frame. A prediction is pre-

2Our dataset and code can be downloaded from https://
aliensunmin.github.io/project/360video
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Figure 3. Our Sports-360 dataset. We show example pairs of panoramic and NFoV images in five domains: BMX, parkour, skateboarding,

basketball, and dance. In each example, a panoramic frame with ground truth viewing angle (green circle) is shown on the left. The zoomed

in NFoV (yellow box) centered at the ground truth viewing angle is shown on the right. The NFoV illustrates the viewers perspective.

(b)(a)

Figure 4. (a) Annotators mark main objects in 360◦ videos with a mouse.

The blue cross helps annotators locate cursor position, and the cyan box

indicates NFoV. Main reason to label in panorama is shown in the technical

report [23]. (b) Example of bmx bike.

cise if the IoU is 1. MVD evaluates the curvature of the

predicted viewing angle trajectories. It is given by the norm

of the difference of viewing angle velocities in two consec-

utive frames given by ‖vt − vt−1‖2. Note that, in average,

the trajectory is smoother if its MVD at each frame is low.
5.2. Implementation Details
Detector. We use the Faster R-CNN [50] model pre-trained

on 2014 COCO detection dataset [31] to generate about

400 bounding boxes for each frame. Then, we apply the

tracking-by-detection algorithm [2] to increase the recall

of the object detection. Finally, we apply detection-by-

tracking [2] to select reliable detection linked into long

tracklets. Given these tracklets, we select top N = 16
reliable boxes per frame as our object-based observation.

Detailed sensitivity experiment results can be found in the

technical report [23]. We found it is beneficial to use gen-

eral object detectors. In the sport video domains studied,

non-human objects such as skateboard, basketball, or bmx

bike (Fig. 4b) provides strong cues for main objects. For

each object, we extract mean pooling of the Conv5 feature

∈ R512 in the network of R-CNN as the appearance feature

oit, and Histogram of Optical Flow [11] of boxes with 12

orientation bins as the motion representation mi
t ∈ R12.

Selector. The hidden representation of RNNS is set to

256 and it processes input vOt ∈ R(d+2+k)×N in sequences

of 50 frames.

Regressor. The hidden representation of RNNR is set to 8.

We set λ to 10.

Learning. We optimize our model using stochastic gradi-

ents with batch size = 10 and maximum epochs = 400. The

learning rate is decayed by a factor of 0.9 from the initial

learning rate of 1e−5 every 50 epochs.
5.3. Methods to be Compared

We compared the proposed deep 360 pilot with a number

of methods, including the state-of-the-art method AUTO-

CAM [53], two baseline methods combining saliency de-

tection with the object detector [50], and a variant of deep

360 pilot without a regressor.

AUTOCAM [53]: Since their model is not publicly avail-

able, we use the ground truth viewing angles to generate

NFoV videos from our dataset. These NFoV videos are

used to discriminatively assign interestingness on a set of

pre-defined viewing angles at each frame in a testing video.

Then, AUTOCAM uses dynamic programming to select op-

timal sequence of viewing angles. Finally, the sequence

of viewing angles is smoothed in a post-processing step.

Note that since AUTOCAM proposes multiple paths for

each video, we use ground truth in testing data to select

top ranked sequence of viewing angles as the system’s final

output. This creates a strong “offline” baseline.

RCNN+Motion: We first extract detected boxes’ optical

flow. Then, we use a simple motion saliency proposed

by [15], median flow, and HoF [11] as features to train a

gradient boosting classifier to select the box that is most

likely to contain the main object. Finally, we use center of

the box selected sequentially by the classifier as predictions.

RCNN+BMS: We leverage the saliency detector proposed

by Zhang et al. [64] to detect the most salient region in a

frame. With the knowledge of saliency map, we can extract

the max saliency scores in each box as a score. Then we

emit the most salient box center sequentially as our optimal

viewing angle trajectories.

Ours w/o Regressor: We test the performance of our deep

360 pilot without regressor. It emits box center of the se-

lected main object as prediction at each frame.
5.4. Benchmark Experiments

We compare our method with our variant and baseline

methods in Table. 2. In the following, we summarize our

findings. AUTOCAM achieves the best MO among three

baseline methods in 4 out of 5 domains. Our method sig-

nificantly outperforms AUTOCAM in MO (at most 22%
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Method
Skateboarding Parkour BMX Dance Basketball

MO MVD MO MVD MO MVD MO MVD MO MVD

Ours w/o Regressor. 0.71 6.03 0.74 4.72 0.71 10.73 0.79 4.32 0.67 8.62

Ours 0.68 3.06 0.74 4.41 0.69 8.36 0.76 2.45 0.66 6.50
AUTOCAM [53] 0.56 0.25 0.56 0.71 0.47 0.55 0.73 0.15 0.51 0.66

RCNN+BMS. 0.25 37.5 0.2 30.8 0.22 32.4 0.24 40.5 0.2 25.27

RCNN+Motion. 0.56 34.8 0.47 26.2 0.42 25.2 0.72 31.4 0.54 25.2

Table 2. Benchmark experiment results. Except “AUTOCAM” achieving a very low MVD through an offline process, “Ours w/o Regressor”

achieves the best MO (the higher the better) and “Ours” achieves the best MVD (the lower the better). Most importantly, “Ours” strikes a

good balance between MO and MVD.

Skateboarding Parkour BMX Dance Basketball

Comparison win / loss win / loss win / loss win / loss win / loss

vs AUTOCAM 34 / 2 35 / 1 31 / 5 34 / 2 36 / 0

vs Ours w/o Regressor 28 / 8 29 / 7 26 / 10 31 / 5 34 / 2

vs human 15 / 21 10 / 26 7 / 29 14 / 22 7 / 29

Table 3. User study results. For all of the five sports domains, our method is significantly preferred over AUTOCAM and Our w/o
Regressor. Also, it is comparable to expert human in skateboarding and dance.

gain in BMX and at least 3% gain in Dance). Although

AUTOCAM achieves significantly lower MVD compared

to our method, we argue that its lower MO will critically

affect its viewing quality, since the majority of our videos

typically contain fast moving main objects. Since we do

not know how to trade MVD over MO and vice versa,

we resort to a user study to compare AUTOCAM with

our method. Our comparison with ours w/o regressor is

the other way around. Both methods achieve similar MO

while our method achieves lower MVD. These results show

that with regressor, the agent steers the viewing angle more

smoothly. Fig. 5 shows the trajectories of viewing angles

predicted by both methods for a testing video. From this vi-

sual inspection, we verify that the smoothness term results

in a less jittering trajectory.

5.5. User Study
We conduct a user study mainly to compare our method

with AUTOCAM and ours w/o regressor. The following

is the experimental setting. For each domain, we sample

two videos where all three methods achieve MO larger than

0.6 and MVD smaller than 10. This is to prevent users

from comparing bad quality results, which makes identi-

fying a better method difficult. For each video, we ask

18 users to compare two methods. In each comparison,

we show videos piloted by two methods with random or-

der via a 360◦ video player. The number of times that

our method wins or loses is shown in Table 3. Based on

a two-tailed binomial test, our method is statistically su-

perior to AUTOCAM with p-value< 0.001. This implies

that users consider MO more important in this comparison.

Base on the same test, our method is statistically superior

to our w/o regressor with p-value< 0.05. This implies that

when MOs are similarly good, a small advantage of MVD

results in a strong preference for our method. We also con-

duct a comparison between our method with the human la-

beled ground truth viewing angles. Base on the same test,

Figure 5. Comparison of Ours and Ours w/o Regressor. These two

methods yields similar MO, while Ours predicts smoother viewing

angles in both principal axes.

our method is indistinguishable to human on skateboarding

with p-value< 0.405 and on dance with p-value< 0.242.
5.6. Typical Examples

We compare our ”deep 360 pilot” with AUTOCAM in

Fig. 6. In the first example, both our method and AUTO-

CAM work well since the main object in dancing does not

move globally. Hence, the ground truth viewing angle is not

constantly moving. In the next three examples, our method

produces smooth trajectories while maintaining adequate

view selection without any post-processing step. In con-

trast, AUTOCAM struggles on capturing fast-moving ob-

jects since Su et al. [53] constrains every glimpses’ length

up to 5 seconds. Moreover, the pre-defined 198 views force

many actions to be cut in half by the rendered NFoV. We

further compare our method on a subset of publicly avail-
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Figure 6. Typical examples from four domains: (a) dance, (b) BMX, (c) parkour, and (d) skateboarding. For each example, the middle

panel shows a panoramic image with motaged foreground objects. The top and bottom panels show zoomed in NFoV centered at viewing

angles generated by AUTOCAM and our method, respectively. We further overlaid the NFov from AUTOCAM and our method in red and

green boxes, respectively, in the middle panoramic image.

able videos from dataset of [53]. We get a 140% perfor-

mance boost in quantitative metrics of [53]. Similar com-

parisons to other baseline methods and more results on

dataset of [53] are shown in the technical report [23].

6. Conclusion
We developed the first online agent for automatic 360◦

video piloting. The agent was trained and evaluated us-

ing a newly composed Sport-360 dataset. We aimed at

developing a domain-specific agent for the domain where

the definition of a most salient object is clear (e.g., skate-

boarder). The experiment results showed that our agent

achieved much better performance as compared to the base-

line methods including [53]. However, our algorithm would

suffer in the domains where our assumption is violated

(containing equally salient objects or no objects at all). In

the future, we would like to reduce the amount of ground

truth annotation needed for training our agent.
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