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V-Eye: A Vision-Based Navigation System
for the Visually Impaired

Ping-Jung Duh, Yu-Cheng Sung, Liang-Yu Fan Chiang, Yung-Ju Chang, and Kuan-Wen Chen

Abstract—Numerous systems for helping visually impaired
people navigate in unfamiliar places have been proposed. However,
few can detect and warn about moving obstacles, provide correct
orientation in real time, or support navigation between indoor
and outdoor spaces. Accordingly, this paper proposes V-Eye,
which fulfills these needs by utilizing a novel global localization
method (VB-GPS) and image-segmentation techniques to achieve
better scene understanding with a single camera. Our experiments
establish that the proposed system can reliably provide precise
locations and orientation information (with a median error of
approximately 0.27 m and 0.95°); detect unpredictable obstacles;
and support navigating both within and between indoor and
outdoor environments. The results of a user-experience study of
V-eye further indicate that it helped the participants not only
with navigation, but also improved their awareness of obstacles,
enhanced their spatial awareness more generally, and led them to
feel more secure and independent while walking.

Index Terms—Visually impaired, navigation system, user study,
global localization, scene understanding.

I. INTRODUCTION

WALKING on an unfamiliar street can be a challenge for
people with visual impairments. They can be exposed

to danger when encountering unpredictable obstacles, or eas-
ily lose their way. To address these issues, most of the better
designs for navigation systems for the visually impaired have
adopted sensor-based approaches, for example, involving the
global positioning system (GPS) or beacons [8], [20]. However,
GPS is not always precise enough to be effective for this pur-
pose, especially indoors. Beacons, on the other hand, require
pre-deployment, and thus are better suited to supporting indoor
rather than outdoor navigation. In other words, neither of these
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general approaches by itself can effectively and economically
support visually impaired individuals’ navigation between in-
door and outdoor environments. Moreover, both share two ad-
ditional major limitations: difficulty in identifying unexpected
obstacles, and problems with obtaining precise orientation in-
formation in real time. Being unaware of unexpected dynamic
obstacles is self-evidently dangerous, while a lack of up-to-date
orientation information means that users will take longer than
necessary to plan and adjust their routes. To address both these
problems, we propose a vision-based solution. With the rapid
development of multimedia and computer vision technologies,
vision-based positioning [28], [31], [33], [43] and semantic seg-
mentation [24], [34] have been widely explored and they are
also the key components of a navigation system for direction
guiding and obstacle avoidance, respectively. In addition, sev-
eral multimedia research [42], [49] have shown audio or haptic
feedback are useful to convey visual information to visually im-
paired people.

Amid a recent wave of research on computer vision, various
vision-based solutions have been developed to guide the visu-
ally impaired [6], [25], [29]. For example, Kanwal et al. [27]
used depth cameras to estimate the distance between users and
objects in their surroundings. However, the weight of such cam-
eras makes equipment relying on them difficult to wear; nor are
they well suited to outdoor environments, at least during periods
of bright sunlight. To overcome these drawbacks, we developed
V-Eye, a navigation system that uses a lightweight and inex-
pensive monocular camera as its major sensor for both global
localization and scene understanding (Fig. 1). As this paper will
demonstrate, V-Eye can determine the exact position and orien-
tation of visually impaired people in real time, and recognize
the key elements of the surrounding scene accurately, including
the foreground and moving objects. In addition, V-Eye enables
visually impaired people to navigate between indoors and out-
doors. Its novel localization approach, VB-GPS (Vision-based
Global Position System), combines two vision-based localiza-
tion approaches – visual SLAM [31] and model-based localiza-
tion (MBL) [37] – to achieve real-time, drift-free, and highly ac-
curate positioning with a median error of approximately 0.27m
and 0.95°. Additionally, to understand the scene surrounding
the user, V-Eye acquires both constant and dynamic infor-
mation using semantic segmentation (Fig. 2). Our user study
of V-Eye with eight visually impaired people walking on a
university campus found that most of them could successfully
complete tasks at their typical speed; and all participants said
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Fig. 1. The proposed system’s monocular camera enables it to provide warn-
ings of obstacles and navigation information, including locations and orientation
data, based on both high-precision global positions and scene-understanding re-
sults. Audio feedback is then given to the user.

Fig. 2. The localization and semantic-segmentation techniques used in V-Eye
to help its users identify their global positions and recognize the key elements
of their surroundings, respectively.

that V-Eye was helpful in enhancing their awareness of obsta-
cles, and made them feel more secure and independent while
navigating.

The contributions of this paper are as follows. First, it pro-
poses a novel vision-based localization method. Second, its
vision-based navigation system is capable of calculating pre-
cise positions and orientations, thus helping visually impaired
people stay on track during navigation in real-time. Third, it
identifies unexpected dynamic obstacles, to reduce the danger
to visually impaired users. And fourth, it supports navigation
in and between indoor and outdoor environments with a single,
easy-to-carry monocular camera.

II. RELATED WORK

Much research on providing navigation assistance to visually
impaired pedestrians has been performed with sensor-based or
vision-based approaches, and will be reviewed below. And in
addition to comparing the proposed global positioning system,
this section will discuss vision-based localization and its likely
future development.

A. Navigation Systems for the Visually Impaired

The most common sensor-based method for outdoor nav-
igation relies on GPS [20], but it is not precise enough for
the purposes of the present research, especially in indoor

environments. For example, a TP3 system for supporting
wayfinding by the visual impaired was found to be critically
limited by a lack of adequate data for both indoor and outdoor
environments [50]. Another recent solution [8], [38] uses bea-
cons in combination with a smartphone app. However, beacon
localization also faces some constraints. First, complete route
navigation necessitates the deployment of many beacons, which
carries considerable installation and maintenance costs. Second,
signal collision may occur if the distances between beacons are
too short, and result in incorrect location information. Lastly,
this approach cannot easily obtain orientation information, or
detect dynamic obstacles at all.

For these reasons, subsequent vision-based research has fo-
cused on the use of IR-based depth cameras [27], [29] to support
indoor and outdoor navigation by pedestrians with visual im-
pairments. While such technology is useful up to a point, exper-
imental results reveal periodic failures of their infrared sensors,
especially outdoors, and that the systems are so heavy that they
are difficult for users to carry.

A more accessible approach is a context-aware wayfinding
system that guides the visually impaired along a route via
QR-code detection using a smartphone camera [25]. However,
as with beacons, the deployment of large numbers QR codes at
specific outdoor locations is costly. Moreover, none of the sys-
tems discussed above can detect unexpected obstacles, or pro-
vide up-to-the-minute orientation, or work equally well indoors
and outdoors.

Little attention has been paid to the potential of a single
monocular camera, combined with computer vision, to improve
the effectiveness of such systems. In recent years, semantic im-
age segmentation [3], [24], [34], which deciphers images of sur-
rounding scenery by assigning labels to image pixels, has be-
come an essential component of computer vision. Recent stud-
ies [3], [24], [34] that have employed deep-learning network
architectures point toward the superiority of such vision-based
approaches over sensor-based ones. After careful consideration
of such prior work, we chose a vision-based method with a sin-
gle camera to establish a navigation system that can function
effectively both within and between indoor and outdoor environ-
ments, and which incorporates a semantic-segmentation system
for scene understanding into its localization system for position
and orientation estimation.

B. Vision-Based Localization Systems

Vision-based positioning technologies can be divided into
two broad categories: visual simultaneous localization and map-
ping (SLAM) and image-based localization. Visual SLAM [17],
[26], [28], [31], [33], [40], [44], [47], which runs in real time and
is widely used in robotics, concurrently constructs a 3D map and
estimates camera angles relative to its starting point. However, it
is hindered by accumulated errors; its inability to recover from
tracking failures especially when the camera rotates or moves
rapidly; and its camera pose estimations being relative rather
than absolute. Image-based localization [7], [9], [22], [23],
[30], [37], [43], [51], on the other hand, arrives at camera pose
by matching a query image with image datasets or pre-trained
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Fig. 3. Architecture of the proposed system.

models. Its main advantage is that it provides a global position,
and thus is drift-free. However, it is time-consuming, and does
not work well on scenes that differ from those used in its training
period, even in relatively minor ways such as illumination.
This is a critical, and as-yet unsolved problem for real-world
applications.

To fulfill V-Eye’s design requirements for real-time, robust,
high-precision, and global localization, a novel vision-based po-
sitioning method called VB-GPS is proposed in this paper. It
integrates both the categories of vision-based positioning tech-
nology mentioned above, in an effort to circumvent their limita-
tions while retaining their benefits. Middelberg et al. [32] made
a similar attempt to achieve real-time, global positioning, but
their results were unreliable, because their integration strategy
incorrectly assumed that neither visual SLAM nor MBL would
experience any localization failures.

III. V-EYE NAVIGATION SYSTEM

The proposed system utilizes five hardware components: two
servers, one for MBL and the other for semantic segmentation,
a local computer, a wearable camera, and a smartphone for au-
dio feedback. Fig. 3 shows the system architecture. The camera
captures real-time images and is connected to the local com-
puter, which conducts the process of visual SLAM – in our
implementation, ORB-SLAM [31] – for relative-pose estima-
tion. An integrator merges all the information received from
visual SLAM and MBL to estimate final position results, and
transmits the keyframes to external servers. A keyframe is an
image with a large enough disparity from the previous frames;
usually, one keyframe is acquired every 1 to 2 seconds. Based
on a chosen keyframe, the system employs a model-based ap-
proach to estimate global camera pose in the MBL server [9]
while simultaneously performing scene understanding once per
second in the semantic-segmentation server. Apart from cam-
era frames, the intrinsic parameters of the camera and its height
above the floor/ground are indispensable inputs, which our sys-
tem assumes will be calibrated in advance. Each time the servers
finish the estimation of a frame, the local computer is sent the
location information and segmentation results, including objects
with distances, by the segmentation server. Local visual SLAM

then modifies the position from the data received, and then uti-
lizes the finalized position when searching for landmarks infor-
mation in the system’s landmark map (see III.C, below). After
acquiring all these essential elements, the system is able to deter-
mine what output message to send, following the rules discussed
in Section III.D, below, and send it to the user via a text-to-speech
conversion tool.

A. Localization System: VB-GPS

To achieve real-time, drift-free, high-precision localization,
we devised VB-GPS, and configured our system around it as
shown in Fig. 4. A laptop serves as the local computer. It runs
visual SLAM to estimate relative poses in real-time, and inte-
grates results from both visual SLAM and MBL with an inte-
grator. The MBL server is a powerful PC that runs MBL [9] to
determine the 6-DoF camera pose of the keyframe image in the
coordinate system of a pre-constructed 3D point cloud model.
Because the model is pre-constructed and fixed, it is possible
to align the pre-constructed model to the real world in advance,
and obtain global positions.

Our localization system runs on a laptop as local computer
with an Intel Core i7-6700HQ (8 cores @ 2.40 GHz) and 16 GB
RAM, and a MBL server with an Intel Core i7-6700 (8 cores @
3.40 GHz) and 8 GB RAM without GPU acceleration. The video
sequence was captured by a GoPro5. In the implementation,
we resize the images to 640×360 pixels for acceleration. It has
shown the proposed system can run in real-time, i.e. 30 fps, to
provide global positions.

The three main components in our localization system are
visual SLAM, MBL, and the integrator. Visual SLAM runs
ORB-SLAM [31] in real time, estimates the relative pose of
every frame, and sends the results to the integrator. It also ex-
tracts the keyframe, which is the image with a large enough
disparity compared with previous frames, and sends it to the
MBL server (approximately every 1 to 2 s). After receiving a
keyframe, MBL will match the keyframe with a pre-constructed
3D model to estimate global pose, and then send the pose, the
number of inliers, and the degree of feature distribution to the
integrator at the local computer. It should also be noted here that
MBL does not need to run in real time, because the timestamp
of the transmitted keyframe is recorded and used in the integra-
tor. Finally, the integrator merges all the information received
from the visual SLAM and MBL components, and handles the
failures of both to provide the final positioning results. More
details concerning these three components will be explained as
follows.

1) Visual SLAM: To the best of our knowledge, ORB-SLAM
[31] is the most reliable and real-time visual SLAM for monoc-
ular camera. In our implementation, we use ORB-SLAM as the
visual SLAM method. Here, we use only the relative pose every
two consecutive frames provided by ORB-SLAM in our sys-
tem. In addition, we send a keyframe selected by ORB-SLAM
to the server for global pose estimation to eliminate accumulated
errors.

Furthermore, as mentioned in the previous section, ORB-
SLAM or visual SLAM methods are unreliable under rapid ro-
tation and motion. If these conditions happen, ORB-SLAM will
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Fig. 4. System overview of VB-GPS, showing its three main components: visual SLAM, MBL, and an integrator.

lose tracking, and pose estimation will be interrupted until the
camera moves back to the previous path and loop closing recov-
ers the system. In our implementation, we solve this problem by
storing the located camera pose on the global server, and restart-
ing ORB-SLAM in the client when the ORB-SLAM system is
interrupted because of tracking loss. Here, ORB-SLAM checks
the lost tracking event for every frame. If there are insufficient
number of matched features (i.e. fewer than 15 in the implemen-
tation) between current frame and current reference keyframe,
the state of system will be set as lost tracking. Note that in the
VB-GPS, visual SLAM only provides relative poses, and thus
it is easy to replace ORB-SLAM with another method if a new
and better-performing visual SLAM is proposed in the future.

2) Model-Based Localization: To estimate the global posi-
tion of each keyframe in the MBL server, we build it with our
previous work [9], which is one of the state-of-the-art MBL
method. During the training period, we first use an SfM [48] al-
gorithm to construct a 3D point cloud model. After receiving a
keyframe, we extract features from the image and then estimate
the 2D-to-3D correspondences to calculate the global camera
pose of the keyframe in the 3D model with RANSAC. Unfor-
tunately, MBL is mainly relied on 2D-to-3D feature matching
and thus may sometimes output inaccurate locations due to scene
changes (such as illumination changes) or view angle differences
between current testing and previous training period.

Here, we deal with the illumination differences between train-
ing and testing, by constructing a model pool instead of using
only a single model. In [9], we have shown a small number
of models is sufficient for the daytime scenarios (eight models,
including of sunny, cloudy, rainy, etc.) and proposed a model
update algorithm. In our implementation of VB-GPS, we build
three models for each outdoor task, where they are built in the
sunny morning (about 10 am.), sunny afternoon (about 2 pm.)
and cloudy day. Moreover, the proposed VB-GPS does not as-
sume all the results from MBL should be correct and will com-
pensate the error with visual SLAM, and thus it is more ro-
bustness to scene changes. Therefore, only a small number of
models is required in our system. An experiment to evaluate its
robustness to scene changes is shown in Section IV.B.

However, even with such model pool to deal with illumina-
tion changes, MBL may sometimes output inaccurate locations

due to scene changes or view angle differences between current
testing and previous training period. To eliminate the influence
of such failures in our system, we propose a method to verify the
correctness of the MBL results. Our system records the number
of inliers and the degree of feature distribution, and then sends
them to the integrator together with the global positions. Inliers
represent good matching features that satisfy the geometrical
constraints between the 2D image and the 3D model. In gen-
eral, low accuracy occurs often with few inliers. Furthermore,
Sattler [37] points out the importance of feature distribution in
the image, and that a greater number of inliers cannot repre-
sent the absolutely right. That is, the accuracy will decrease
when the matched features are centralized in a particular re-
gion. On the contrary, it often leads to more reliable localiza-
tion results when features are evenly distributed. Therefore, we
quantify the feature distribution as a number and send it to the
integrator as another condition to verify the correctness of the
global pose. The degree of feature distribution is calculated by
fitting an ellipse, which is estimated by the standard deviations
of all 2D feature points along two main axes, to representing
the feature points first, and we then get a value proportional
to the area of the ellipse, which represents the degree of fea-
ture distribution. Smaller values mean a higher degree of feature
centralization.

Table I shows an evaluation of how the number of inliers and
the degree of feature distribution influence the positioning accu-
racy and passing ratio of MBL. Here, we test all the keyframes
(424 frames) in the test sequence of scene Square in Section IV.
As we can see, omitting the MBL results when there are insuf-
ficient number of inliers or their distribution area is small will
improve the positioning accuracy of MBL but also decrease the
number of passing frames. In our implementation, we selected
40 for the threshold of number of inliers and 1/8 of the image
area for the threshold of feature distribution, which provide both
high precision and high passing ratio in our experiments.

3) Integrator: This component integrates both results from
visual SLAM and MBL, and outputs the final positioning results.
The flowchart is shown in Fig. 5. The integrator receives relative
pose from visual SLAM at every frame, and outputs the final
results directly if no results are received from MBL. Or, if MBL
sends the global pose, number of inliers, and degree of feature
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TABLE I
POSITIONING ACCURACY AND PASSING RATIO OF MBL FOR SCENES SQUARE WITH DIFFERENT THRESHOLDS OF THE NUMBER OF INLIERS (20, 40, AND 60) AND

THE DEGREE OF FEATURE DISTRIBUTION (1/4, 1/8, AND 1/16), WHICH ARE THE RATIO OF AREA OF FITTED ELLIPSE TO THE AREA OF IMAGE

Fig. 5. The flowchart of Integrator, which integrates the results from visual
SLAM and MBL.

distribution of a keyframe, the integrator integrates both results
and updates the current trajectory.

Before integrating both results, where one is the predicted
pose estimated from the relative poses of visual SLAM and the
most recent keyframe, and the other is a global pose calculated
from MBL, we have to align both poses in the same coordinate
system in advance. To achieve this aim, we first compute the
global pose of the first keyframe of visual SLAM and consider
it as the origin of our trajectory. Then, because monocular vi-
sual SLAM is without scale information, we use the poses of
the first two keyframes in visual SLAM and the corresponding
poses of the same frames in MBL server to calculate the scale
relationship between server and client. However, the scale of the
trajectory estimated by visual SLAM may not be always fixed
as a result of the tracking failures, and may affect the integration
results. We solve this scale drift problem by using an adaptive
scale revision method to adjust the scale over time. In short, it
allows the relative scale between visual SLAM and MBL being
changeable. Where we update the scale at every integration pro-
cess and use the global distance between two keyframes from
MBL to refine the scale of visual SLAM. After that, we will

have a local pose predicted by visual SLAM and a global pose
estimated by MBL in the same coordinate system.

We then determine whether current global pose estimated by
MBL is reliable or not. If the global pose is considered reliable,
we will output the global pose as the current position and apply
trajectory refinement to optimize the trajectory, or the local pre-
dicted pose will be regard as current pose. To decide whether
the global pose from MBL of current keyframe is reliable or not,
we check it by the following steps.

Firstly, we check the degree of feature distribution, i.e., el-
lipse area values derived by standard deviation ellipse (SDE)
[19], and ignore the MBL results when its value is smaller than
a threshold, which is set to one eighth of the image area in our
implementation. Secondly, the number of inliers is checked. A
smaller value is considered to indicate fewer good matches be-
tween the keyframe and the 3D point cloud model. Therefore,
we discard the results with insufficient inliers (40 in our imple-
mentation). Thirdly, to ensure the accuracy of the global pose,
we compare the global pose from MBL with the pose predicted
by the relative pose, and compute their similarities in rotation
and distance. According to our observations, ORB-SLAM usu-
ally provides a good rotation estimation, and thus if the rotation
difference between the two estimations is larger than a thresh-
old angle ta, we consider it incorrect. In addition, the distance
between the predicted and global pose should not be too large
owing to our adaptive scale revision and relative pose estimation,
so we discard the global pose when it is far from the predicted
one by checking its distance against a threshold td. In our imple-
mentation, we use 10° for ta, 1.2 m as td for outdoor conditions,
and 0.6 m as td indoors. The details of the integration algorithm
are shown in Algorithm 1.

Once the global pose of the keyframe is selected, trajectory
refinement will be required to optimize the trajectory by updat-
ing the pose of the target keyframe from the predicted local pose
by visual SLAM to the estimated global pose by MBL. Here,
we apply the trajectory refinement to the section between the
latest keyframe and the previous one to make the final trajectory
smooth. Fig. 6(a) shows an example to represent the method,
where A, C, B represent the position of the latest keyframe esti-
mated by MBL, the position of previous keyframe estimated by
MBL, and the position of latest keyframe estimated from the rel-
ative poses of previous frames with visual SLAM, respectively.
A and B will usually different because of drift error of visual
SLAM. After the integration process, B will be corrected to A,
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Fig. 6. An example of trajectory refinement: (a) represents the original trajec-
tory without any refinement, (b) trajectory with the scale-refinement, and (c) the
final trajectory after trajectory refinement.

Algorithm 1: Integration of Predicted and Global Poses
Input: Predicted pose from client, Pc; Global pose from
MBL server, Ps; Number of inliers, Ni; Area of feature
distribution, Af ; inlier threshold, ti; distance threshold,
td; angle threshold, ta.

1: if Af < 1
8 image Area then

2: return Pc;
3: else if Ni < ti then
4: return Pc;
5: else if distance between Pc and Ps > td then
6: if angle between Pc and Ps > ta then
7: return Pc;
8: end if
9: else

10: return Ps;
11: end if

but there is still a gap between previous trajectory from C to B
and the new keyframe position A. To fill the gap and make the
trajectory from C to A smooth, we apply the trajectory refine-
ment here. First, we apply the revised scale estimated by adaptive
scale revision, which makes the scale between C to B and the
scale between C to A being the same, as shown in Fig. 6(b). After
that, denote two vectors v1 and v2 the vector from C to A and the
vector from C to B, respectively (Fig. 6(b)). We then calculate a
rotation matrix (R in Fig. 6(b)) from v2 to v1. Finally, we apply
the rotation matrix R to all images of the trajectory between C
and B. It will refine the position B to A and make the trajectory
smooth as shown in Fig. 6(c). Here, the trajectory refinement
method will ensure the positions of keyframes estimated from
MBL fixed, the relative rotation angles between two consecutive
frames estimated from visual SLAM fixed, and also make the
final estimated trajectory smooth.

It should be borne in mind that the proposed integration
method is flexible, and allows the methods used in both the

Fig. 7. An example of (a) original image and (b) its segmentation results of
human label by FRRN. Red point represents the cluster center estimated by
Mean Sift and pink point is the interaction point between the object and the
ground plane.

client server (for relative-pose estimation) and the MBL server
(for global positions) to be replaced in the future if better meth-
ods arise. Moreover, our system’s built-in assumption that the
results from visual SLAM and/or MBL will sometimes be incor-
rect will render it more reliable in the real world than previous
systems incorporating those methods.

B. Semantic-Segmentation System

Our system incorporated a semantic-segmentation system
based on FRRN [34]. Pre-existing trained models used with out-
door/street datasets, such as Cityscapes [10], can perform test
procedures in real time. Notice that we do not use object-level de-
tection method here, it is because object-level detection method
can detect only specific and pre-trained object, such as human,
car, etc. On the contrary, semantic-segmentation will try to seg-
ment all pixels in the image and label even unknown object. We
think it will be a more flexible and safer choice for visually im-
paired people navigation. For street scenes, FRRN was found to
be adequate to our system’s requirements, since we were primar-
ily interested in dynamic objects or other unexpected obstacles
that could not be obtained from the 3D model maps already in
the localization server. An example of semantic segmentation
is shown in Fig. 2. After recognizing objects, the system calcu-
lates their respective distances from the user. For each class of
object, considering every labeled pixel a feature, a density esti-
mation is arrived at based on feature space-based analysis. For
clustering, we chose the robust approach Mean Shift [11], which
assigns points to move toward the closest cluster iteratively un-
til convergence occurs. An example of Mean Shift clustering
is shown in Fig. 7. After mean-shift clustering, we are able to
compute cluster centers (the red point in Fig. 7(b)); and along
a vertical line from the center, a point of interaction (the pink
point in Fig. 7(b)) between the object and the ground plane can
be determined as the foot position of the object. To estimate
the distance between the user and an obstacle using only the
monocular camera, we adopted an imaging-geometry approach
[36]. In our experiments, this yielded an estimate of 4.9 miles
for an actual distance of 5 miles: an accuracy sufficient for our
system’s purposes.

C. Landmark Map

In the same way as typical navigation software provides nav-
igation instructions when its users are close to a decision point,
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Fig. 8. An example of our landmark-map approach. (a) The 3D point cloud
of the scene. Clicking a point on the model will show the corresponding image
taken at that point, following which, four questions are asked. (b) After sending
the answers, the information will be saved in an xml file.

V-Eye provides visually impaired people with information about
nearby obstacles and navigation instructions when they are close
to those obstacles and decision points [45]. Static obstacles such
as stairs, fences, etc., and decision points are collectively re-
ferred to as “landmarks” for purposes of the present research.
To continuously provide obstacle and navigational information,
we created a landmark map within our system, firstly, by design-
ing an interface that allowed people to manually add landmarks
for visually impaired people. Fig. 8(a) shows an example of
landmark information being entered using the interface. When
a point in the 3D model on the right is clicked, the system will
show some candidate images whose localizations are close to the
clicked point. Then, humans can select one image for annota-
tion or click another point on the model. After the selection, the
corresponding image taken at this point appears on the left, fol-
lowed by four questions for collecting the relevant information
about it. These are “What is on the left-hand side?” “What is on
the right-hand side?” “What is the next step to the destination?”
and “What should you be most careful about?” The answer data
is automatically saved in an XML file (Fig. 8(b)) which is then
read by our system. In that file, a landmark is described in terms
of six factors: position, rotation, objects on the left, objects on
the right, obstacles that the user should be careful about, and the
actions he/she should follow.

D. Obstacle Warnings and Navigation Messages

V-Eye provides visually impaired people with two types of
messages: obstacle warnings and navigation instructions. Of
the two, we consider the former more important; thus, V-Eye
checks for obstacles first, and if no obstacles are detected, pro-
vides navigation instructions second. More specifically, the sys-
tem estimates the global position and orientation of the user.
Meanwhile, the semantic-segmentation procedure is performed
to detect nearby moving obstacles, and a warning message is
generated if one or more are detected. Obstacles are classified
into two types: moving obstacles, such as other pedestrians and
cars, and static obstacles, such as lamp posts and railings. Some
prior research [21] used meters or feet as the distance units in no-
tifications. However, people who were born blind tend to have
less understanding of such units of length than their sighted
counterparts [46]. Thus, our system notifies users at pre-set

distances, i.e., 2m from a static obstacle (following [41], [52])
and 4m from a moving one, without specifying in the messages
what those distances are. The reason the threshold was doubled
for moving obstacles was to add a further margin of safety in
cases where an obstacle is moving very quickly. Warning mes-
sages for both types of obstacles are structured in the format
“direction+ subject” (e.g., “left, pedestrian”) as recommended
in prior research [13], [39].

When no nearby obstacles are detected, the V-Eye system
checks whether, based on the user’s current orientation and po-
sition, he/she is staying on the right track. It then delivers a
navigation message in the format “ready to + action” when
the user is 2m away from a turning point; and a second mes-
sage, in the format “action”, when the distance is less than 1m.
When the user has arrived at the destination, the system gen-
erates an arrival message that includes some information about
the destination. A demonstration video of V-Eye can be seen at
“https://youtu.be/ifwMCcuQSc8”, and Fig. 9 is a flowchart of
how the system generates its warning and navigation messages.

IV. EVALUATION OF VB-GPS

In this section, we show the evaluation of the proposed lo-
calization method, VB-GPS, first before evaluating the V-Eye
system with a user study in Section V. We compare it with three
stat-of-the-art methods in six scenes and then demonstrate how
the proposed method compensates the failure of MBL when
illumination of the scene changes. It shows the robustness of
VB-GPS even when MBL becomes worse.

A. Comparison With State-of-the-Arts

To evaluate VB-GPS, we compared it with three state-of-
the-art positioning methods – ORB-SLAM [31], MBL [9], and
PoseNet [22] – across six scenes. Fig. 10 shows the scenes for
comparison, including indoor and outdoor. Among them, the
scenes Square, Stairs, and Corner contain challenging routes
with multiple rotations in a short period of time. Scene Garden
contains a simple route, but with pure rotations. Scenes Plaza
and Indoor are easier scenes, with slow motion and smooth rota-
tions. Like our own system, MBL and PoseNet require training
data, so we used the same training images for all three of them.
We sampled the test sequences at 6 fps for offline SfM [48]
to obtain benchmarks for accuracy evaluation, which is a stan-
dard way of evaluating vision-based positioning algorithms in
outdoor environments [22], [23], [32].

A qualitative comparison results for scene Square are shown
in Fig. 11. Table II shows quantitative comparison results for all
scenes. VB-GPS outperformed the other three methods, with a
median error of approximately 0.27m and 0.95° on average. As
we can see, MBL performs well except in scene Indoor, because
the camera view may change a lot in indoor scenes when there is
even a slight difference between the view angles of the training
and test trajectories, making MBL difficult to match features. A
scene with multiple rotations easily causes worse relative pose
estimation with ORB-SLAM, but it outperform MBL in indoors
because visual SLAM has a smaller drift in small area. PoseNet
leads to the worst performance in our experiments, because it
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Fig. 9. System flow for the generation of warning and navigation messages.

Fig. 10. Six test scenes. The top row shows the 3D point cloud model and test trajectory of each scene, and the second row is one sample image of test video
sequences in that scene.

Fig. 11. Comparison of the proposed method (VB-GPS) with the state-of-the-art methods: ORB-SLAM [31], MBL [9], PoseNet [22], and our benchmark
generated by Visual SfM [48]. The left-side images show the scene and test trajectory (red curve).

TABLE II
POSITIONING ERRORS OF VB-GPS, ORB-SLAM [31], MBL [9], AND POSENET [22], WITH BOLD FONT SHOWING THE MINIMA
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Fig. 12. Results of comparison between VB-GPS (in red) and MBL (in green) under different illumination conditions, where training at 16:00 on one day, and
test at (a) the same time slot as training and at (b) 9:00, (c) 12:00, (d) 17:00, (e) 17:30, and (f) 17:50 on a different day.

in particular requires a large amount of training data to learn
the neural network. On the contrary, the proposed VB-GPS can
work well even with fewer training data. Briefly, the two main
reasons for this were (1) that the test sequences’ many rotations
sometimes led to tracking failures of visual SLAM, and (2) that
the training and test trajectories were not exactly the same, which
caused the results of MBL and PoseNet to suffer.

B. Robustness Against Scene Changes

To evaluate how the proposed method compensates the error
of MBL with visual SLAM when the performance of MBL de-
creasing. Here we design a scenario of illumination changes to
evaluate the robustness of our method, and compare it with MBL
[9], which is the only method besides VB-GPS that worked well
in the previous experiment. In scene Square, we collect multi-
ple test sequences over different time slots (Fig. 12). Here, we
train the 3D model for VG-GPS and MBL with the same video
sequence taken at 4:00 pm on one day. The results are shown
in Fig. 12. It shows even when MBL is not reliable for most
of frames due to illumination changes, VB-GPS still can pro-
vide a sufficiently good trajectory estimation compared to that
of ORB-SLAM or MBL in Fig. 11. It is because the proposed
intergrator will not assume both ORB-SLAM or MBL being
always correct and try to complement each other.

V. USER STUDY

A. Task Design

To evaluate our system design in various situations while en-
suring the participants’ safety, we chose a university campus as
our test site. We designed three travel tasks, one in an indoor en-
vironment and two in outdoor ones. The indoor area comprised
straight passageways; the first outdoor environment included a
number of buildings; and the second was a more open and wider
square. All three tasks were linked into a single task scenario,
as explained below.

Task 1: You want to discuss a project with a professor in
another department. Your friend drops you off at the front door
of the building where the meeting is to take place. However, your
friend has a class now, so you have to find the office by yourself.

Task 2: At the end of the meeting, the professor recommends
that you borrow a book related to your project topic. The profes-
sor cannot help you with this because he has another meeting.
However, he has asked a librarian to wait for you with the book

at the front entrance to the library. Therefore, you need to go to
the library to pick up the book.

Task 3: You have successfully obtained the book and it is
time to take a bus back home. Your friend is joining you for this
journey and meeting you at a particular bus stop, which you now
need to walk to.

Fig. 13 shows the routes of the above task scenario, along with
some examples of landmarks at which the participants received
navigation messages. For example, in Task 1 (Fig. 13(a)), the
system asked participants to be ready to turn right at point #1;
told them that they were walking down a straight passageway at
point #2; asked them to be ready to turn left at point #3; and told
them they had arrived at the meeting place. Similarly, during
Task 2 (Fig. 13(b)), the participants received a turn-left message
at point #1 and were told to be careful while going up the stairs at
point #2. The system provided information about the grass and
stones at point #3, and notified the users when they had almost
arrived at the library. And in Task 3 (Fig. 13(c)), the participants
were told they should be cautious while walking down the stairs
at first, and informed of the tactile guide path on the right-hand
side. Then, they received a turn-left instruction at point #3, and
finally were told that they had arrived at the correct bus stop.

B. Participants

We recruited four male and four female participants, all of
whom were visually impaired and aged 22 to 35. All were com-
pletely unfamiliar with the test environment. One (P2) had been
totally blind since birth; five had poor vision from birth and be-
came totally blind during elementary school (P3, P5, P6, P7,
P8). P4 was blind in the right eye and had poor vision in the
left; and P1 had poor vision due to cerebral palsy. All habitu-
ally used canes when traveling, and were familiar with smart-
phones. Three participants (P2, P3, and P7) had prior experience
of participating in navigation research. Table III shows the de-
mographic information and quantitative results of user study. To
further demonstrate how well the proposed solution supported
the participants, we also recorded the time of a normal person
(referred to as P0) walking along the same trajectory of each
task with normal speed as the baseline.

C. Procedure

During the experiment, each participant was asked to perform
all three of the tasks described above while wearing a GoPro
camera, which transmitted image frames to a laptop via Wi-Fi.
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Fig. 13. The routes for (a) Task 1, (b) Task 2, and (c) Task 3, with some examples of features from the system’s landmark map.

TABLE III
THE DEMOGRAPHIC INFORMATION AND QUANTITATIVE RESULTS OF THE TEST INCLUDING HOW MUCH TIME (T) IT TAKES TO FINISH EACH TEST, HOW MANY

TIMES THE PARTICIPANTS HAVE ENCOUNTERED DIFFICULTY (D) AND THE NUMBER OF MESSAGES (N) THEY RECEIVE IN EACH TASK. WHERE P0 IS A NORMAL

PERSON WALKING ALONG THE SAME TRAJECTORY OF EACH TASK WITH NORMAL SPEED

At the start of the study, we provided a brief description of the
system and asked participants to answer a background question-
naire. They were then given a system tutorial, which included
explanations of the audio feedback and specific messages, fol-
lowed by a training session on a campus route about 10m in
length that was not otherwise included in the experiment. Af-
ter this training session, the participants were asked to try their
best to perform the three tasks, with no time limit, and to tell
the study moderator when they thought they had arrived at the
final destination. The moderator followed each participant with
a laptop running our system through a 4G portable Wi-Fi router,
while two other members of the research team recorded video
and took notes. After they had completed all tasks, the partic-
ipants were asked to fill out a questionnaire about the system
and participate in a semi-structured interview about their expe-
riences. All interview sessions were audio- and video-recorded
for subsequent data analysis, with the participants’ permission.

VI. RESULT

All participants completed all three tasks successfully, but
the lengths of time this took them varied widely, as shown in
Table III. Those participants who rarely took part in orientation

and mobility (O&M) training (P5, P6) spent twice as long as the
others finishing the tasks. Except for the two with amblyopia,
i.e., P1 and P4, who could stay on track easily, the participants
had difficulty correcting their direction, and as a result, received
an increasingly large number of messages as the experiment
went on. Unpredictable factors also played roles in users’ out-
comes. For example, P2 had more difficulty completing Task 2
than the others because he encountered more pedestrians dur-
ing it; and P5 received more messages on Task 1 than others,
presumably because of her relatively low self-reported spatial
awareness. For P6, who usually walked with her parents, the
experiment represented her first-ever solo walk, and she unsur-
prisingly received the most messages. Despite their varying lev-
els of eyesight and experience of walking unassisted, however,
none of the participants went the wrong way or failed to reach
their three destinations. Our observations and the feedback from
the study are discussed in the sections that follow.

A. Positive Feedback

Our participants reported that our system, considered as an
information provider, was useful to them when traveling in un-
familiar environments, because it helped them to know more
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Fig. 14. Questionnaire feedback from the participants, with error bars indi-
cating ± standard error from the mean.

about such environments; to correct their direction of travel when
needed; and to feel more confident and independent (specifi-
cally, due to the detection of obstacles). Fig. 14 shows the rating
from the participants. Most thought that they could obtain suffi-
cient information from our system. Two areas where the system
received relatively high amounts of positive feedback are exam-
ined in turn in the following two subsections.

Spatial awareness and sense of security. V-Eye allowed the
participants to be aware of unexpected dynamic as well as static
obstacles near them. As a result, they reported that the system
helped them to build a sense of security and to feel more relaxed.
As P2 said, “It definitely makes me feel more at ease and more
secure that I can know what things are around and notice the
direction of the obstacles.” P8 noted, “I feel secure because I can
understand which way to go and walk at my normal speed, which
is usually slower in an unfamiliar place.” Moreover, although
P8 was carrying the cane that he normally used when walking,
he did not actually make use of it during the experiment, and
ascribed this to his confidence in the V-Eye system.

Responsive adjustment facilitates independence. Our sys-
tem enabled the participants to know where to go and to quickly
revise their direction of travel when they made wrong turns, via
a simple relative-direction prompts. It was probably due to this
feature that none of the participants had to backtrack during their
journeys. P5 mentioned that this feature “helped me a lot since I
turn to a wrong direction very often.” Likewise, P7 reported, “I
always have to remember which way to turn by using my cane
to hit something. I don’t have to memorize so many things if I
use the system.”

All participants reported feeling more independent while us-
ing the system and most ascribed such feelings to the system’s
directional information. P6, who had never walked alone before,
said: “I am very happy to walk by myself and don’t have to ask
others for help.”

P1 commented that, thanks to the system, “I do not have to ask
other people in advance to accompany me when I need to walk
in an unfamiliar place.” Similarly, P3 said, “I didn’t know how
to go to the destination, but I was really able get there by myself
using the system. This was unlike my previous experiences in
unfamiliar places.”

Fig. 15. Questionnaire feedback from the participants regarding the V-Eye
system’s information, with error bars indicating± standard error from the mean.

B. Individual Differences

Although the participants’ feedback was generally positive,
we found individual differences in their responses to the infor-
mation provided, which seemed to be related to their different
backgrounds and habits. These findings are divided into four
categories in the four subsections below.

Wanting more distance information about obstacles. As
noted above, when a participant was within 2m of a static ob-
stacle, our system issued a warning message. Most of the par-
ticipants quickly became accustomed to this and adjusted their
routes in accordance with the information provided. Nonethe-
less, not every participant thought that such notifications were
suitable (see Fig. 15). One, P8, who had a clearer concept of
distance than others in the sample, wanted to know how long
the stairway was in Task 3; and P2 mentioned that, although he
did not have a clear concept of distance, he was used to listening
to navigation systems’ distance information.

Differing responses to ready messages. All participants
thought it was useful to receive a ready message first, and sub-
sequently a reminder message. However, we observed that they
had varied reactions to ready messages. Four participants (P1,
P2, P3, P4) maintained their existing courses until the reminder
messages were received; but the others (P5, P6, P7, P8) tended
to perform the action immediately, i.e., too soon.

Relative direction. Our participants mostly considered that
the relative-direction information that our system provided was
clear, but again, this reaction was not unanimous. P2, for exam-
ple, commented that “Although relative direction is okay, I have
had a complete O&M training and I think clock directions will
be more suitable for me.”

Information about pedestrians. As shown in Fig. 15, the
participants’ ratings of the information about pedestrians was
relatively low, presumably due to their wide range of opinions
about how such information ought to be provided. At one ex-
treme, two participants (P4, P8) thought it was not really neces-
sary to know such information at all, whereas P1 thought it was
so helpful that he revised his route immediately if other pedes-
trians were nearby. P2 and P6 stopped for a moment when they
heard the information, and P2 said he actually looked forward to
hearing the next instruction regarding what direction he should

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on March 24,2022 at 09:13:36 UTC from IEEE Xplore.  Restrictions apply. 



1578 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

head in. Lastly, P3, P5 and P7 maintained their existing speeds
and directions when hearing this type of information, yet said it
might be useful if they wanted to ask people for help.

C. Discussion

Based on our analysis of the above findings, we recommend
that users be given a tutorial that includes how to customize the
system’s settings according to their individual habits and needs.
The four settings that we propose to allow users to customize in
a future version are discussed in turn below.

Distance information. Users should be able to choose
whether or not they want to have distance information included
in the instructions they receive, because not every visually im-
paired person has a strong concept of distance. Those who want
simple messages can keep our default settings, while others
can ask for additional distance information, e.g., in the formats
“direction + distance + obstacle” or “ready to + action +
distance”.

Distance threshold for ready messages. Because the partic-
ipants’ reactions upon hearing ready messages varied sharply,
users who tend to maintain their course and speed on hearing
them should use our default settings (i.e., 2m). On the other hand,
those who tend to take action instantly on hearing them should
be able to reduce their distance thresholds to points nearer to
upcoming action points.

Clock vs. relative directions. Depending on their back-
grounds, and in particular, the extent of their O&M training (if
any), clock directions might be more practical for some visually
impaired people than our system’s existing method of providing
directional information.

Pedestrian information. Because perceptions of the useful-
ness of our system’s pedestrian information varied so widely
among our participants, future users should be allowed to deter-
mine whether they need such information or not.

D. Limitations

This study revealed several limitations of V-Eye that must
be acknowledged here. One is that the system encounters de-
lays when communication between the camera and the laptop,
and/or between the laptop and the server, is poor; thus, the stabil-
ity of the entire system should be improved. Although it might
be more stable if all the system can run on embedded systems or
wearable devices, such as a smartphone. However, we think the
computation overhead will charge too much energy of battery
of the device. In addition, with the increasing development of
communication technologies, such as 5G, we think using inter-
net connection and cloud computing, as the proposed system,
will become more feasible in the near future.

Additionally, the system design necessitated that we build a
model and prepare information about static objects in advance
via a landmark map. However, we believe that it would be fea-
sible to obtain such information via a crowdsourcing approach
[4], [35]. And lastly, the localization and scene-understanding
components of our system did not run well on rainy days or at
night. Though this is a common problem in computer vision,
which many researchers have tried to find solutions to, it must

be solved before our system’s potential to help visually impaired
people can be fully realized.

VII. CONCLUSION

Unlike most recent work in a similar vein, the current study
has proposed a novel guidance system, V-Eye, that integrates
localization with scene understanding and a vision-based ap-
proach using a monocular camera. The proposed system can
detect and warn visually impaired individuals about both static
and moving obstacles; correct their orientation; and allow them
to navigate within and between indoor and outdoor spaces. The
participants’ responses to using our system indicate that it is a
viable and effective approach that enabled them to explore an
unfamiliar environment without human assistance. Although it
is still a prototype, our system represents a promising avenue
for future research aimed at enhancing the spatial awareness of
visually impaired people traveling in unfamiliar environments.
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