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ABSTRACT 
Time-killing on smartphones has become a pervasive activity, and 
could be opportune for delivering content to their users. This re-
search is believed to be the frst attempt at time-killing detection, 
which leverages the fusion of phone-sensor and screenshot data. 
We collected nearly one million user-annotated screenshots from 36 
Android users. Using this dataset, we built a deep-learning fusion 
model, which achieved a precision of 0.83 and an AUROC of 0.72. 
We further employed a two-stage clustering approach to separate 
users into four groups according to the patterns of their phone-
usage behaviors, and then built a fusion model for each group. The 
performance of the four models, though diverse, yielded better av-
erage precision of 0.87 and AUROC of 0.76, and was superior to 
that of the general/unifed model shared among all users. We inves-
tigated and discussed the features of the four time-killing behavior 
clusters that explain why the models’ performance difer. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; Smartphones. 
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1 INTRODUCTION 
Researchers have leveraged smartphones’ capabilities to engage 
individuals in a variety of tasks, including mobile learning exer-
cises [12], just-in-time interventions [19], mobile self-reports [66], 
and crowdsourcing tasks [18]. In recent years, commercial plat-
forms have also started doing so to obtain crowdsourced data, such 
as locale information1 [3, 94] and labeled data2 [17, 18]. However, 
given human beings’ limited attentional resources, a crucial prob-
lem for anyone delivering content to phones is how to make it stand 
out from the feast of other incoming information. One mainstream 
approach to achieving this is to predict moments at which users 
are receptive to such content, e.g., the content related to notifca-
tions [63, 70, 73], questionnaires [70], and reading material [22, 70] 
explored in prior studies. 

Moments of “attention surplus” [72] constitute another oppor-
tunity for such detection attempts. Pielot et al. [72], for example, 
attempted to detect one kind of "attention surplus" state – bore-
dom. In such situations, some people tend to seek stimulation on 

1https://maps.google.com/localguides 
2https://play.google.com/store/apps/details?id=com.google.android.apps.village. 
boond 
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their phones to alleviate boredom. Beyond boredom, however, re-
search has shown that mobile phone usage is not always driven by 
a specifc purpose [32], but is often accompanied by, or is primar-
ily, "time-killing" behavior: i.e., flling periods of perceived free 
time [56, 65], such as waiting for a train or during an uninteresting 
speech [41]. Time-killing is not necessarily linked to boredom, as 
the user may not be feeling unfulflled [30], unengaged [25], lacking 
meaning [91], or having low arousal [20] – which are often used 
to defne boredom [26]. Rather, this type of usage can simply be 
a result of habit [56, 65]. Habitual phone usage is widespread and 
can occur even while a person is performing work-related tasks. 
However, when the trigger of habitual phone usage is to fll free 
time, even if it may occasionally include productive tasks such 
as checking emails and messages [13, 21], it is typically viewed as 
aimless [32], and if it occurs frequently without regulation, as addic-
tive [51] and compulsive [87]. In an efort to improve users’ overall 
productivity [102] or well-being [36, 53, 93], previous studies have 
aimed to decrease this type of phone usage or make it more pro-
ductive [12, 23, 37]. Meanwhile, phone users may not necessarily 
feel bored during the phone usage, since they may feel interested, 
entertained, and amused, once they have started using the phone 
and been exposed to entertaining and interesting content, such as 
playing games, watching funny videos. 

However, despite these conceptual and operational diferences 
between the feeling of boredom and phone usage for time-killing, 
other than boredom detection [72] which is the closest to this 
purpose, there has been limited efort in detecting the occurrence 
of such prevalent phone usage intended for time-killing, making 
the feasibility of detecting this phone usage unclear. Nevertheless, 
detecting this phone usage provides not only opportunities for re-
searchers and practitioners to deliver contents that help users fll 
time by engaging in more productive activity during these peri-
ods [70], but also enables researchers to identify when and how 
often in a day such phone usage periods take place. 

In light of these benefts, we aim to develop a model for efec-
tively detecting phone usage intended for time-killing. To achieve 
this aim, we developed an Android research application that auto-
matically collected smartphone screenshot and phone-sensor data, 
and an interface that allowed its users to efciently annotate their 
screenshot data with time-killing periods and their availability dur-
ing those periods for viewing notifcations. Screenshot data were 
collected because we expected that it would reveal rich temporal, 
textual, graphical, and topical information about people’s phone 
usage [9] for detection. 

Data collection with 36 participants over 14 days yielded a dataset 
of 967,466 pairings of annotated phone-sensor data with screen-
shots, covering 1,343.7 hours of phone usage. Moreover, the partici-
pants self-reported being more available for notifcations during 
time-killing phone use (82.2%) than non-time-killing phone use 
(63.3%). Using this dataset, we built a deep-learning-based fusion 
model that achieved a precision of 0.83 and an Area Under the 
Receiver Operating Characteristics (AUROC) of 0.72. To further 
improve the model’s performance by taking account of diferences 
in the participants’ time-killing behaviors, we employed two-stage 
clustering that grouped people with similar phone usage behav-
iors into four groups, and built a fusion model for each group. The 
four resulting models’ collective average precision and AUROC 

went up to 0.87 and 0.76, respectively: i.e., better than those of the 
general model (i.e., the one shared among all users). However, the 
four models achieved quite diferent performance on many met-
rics, and to obtain insights into these diferences, we delved into 
the characteristics of each user group’s phone-usage behavior as 
well as the important features learned by their respective models 
that were positively and negatively correlated with time-killing 
moments. The results of that investigation help explain both how 
and why the efectiveness of sensor data and phone screenshots 
for detecting time-killing moments varied across user clusters. To 
facilitate future research in this area, we also release open source 
code and model at GitHub3. 

This paper makes the following three major contributions to 
HCI. 

1. It presents the development of a deep-learning-based fusion 
model that detects smartphone users’ time-killing phone 
usage, enabling researchers to deliver productive content or 
intervention accordingly during such phone usage. 

2. It demonstrates that building such models for user groups 
clustered according to their phone-usage behaviors can achieve 
better overall model performance, and that all group-specifc 
models may achieve signifcantly better performance than 
the general model. 

3. It shows how and why the efectiveness of sensor data and 
phone screenshots for detecting time-killing moments vary 
across diferent time-killing behavioral patterns. 

2 RELATED WORK 

2.1 Interruptibility, Breakpoint, and Opportune 
Moment Prediction 

Many studies have employed machine-learning techniques to pre-
dict interruptible moments, breakpoints, and opportune moments. 
For instance, Pejovic et al. [68] achieved the predictions of mobile 
interruptibility with a precision of 0.72. Others have focused on 
predicting opportune moments for receiving calls and notifcations. 
For example, Fisher et al. [28] built personalized models to predict 
such moments in the case of incoming phone calls, and achieved an 
average accuracy above 0.96 (see also Smith et al. [80]); and Pielot 
et al. [71] applied machine-learning techniques to predict whether 
users would view an incoming message notifcation within the next 
few minutes or not. Mehrotra et al. [59], for instance, proposed a 
system based on machine-learning algorithms that automatically 
extracted rules for phone users’ preferences about receiving noti-
fcations. A similar study by Visuri et al. [92] reported that 81.7% 
of phone-user interactions with alert dialogs could be accurately 
predicted based on user clusters. 

Among researchers seeking to identify opportunities based on 
breakpoints, Ho et al. [34] detected postural and ambulatory ac-
tivity transitions in real-time. Iqbal and Bailey [39] showed that 
scheduling notifcations at breakpoints reduced frustration and 
reaction times. Okoshi et al. [63], who also developed a breakpoint-
detection system for mobile devices, showed that notifcations de-
livered during breakpoints required 33% less cognitive load than 
those delivered randomly. Later, the same authors [64] showed 

3https://github.com/johnsonkao0213/kill_time_detection 

https://github.com/johnsonkao0213/kill_time_detection
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that delaying notifcation delivery until an interruptible moment 
signifcantly reduced in user response time. Adamczyk et al. [1] 
divided breakpoints in tasks into two types, coarse and fne, and 
showed that delivering notifcations at their predicted best points 
for interruptions consistently produced less annoyance, frustration, 
and time pressure. Iqbal et al. [38] applied it to statistical models 
that mapped interaction features to each breakpoint type, based on 
task-execution data and video footage. And Park et al. [67] used 
built-in sensors to detect social contexts, enabling them to identify 
four distinct types of breakpoints suitable for delivering deferred 
smartphone notifcations. 

Detecting moments when device users want to engage with con-
tent has also been a focus of considerable research efort. Sarker 
et al. [78], for example, sought to identify moments for delivering 
notifcations that would result in maximum engagement. Similarly, 
Choi et al. [19] built a mobile intervention system for preventing 
prolonged sedentary behaviors, and showed that contextual fac-
tors and cognitive/physical states were good predictors of decision 
points. Turner et al. [88] decomposed notifcation interaction into 
three stages – reachability, engageability, and receptivity – and 
developed models for predicting when phone users reached each of 
them. Pielot et al. [70] built a model that predicted whether their 
participants would engage with diferent types of content they 
were ofered, which achieved a success rate 66.6% higher than the 
baseline. Steil et al. [81] predicted whether people’s primary atten-
tional focus was on their handheld mobile devices, and proposed 
“attention forecasting”, similar in spirit to user-intention prediction. 

Another strand of research on attention prediction involves iden-
tifying "attention surplus" moments and timing the delivery of 
specifc content and tasks accordingly. Such content and tasks 
have thus far included reading material [22, 70], learning mate-
rial [12, 23, 37], interventions [19, 60, 78], questionnaires [33, 70], 
and crowdsourcing tasks [18], among others. For example, Pielot et 
al. [72] deemed moments of boredom to be moments of attention 
surplus, and detected them using phone logs: an approach that 
achieved 0.83 AUROC. However, they obtained a high number of 
false positives, which they felt would lead to user annoyance, and 
therefore tuned their model to strike an optimal balance between 
recall and precision. Based on boredom levels detected via phone-
sensor data, Dingler et al. [23] delivered micro-learning reminders 
to language learners, and their results suggested the feasibility of 
identifying moments of boredom as mobile learning opportunities. 
Cai et al. [12] developed WaitSuite, which detects various types 
of moments when its users are waiting for something to happen, 
and delivers micro-learning tasks during them. Similarly, Inie and 
Lungu [37] detected that when users were about to become un-
productive due to visiting time-wasting websites, blocked such 
visits, and delivered learning exercises instead. Chen et al. [16] used 
screenshot data instead of phone sensor data to study the detection 
of time-flling phone use. However, their work did not leverage 
both sensor and screenshot data. In contrast, this work uses both 
types of data and builds models for diferent user groups. 

2.2 Phone-usage Research 
Several studies have utilized self-report methods such as interviews 
and diaries. For instance, Palen et al. [66] investigated mobile usage 

via a voicemail diary study. However, because self-report meth-
ods are subject to recall biases [24, 29], quantitative analysis of 
phone-usage logs is becoming increasingly popular [27, 97, 99]. For 
example, Böhmer et al.’s [8] large-scale study based on logged appli-
cation usage found that news applications were most popular in the 
morning; and that game-playing mostly occurred at night. Xu et 
al. [97] also found diferential patterns by app type, e.g., that sports 
apps were more frequently used in the evening. Falaki et al. [27] 
distinguished between two broad types of intentional use activities 
– user/phone interaction, and app use – and found that strong di-
versity in users’ behavior was linked to diferent purposes for using 
phones. Canneyt et al. [90] revealed how app-usage behavior was 
disrupted during major political, social, and sporting events. And 
Li et al. [54] studied the long-term evolution of mobile-app usage, 
and found that the diversity of app-category usage declined over 
time, whereas the diversity of the individual apps used increased. 

Lukof et al. [56] identifed situations in which people felt a lack 
of meaning while using their phones, which prominently included 
passively browsing social media, consuming entertainment, and 
habitual use. Hiniker et al. [32] likewise reported "ritualistic" uses 
of phones, which tended to be habitual. Another habitual phone 
usage is "phubbing", i.e., the habit of snubbing someone in favour of 
a mobile phone. As Al-Saggaf et al. [5] have suggested, individuals 
engage in phubbing while they are experiencing negative emotions 
such as boredom, loneliness, and fear of missing out. In a diferent 
study, Al-Saggaf and colleagues [4] reported that trait boredom 
could predict phubbing frequency. 

A growing body of work involves attempts to construct models of 
phone usage. Kostakos et al. [48], for instance, developed a Markov 
state transition model of smartphone screen use. Jesdabodi et al. [42] 
identifed phone users’ behavioral states, and showed that morning 
and evening routines were both mostly marked by communication 
and gaming activities. Some other work has focused on understand-
ing diferences in usage features across distinct user clusters. Zhao 
et al. [101] studied app usage with a two-step clustering approach 
and revealed clusters of users including “night communicators”, 
“evening learners”, and “screen checkers”, among others. Jones et 
al. [43], on the other hand, identifed three clusters of users: “check-
ers”, “waiters”, and “responsives”. And Katevas et al. [44], based 
on a combination of phone-use log data and experience-sampling 
method data, identifed fve types of mobile-phone use: “limited 
use”, “business use”, “power use”, “personality-induced problematic 
use”, and “externally induced problematic use”. 

Finally, because log data are limited to system events like screen 
events and app states, some researchers have used screenshots and 
video recordings to study phone usage. For example, Brown et 
al. [10] combined screen-captures of iPhone use with recordings 
from wearable video cameras, and showed that video data illumi-
nated various aspects of people’s interactions with their phones. 
Subsequently, Brown et al. [11] collected screen recordings of phone 
use and audio recordings of ambient talk, and identifed various 
situations in which people engaged in phone usage with their "free" 
attention, such as engaged in quick games or social-media check-
ing while waiting for a friend to arrive or for an event to start. 
Reeves et al. [76] showed how screenshots could be used to unob-
trusively collect valuable data on individuals’ digital life experience. 
Later, Reeves et al. [9] explored how textual and graphical features 
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Figure 1: User interfaces for the main functions of the Killing Time Labeling application 

changed during sessions and found that word and image velocity 
both decreased late at night. 

Some other researchers have used deep-learning models trained 
on large amounts of Graphical User Interface (GUI) data to detect 
screenshots. For instance, Beltramelli’s [7] Pix2Code applies an 
end-to-end neural image captioning model to generate code from a 
single input image, with better than 0.77 accuracy across various 
platforms. Similarly, Chen et al. [15] utilized a CNN-RNN model 
to generate GUI skeletons from screenshots. Other work focused 
on locating UI elements on screens, such as by White et al. [96] 
, has used YOLOv2 [75] to automatically identify GUI widgets in 
screenshots. Chen et al. [14] built a gallery of large scale of GUI de-
signs by applying a Faster RCNN model [77] ; and Zhang et al. [100] 
proposed an on-device model capable of detecting UI elements. 

3 DATA COLLECTION 

3.1 Input-data Selection 
Screenshot collection has become a popular method in HCI research, 
because it allows researchers to collect quantitative and qualitative 
data simultaneously [45, 49, 50, 83] in high granularity and rich 
detail [9]. Along with information about people’s interactions with 
their phones, it can help researchers reconstruct both moment-to-
moment phone use and wider usage patterns [58, 74, 76, 98]. Due 
to these advantages, we aimed to leverage screenshot data, along 
with phone-sensor interaction information (including user/phone 
interaction and phone status), to extract features that character-
ized our participants’ app usage and switching patterns. We then 
attempted to associate such usage information and patterns with 
time-killing vs. non-time-killing moments. 

3.2 Research Instrument 
We developed an Android research application, called Killing Time 
Labeling (KTL), to collect annotated screenshots and phone-sensor 

data (i.e., Android accessibility events, screen status, network con-
nections, phone volume, application usage, and type of transporta-
tion). KTL also captures the notifcations its users receive, the times 
at which they receive them, and how they are dealt with. The back-
ground service that automatically collects data is activated within 
a 12-hour timeframe every day, the default being from 10:00 a.m. to 
10:00 p.m., but the start time and end time are both user-adjustable, 
meaning that the data might be collected for more than 12 hours per 
day in some cases. During whatever 12+-hour window the user has 
chosen, his/her phone-sensor data is collected every fve seconds. 
Screenshots are also captured every fve seconds, but only when 
the phone screen is on. 

We designed a user interface for KTL that allowed our partici-
pants to easily select groups of screenshots via drag-and-drop for 
data labeling (see Fig. 1). A detailed demonstration of this data-
labeling procedure is provided in our supplemental video. The 
participants were instructed to review and annotate screenshots in 
accordance with the situations in which they were taken. Specif-
cally, they were instructed to annotate screenshots with whether 
their specifc phone use periods were intended to kill time, as well 
as whether they were available for notifcations during those pe-
riods. Notably, whereas the former information was used as the 
ground truth for developing the model for time-killing detection, 
the latter was to examine whether the participants would be more 
available for notifcations during time-killing phone use than dur-
ing non-time-killing phone use. Therefore, for each screenshot, 
participants had fve annotation options: 1) killing time and avail-
able for viewing notifcations; 2) not killing time but available for 
viewing notifcations; 3) killing time but unavailable for viewing 
notifcations; 4) not killing time and unavailable for viewing no-
tifcations; and 5) unidentifable, i.e., the participant could not be 
certain of his/her time-killing state or had forgotten it. Each time 
s/he manually selected and annotated a series of screenshots, the 
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participant was to report his/her actual activities4 at the time those 
screenshots were taken. We instructed the participants to annotate 
them as “killing time” as long as they felt or subjectively deemed 
that their mobile-phone usage at the time was to pass the time, 
and otherwise to annotate it as "not killing time." Regarding the 
availability label for viewing notifcations, we instructed them to 
annotate screenshots as “unavailable for viewing notifcations” if 
they positively did not want to be interrupted or to see any no-
tifcations when using the app, and otherwise to annotate them 
as “available.” To reduce labeling bias due to recall errors, we in-
structed participants to mark screenshots as "unidentifable" when 
feeling unsure, to annotate screenshots whenever possible at their 
convenience, and to complete annotation before going to bed every 
day. In addition, KTL also sent a reminder at night and invalidated 
screenshots that had not received any annotations after two days, 
which participants could no longer annotate. 

All screenshots were reduced in size and temporarily stored in 
the local storage of the participants’ respective phones before they 
were reviewed, labeled, and manually uploaded to our server. The 
participants had the right not to upload any given screenshot, e.g., 
because it contained sensitive information. Phone-sensor data, on 
the other hand, was automatically uploaded by KTL whenever a 
participant’s phone was connected to the Internet, to avoid such 
data taking up too much storage space. Also, to avoid impacting the 
participants’ data plans, KTL only did so via WiFi networks, unless 
a user overrode this feature and chose to upload using the cellular 
network. The participants were informed of all these rules in a 
pre-study meeting (the other purposes are detailed in section 3.3 
below). 

KTL also delivered notifcations linked to experience sampling 
method (ESM) questionnaires and various other content types. 
That other content consisted of 1) crowdsourcing tasks5 [17, 18], 
2) non-ESM questionnaires6 [70], 3) advertisements [70], and 4) 
news items [69, 70, 72]. KTL only sent such notifcations within the 
user’s chosen 12+-hour timeframe and only when his/her screen 
was on. Each notifcation was randomly selected from among the 
four types listed above, and delivered at random intervals of not 
less than one or more than three hours. Five minutes after each 
notifcation arrived, an ESM questionnaire was also sent, asking the 
participant to report his/her awareness of and receptivity to that 
notifcation, as well as what context s/he was in when it arrived. 

3.3 Study Procedure 
Prior to data collection, due to the COVID-19 pandemic, we allowed 
our participants to choose between remotely and physically attend-
ing a pre-study meeting, during which the researchers helped them 
install KTL on their phones, explained how to use it, and walked 
them through the study procedure. We told them that we expected 
them to annotate all screenshots automatically captured by KTL 
every day, and that 14 days of active participation were needed for 
their data to be useful to us. Therefore, for every day they failed 

4This question was adopted from previous research [52]. 
5The crowdsourcing questions were inspired by Google Crowdsource and Local Guide, 
two platforms that aim to improve Google Maps and various other Google services 
through user-oriented training of multiple algorithms.
6The questionnaire was inspired by Google Opinion Rewards, which ofers rewards to 
its users who answer surveys and opinion polls on various topics. 

to submit annotated screenshots, their participation deadline was 
postponed by one additional day. On their respective fnal days of 
participation, to aid future analysis, they completed four additional 
questionnaires that measured their boredom proneness [82], smart-
phone addiction [55], inattention [46], and perceived acceptability 
of time-killing detection being deployed on their phone. In addition, 
we invited all participants to two optional semi-structured inter-
views, the frst of which was held after they had contributed data 
for seven full days, and the second, after their participation was 
complete. In those interviews, we asked them about their labeling 
processes, time-killing behaviors and preferences, and how they 
killed time (both typically and during the study). Those who com-
pleted 14 days of data collection were paid NT$1,350 (approximately 
US$44). Those who participated in the mid-study interview were 
paid an additional NT$150 (US$5), and those who were interviewed 
after the study, another NT$250 (US$8). The study was approved 
by our university’s Institutional Review Board (IRB). 

3.4 Recruitment and Participants 
We selected participants with various occupations, expecting they 
would have diferent time-killing patterns. Also, to ensure that 
sufcient data were collected, we selected participants who used 
their mobile phones more than one hour a day, according to their 
self-reporting in a screening questionnaire. We recruited partici-
pants primarily via several Facebook groups aimed at matching 
researchers with study participants in our country, but also posted 
a recruiting message on Facebook pages for the local community in 
the hope of further diversifying our subjects’ backgrounds. A total 
of 55 participants were recruited for this study, including 12 par-
ticipants who participated in a pilot study that helped us improve 
the KTL design, annotation mechanism, and study procedure. Of 
the remaining 43 participants, one withdrew before data collection 
commenced, two did not complete the experiment, and four others 
were excluded as being outliers (i.e., they had annotated more than 
95% of their data as “killing time”). As a result, data from 36 people 
were used for training our time-killing detection model. Of those 36, 
32 took part in both optional interviews, two only in the mid-study 
interview, and two others, only in the post-study interview. All 36 
participants were aged between 20 and 54 (M = 27.4, SD = 6.8), with 
16 identifying as male and 20 as female. Half were students, and 
the other half in employment. 

3.5 Data Collection 
Most participants provided data on 12 hours of phone usage per day, 
but six voluntarily extended this to 13-15 hours; one, to 17.5 hours; 
and another, to the whole day. In total, 1,186,345 screenshots were 
annotated (per-participant M = 32,954.0, SD = 15,557.9), which rep-
resented approximately 1,633.8 hours of phone use. Among these 
1,186,345 annotated data points, 1,062,780 (89.6%) screenshots were 
uploaded; a per-participant average of 29,521.7 screenshots (SD = 
13,544.9). Thus, the initial dataset that we collected for analysis 
consisted of 1,062,780 annotated screenshots and the phone-sensor 
data associated with the moments at which they were captured. 
Two-thirds (n = 773,401) of uploaded and non-uploaded screenshots 
were annotated as “killing time”, and somewhat over a quarter (n = 
346,792) as “not killing time”, with the remaining 5.6% (n = 66,152) 
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Table 1: Summary of data collection 

Labels Uploaded Not uploaded Total 
Killing time and available for viewing notifcations 606,760 (51.1%) 29,160 (2.5%) 635,920 (53.6%) 
Killing time but unavailable for viewing notifcations 135,380 (11.4%) 2,101 (0.2%) 137,481 (11.6%) 
Not killing time but available for viewing notifcations 202,327 (17.1%) 17,081 (1.4%) 219,408 (18.5%) 
Not killing time and unavailable for viewing notifcations 118,313 (10.0%) 9,071 (0.8%) 127,384 (10.7%) 
Unidentifable 0 (0.0%) 66,152 (5.6%) 66,152 (5.6%) 
Total 1,062,780 (89.6%) 123,565 (10.4%) 1,186,345 (100.0%) 

Table 2: The sensor features used in the study 

Phone Context Current Characteristics Current session characteristics (accumulated up to the current 
screenshot record) 

Transportation 
Mode 

Physical activity (i.e., not moving, on foot, in vehicle, or on 
bicycle) 
Was moving (i.e., on foot, in vehicle, or on bicycle) 

Cumulative time of {not moving, on foot, in vehicle, on bicycle} 

Majority of physical activity 
Day of the week (0-6) 
Was weekend (i.e., Saturday, Sunday) Type of Day 

Hour of the day in 24-hour notation (0-23) 
Was meal time (11:00 a.m.-12:59 p.m., 5:00 p.m.-6:59 p.m.) Time of a Day 

Phone battery level 
Phone was charging / not charging 
If charging over AC or USB 

{AVG, STD, MIN, MAX, MED} Phone-battery level 
Charging count 
Cumulative charging time 

Battery Status 

Screen Time {AVG, STD, MIN, MAX, MED, SUM} Screen time 
Screen 
Orientation 

Portrait / landscape mode 

Name of the app in the foreground 
Package name of the app in the foreground 
Category of the app in the foreground 

Count and frequency of app switches 
Count of used apps 
Cumulative usage time of the 15 most frequently used app cat-
egories and all remaining app categories combined into one 
category group. 

Foreground App 

{WiFi, Mobile} network was available / unavailable 

{Type, operator} of the network the phone connected to 
Was connected to the network 

Cumulative time the phone was connected to the {WiFi, Mobile} 
network 
Cumulative time the phone was not connected to any network 

Network Info 

Silent / vibrate / normal Cumulative time of {silent, vibrate, normal} 
Was adjusted 

Ringer Mode 

Ringing / in call / in communication / normal Cumulative time of {ringing, in call, in communication, normal} 
Call count Audio Mode 

Volume of streams, e.g., music playback, notifcation, phone calls, 
phone ring, system sounds 

{AVG, STD, MIN, MAX, MED} Volume of stream {music playback, 
notifcation, phone calls, phone ring, system sounds} 
Volume of stream {music playback, notifcation, phone calls, 
phone ring, system sounds} was adjusted 

Stream Volume 

Call Status Device call state: idle / of-hook / ringing 

Usage Current Characteristics Current session characteristics (accumulated up to the current 
screenshot record) 

Screen-on 
Events 

Count of Screen-on events during the past 
180/300/600/900/1,800/3,600 seconds 

{count, frequency} of screen-on events 

Accessibility 
Events 

Count of {clicking, long-clicking, scrolling, hover enter/exit, 
setting-input focus, changing-the-text, selecting} events dur-
ing the past 30/60/180/300/600/900/1,800/3,600 seconds 

{count, frequency} of {clicking, long-clicking, scrolling, hover en-
ter/exit, setting-input focus, changing-the-text, selecting} events 

Note. * All time-related calculations were in seconds 

being “unidentifable” (see Table 1). The above distribution cannot 
perfectly represent the participants’ actual phone usage, insofar as 
some screenshots were not annotated and/or not uploaded. Nev-
ertheless, we are confdent in its general outlines, e.g., that there 
were more time-killing moments than non-time-killing ones, and 

that the participants reported being available to view notifcations 
more frequently during time-killing moments (82.2%) than during 
non-time-killing ones (63.3%). 
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Figure 2: Illustration for the architecture of our proposed model, which takes the input composed of the phone-sensor data and 
the screenshots (collected within a certain time window, e.g., 30 seconds) and predicts the users’ time-killing moments. 

Because the focus of this paper is on how to predict time-killing 
moments, it will not systematically discuss the interview data, col-
lected notifcation data, ESM results, or the results of the three 
questionnaires that were not related to our approach’s user accep-
tance. Those other datasets will instead be used in future research. 

3.6 Feature Selection and Extraction 
To predict time-killing moments, we extracted two kinds of feature 
sets from the phone-sensor data: phone context and user interac-
tions. For each of these feature sets, we created two temporal ranges, 
one describing the phone at the moment when a screenshot was 
taken, and the other, describing the characteristics of the phone-
use session during which it was taken. We defned a phone-use 
session as a continuous use of the phone during which any brief 
screen-of interval was not longer than 45 seconds, based on the 
fndings of van Berkel et al. [89], that using the 45-second threshold 
separating two sessions was more accurate than the others. Thus, if 
more than 45 seconds had passed since the last screen-of event, the 
current usage was considered a new session. In addition, inspired 
by our interview data and prior research fndings [72] suggesting 
that some phone events or user actions occur intensively during 
time-killing, we created features that measured the frequency of 
various types of phone and interaction events during nine past-time 
windows, ranging from a minimum of 30 seconds to a maximum 
of 3,600 seconds (e.g., frequency of scrolling within the previous 
30 minutes). We excluded data from the frst hour of each person’s 
participation day, because a large portion of such data could not 
allow us to compute these features. As a result, the fnal dataset for 
developing the model consisted of 967,466 annotated screenshots, 
from which 183 features were derived, as shown in Table 2. The 
1,181 apps used during the study by our participants were placed 
in 56 categories based on their Google Play Store categorizations 
and prior literature [101]. 

4 MODEL DESIGN 
We adopt deep-learning, which learns the pattern in an end-to-
end manner. Specifcally, our proposed model (shown in Fig. 2) 
is composed of three main subnetworks: 1) an encoder E� built 

upon DeepFM [31] and an LSTM [35] that extracts sensor features 
from phone-sensor data, 2) an encoder E� based on the ResNet and 
an LSTM that encodes the sequences of screenshots into visual 
features, and 3) a fusion subnetwork F that adopts an attention 
mechanism followed by fully-connected layers to fuse the sensor 
features and the visual features into the fnal prediction outcome, 
i.e., time-killing vs. non-time-killing. Please note that, for the fea-
ture encoder E� of phone-sensor data, we chose to use a DeepFM 
network for our model because its architecture allows it to learn 
the various interactions among features without requiring exten-
sive feature engineering. Additionally, DeepFM has demonstrated 
superior performance when modeling sensory data composed of 
multiple feature felds, making it well-suited for our purposes [31]). 
For the feature encoder E� for screenshots, on the other hand, we 
chose to use a ResNet for our model because it is able to efectively 
address the gradient vanishing problem, allowing the model to be 
more stable and robust during training. Moreover, for both E� and 
E� encoders, we leveraged LSTM rather than RNN to handle the 
sequential input because LSTM is a popular choice for modeling 
sequential data because of its forget-gate that allows it to focus 
on the important parts of the input data. More details of these 
subnetworks are provided in the following sections. 

4.1 Encoder E� of Phone-sensor Data 
Given a sequence of phone-sensor data collected at several time 
steps within a certain time window (ideally these time steps are 
evenly distributed within a given time window), denoted as � X = 
{�� � } , where � is the number of time steps, the encoder � E which
� �=1

is built upon a DeepFM module D� and a 3-layer LSTM module 
L� turns � X into the sensor feature F � . As our phone-sensor data 
�� contain both continuous and categorical values (e.g., a phone 
batter
�

y level is a continuous value, whereas a ringer mode is a 
categorical value), our DeepFM module D� adopts the DeepFM [31] 
framework that extracts a feature representation �� = D� (�� ) for

� � 
each �� . Note that the architecture of our DeepFM module D� is
almost

�
 identical to the one proposed in [31], except that it uses a 

128-dimensional vector in the last fully-connected layer in order 
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to ft into the size of � . Specifcally, the feature vectors � � {� � }
� � �=1 

extracted from the sensor data {�� � } are sequentially fed into 
� � =1 

the LSTM module L� to model the temporal variations in   {�� �} , 
� �=1

which then generates a 256-dimensional sensor-feature vector F � . 

4.2 Encoder E� of Screenshots 
The visual encoder E� which extracts the visual feature F � from 
a stack of � screenshots � X = {� � � } is composed of a ResNet 

� � =1 
module D� and a 3-layer LSTM module L� . All the screenshots are 
resized to 224 × 224 pixels, regardless of whether they were taken 
horizontally or vertically; then they are fed into the ResNet mod-
ule D� to extract the feature representation �� = D� (� � ), where 

� � 
D� adopts the ImageNet-pretrained Resnet-101 backbone and the 
size of �� is 7 × 7 × 2048. Similar to the procedure of encoding 

� 
phone-sensor data, these extracted features {�� � } are taken as a 

� �=1 
sequential input for the LSTM module L� to derive their visual fea-
ture F � (which is 256-dimensional) of � X . For both LSTM modules 
L� and L� , the dimensions of all the hidden state, cell state, and the 
hidden layer are set to 512 respectively. Note that although L� and 
L� have a similar architecture, they are trained independently and 
do not share any weight. 

4.3 Fusion Subnetwork F over Sensor and Visual 
Features 

After obtaining the sensor feature F � and visual feature F � from 
phone-sensor data � X and screenshots � X , respectively , we used 
a fusion subnetwork F that jointly considers the high-level infor-
mation from these two features in order to detect participants’ 
time-killing behaviors. To achieve this, instead of concatenating 
two features and utilizing a simple classifer to perform a multi-
modal fusion, we introduced an additional multi-fusion layer that 
takes both features as inputs to predict the reweighting coefcients 
�� and �� (i.e., analogous to the importance) for both feature dimen-
sion F � = �� ⊗F � F � and F � ; The reweighted features, denoted as ˜ 
and F̃  � = ⊗ F � �� , are then concatenated with the original F � 

and F � , which are further intertwined by several fully-connected 
layers to generate the fnal classifcation outcome of time-killing or 
not. 

Training Details. We adopted a stage-wise training procedure, 
in which we frst trained the encoders, E� and E� , independently, 
followed by training the fusion subnetwork. Specifcally, we frst 
attached a fully connected layer to the end of the encoder E� and 
E� individually. Then, the layer maps the sensor feature F � and the 
visual feature F � to the output of time-killing detection respectively, 
i.e., the whole encoder together with the attached fully connected 
layer becomes a classifcation model and can be pre-trained via 
using our collected dataset and a classifcation objective of cross-
entropy. After pre-training both encoders till they converged, we 
removed the attached fully connected layers and fxed the weights 
of encoders. Then we trained the fusion subnetwork F via the cross-
entropy loss. We chose to follow a stage-wise training procedure 
because it performs better than training from scratch. We adopted 
the Adam optimizer [47] for training the model. In pretraining the 
encoder E� , we set the batch size 512 and the learning rate 10−3, 

while for pretraining the encoder E� , we set a batch size 196 and 
the learning rate 10−5. Lastly, for training the fusion subnetwork 
F, we set a batch size 196 and the learning rate 10−5. Our model is 
implemented with PyTorch and trained using 8 Tesla V100 GPU 
cores. 

5 THE FUSION MODEL FOR PREDICTING 
TIME-KILLING MOMENTS 

5.1 Experiment 
5.1.1 Dataset. We paired each labeled screenshot with phone-
sensor data according to the time at which that screenshot was 
taken. To predict whether a screenshot was labeled as time-killing 
or non-time-killing, we used features derived from the screenshots 
and their paired sensor data 30 seconds (i.e., seven screenshots) 
prior to the predicted one (and without using any data other than 
such 30-seconds period). In other words, a sequence of data con-
tained seven data pairs, including the predicted screenshot and the 
data for predicting it. We made sure that such sequences did not 
overlap with one another; and that, if a sequence contained fewer 
than seven data pairs, we padded it to that length seven by using 
zero padding, i.e., a whole black image. 

Each participant contributed a diferent amount of data. There-
fore, to prevent our model from being overly biased towards par-
ticular participants who contributed much more data than others, 
we sampled 20,000 screenshots from each participant to create our 
training dataset. Such sampling was random, except insofar as we 
ensured that it contained 1) data collected on both weekends and 
weekdays, and 2) exactly equal numbers of time-killing and non-
time-killing instances. For the testing dataset, on the other hand, 
we did not seek to strike this balance, but instead followed the 
original distribution, such that the evaluation of the model would 
more accurately refect the time-killing distribution that one would 
observe in the real world. 

5.1.2 Evaluation Metrics. Our testing dataset had more time-killing 
instances than non-time-killing ones, in the ratio 7:3. We made 
many computations to compare model performance, but here, we 
will focus on ROC-curve (Receiver Operating Characteristics) and 
PR-curve (Precision Recall). The ROC curve plots the true positive 
rate against the false positive rate at various classifcation thresh-
olds for time-killing classifcation, and AUROC, i.e., the area under 
the ROC curve, indicates better performance where its values are 
higher. The PR curve allowed us to observe the precision score 
against the recall score at various classifcation thresholds. We 
prioritized the precision of the prediction over recall, because the 
higher the former is, the fewer non-time-killing moments will be 
falsely predicted as time-killing moments, and thus, fewer notif-
cations will be mistakenly sent to the user at these moments. For 
the same reason, we also assessed specifcity, which measures the 
prediction’s true negative rate. 

5.1.3 Model Evaluation. To evaluate the model’s performance, we 
performed three-fold cross-validation on the dataset. As noted ear-
lier, two-thirds of the data from each participant were used for 
re-sampling, and formed a training dataset, with the rest forming 
the test dataset. We ensured that when we divided the dataset, the 
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Table 3: The three models’ time-killing prediction task performance 

Model Accuracy Precision Recall AUROC Specifcity 
Fusion (Sensor+Screenshot) 0.76 0.83 0.81 0.72 0.62 
SensorOnly 0.74 0.8 0.85 0.65 0.45 
ScreenshotOnly 0.76 0.81 0.86 0.67 0.49 

(a) ROC Curves (b) PR Curves 

Figure 3: Two performance measurements of our proposed fusion model (i.e., Sensor+Screenshot), its variants (i.e., SensorOnly 
and ScreenshotOnly). Note. Point on the curves represents a classifcation threshold equal to 0.5. 

order among the screenshot and phone-sensor pairs was main-
tained. In evaluating the performance of the fusion model for pre-
dicting time-killing moments, we also compared it against two 
other models, which respectively used only phone-sensor data and 
only screenshot data. We describe all three models in more detail 
below. 

• Fusion (Sensor+Screenshot) - Used both phone-sensor data
and screenshot data; model design as described earlier.

• SensorOnly - Used the phone-sensor data encoded by E�

to perform time-killing prediction, with an additional fully
connected layer attached to E� acting as the linear classifer.

• ScreenshotOnly - Used phone-screenshot data encoded by
E� to perform time-killing prediction, with an additional
fully connected layer attached to E� as a linear classifer.

5.2 Result 
The models’ overall performance metrics are presented in Table 3, 
which uses a classifcation threshold of 0.5. Fig. 3a and 3b show their 
ROC curves and PR curves. Overall, the fusion model achieved the 
best AUROC among the three models, as shown in both Table 3 and 
Fig. 3a. The fusion model’s prediction of a given moment as being 
a time-killing one was the most accurate among the three models. 
Moreover, as shown by the PR curves, the fusion model achieved 
higher precision with high recall than the other two models, and 
its specifcity score was also signifcantly higher than theirs. These 
results imply that taking account of both sensor data and screenshot 
data makes it less likely to falsely predict a non-time-killing moment 

as a time-killing one than when only one source or the other is 
considered. The SensorOnly model achieved the lowest performance
across all metrics except recall. As shown in both Fig. 3a and Fig. 3b, 
it had notably lower precision across classifcation thresholds than 
the other two models, suggesting that many of the moments it 
predicted as time-killing were incorrect. This was because some 
phone states or interactions that occurred mainly during time-
killing by one group of users often occurred during the non-time-
killing-moments of another group, making it difcult to diferentiate 
these two kinds of moments across users with diferent behavior 
patterns: a phenomenon that will be explored in Section 6. The 
ScreenshotOnly model, on the other hand, had a better ability to
distinguish between them, suggesting that phone-screenshot data 
were more informative about time-killing moments than sensor 
data were. That being said, the inclusion of phone-sensor data 
improved the performance of the fusion model. 

5.2.1 Investigation for Potential Concern on Model Memorization. 
Here, we provided additional investigation into the potential con-
cern that our model may have simply memorized the training data 
labels rather than learning to predict time-killing moments from 
multi-modal inputs. To examine the issue, we trained our proposed 
fusion model using randomly assigned labels from our dataset. How-
ever, the model did not converge, which implies that it could not 
discern meaningful patterns in the data and thus was less suscepti-
ble to overftting (for further details on the model’s performance, 
please refer to Appendix A.) Furthermore, our fusion model trained 
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Figure 4: Example attention maps, produced by Grad-CAM [79] and the ScreenshotOnly model, comprising a sequence of 
time-killing screenshots in the top row, and two sequence of non-time-killing ones in the middle and bottom row. The sensitive 
content on the images have been blurred for privacy reasons. 

on our dataset with participants’ annotations showed small difer-
ences between its training and test performance (only 18% in terms 
of AUROC), indicating a certain degree of generalizability. Based 
on these observations, we conclude that our proposed fusion model 
did not sufer from the issue of model memorization. 

5.3 Examples of How Fusing Phone-sensor Data 
and Screenshots Helped us Recognize 
Time-killing vs. Non-time-killing Behaviors 

In our view, the fact that fusing phone-sensor data and screenshots 
yielded the best performance in detecting time-killing moments 
implies that these two data sources, to some extent, complemented 
each other. To explore this possible phenomenon, we inspected 
cases in our test dataset in which a time-killing moment was cor-
rectly detected by the fusion model, but incorrectly detected by 
either or both of the SensorOnly and ScreenshotOnly models. 

To facilitate this exploration and our sense-making of these 
cases, we created attention maps from the fnal convolution layer of 
the ScreenshotOnly model, using a popular technique called Grad-
CAM [79]. These attention maps helped us to identify regions in 
the screenshots that the fusion/ScreenshotOnly model considered in-
fuential in its time-killing behavior detection. For instance, the top 
row of Fig. 4 provides examples in which both the ScreenshotOnly 
and fusion models correctly recognized a time-killing moment that 
was mistaken as a non-time-killing one by the SensorOnly model. 
We suspect that the SensorOnly model incorrectly recognized such 
data sequences because a series of text-changed events were de-
tected, despite in an Instagram application, which was more likely 
to occur when not killing time. On the other hand, we suspect that 

the ScreenshotOnly model detected it correctly because it recog-
nized the layout of the user interface of Instagram’s Story feature, 
which tended to be associated with time-killing moments. 

The middle row in Fig. 4, meanwhile, shows a distinctive case in 
which both the SensorOnly and fusion models correctly predicted 
a non-time-killing moment that was incorrectly predicted by the 
ScreenshotOnly model as a time-killing one. We suspect that the 
ScreenshotOnly model misinterpreted this screenshot sequence as a 
time-killing moment because it recognized the layout of LINE. In 
this case, the participant was discussing an assignment with others 
via text conversation; however, the participant was talking to her 
friend (prompted by the communication icon in the upper-right cor-
ner) while, which was often associated with time-killing moments. 
The ScreenshotOnly model did not attend to the communication 
icon in all sequences of the screenshots, but instead relied mostly 
on the layout of the chat room. Nevertheless, we observed that the 
relevant information was captured in the user’s phone-sensor data: 
specifcally, by the call status and the change of the call volume 
(as the sixth screenshot shows). Knowing these pieces of informa-
tion enabled the fusion model to recognize this non-time-killing 
moment correctly. 

Finally, an example where both the ScreenshotOnly model and 
the SensorOnly model detected incorrectly, but the fusion model 
still detected correctly is shown in the bottom row of Fig. 4. In 
this non-time-killing case, the participant was sitting in a mov-
ing vehicle and was using a navigation app while simultaneously 
watching a video on Youtube. We suspect that the ScreenshotOnly 
model misinterpreted this series of screenshots as a time-killing 
moment because it recognized Youtube’s layout but ignored the 
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(a) (b) 

Figure 5: Scatter plot of session clusters, grouped based on in-session behavioral characteristics 

navigation map in picture-in-picture mode, possibly due to the 
similar color of the video screen to that of the map. We suspect that 
the SensorOnly model mistook this situation as time-killing based 
on the application and physical-activity information. However, the 
fusion model correctly identifed this moment as a non-time-killing 
moment, possibly because it considered both the physical-activity 
information and the use of the navigation functionality. There were 
many similar instances; however, these three vivid examples should 
sufce to explain why the fusion model performed best at detecting 
time-killing moments across nearly all metrics. 

6 TAILORING FUSION MODELS TO USERS 
CLUSTERED BY PHONE-USAGE BEHAVIOR 

We learned from the interviews that various distinct time-killing 
patterns existed among our participants, who could be grouped 
based on similarities in their phone interactions, task choices, task 
switching, audio modes, and so on. Because we could not group par-
ticipants based on their time-killing behaviors, assuming that such 
a label might not be obtainable during system runtime, we instead 
grouped them based on their phone-usage behavior. Below, we 
present the group-based model we arrived at using clustering, fol-
lowed by model evaluation and our observations about the features 
of these individual models. 

6.1 Clustering Participants Based on their 
Phone-usage Behavior 

We employed two stages of the k-means method [57] to group users 
hierarchically. First, inspired by Isaacs et al. [40], we employed clus-
tering to identify distinct phone-usage behavioral patterns. Then, 
we clustered participants according to how often their phone use 
belonged to each of the identifed phone-usage patterns, based on 
the assumption that a user was likely to display more than one such 
pattern. 

6.1.1 Clustering Phone-usage Behavior. Inspired by previous work [40] 
that used the concept of sessions to cluster phone usage, we gen-
erated participants’ sessions based on the rule suggested by van 
Berkel et al. [89], that is, we divided pairs of sessions using a sep-
aration threshold of 45 seconds. This approach resulted in a to-
tal of 5,266 phone-usage sessions. For each of them, inspired by 
our interview, we computed nine features: 1) session duration, 2) 
screen-switching frequency, 3) application-switching frequency, 4 ) 
scroll-event frequency, 5) text-change event frequency, 6) maximum 
and 7) minimum gap durations for scroll events, and 8) maximum 
and 9) minimum gap durations for text-change events. We then 
applied k-means, and used the Elbow method [86] to determine the 
number of clusters. This revealed the optimal number of clusters as 
fve. The 5,266 phone-usage sessions were grouped into these fve 
clusters, named A, B, C, D, and E, in descending order by cluster 
size, whose sizes were 1,882, 1,664, 942, 417, and 361, respectively. 

The fve groups mainly difered in terms of how actively their 
members used their phones. For example, Fig. 5a shows the distribu-
tion of the frequency of the participants’ scrolling by the frequency 
of text-changes in a session, colored according to the cluster they 
belonged to; and Fig. 5b, the distribution of the same frequency by 
the frequency of app switching. For example, Cluster B contained 
inactive phone-usage sessions characterized by low frequency of 
text changes, scrolling, and app switching. In contrast, the ses-
sions in Cluster A were marked by low-frequency text changes and 
relatively low-frequency app switching, but with high-frequency 
scrolling. Furthermore, the sessions in Cluster D exhibited the high-
est frequency of app switching among all the clusters. 

6.1.2 Clustering Users by the Proportions of Five Behavioral Out-
comes. Having clustered similar phone-usage behaviors as described 
above, we observed that most users performed all fve behaviors, 
but in varying proportions. Therefore, to group users with simi-
lar overall mobile-phone usage, we calculated the proportions of 
each user’s fve outcome behaviors, and used those proportions to 
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Table 4: Experimental Results: Clustering Participants by Behavioral and Temporal Characteristics 

Group Accuracy Precision Recall AUCROC Specifcity 
Group 1 
Group 2 
Group 3 
Group 4 

0.70 
0.75 
0.80 
0.72 

0.73 0.73 0.81 
0.85 
0.91 
0.71 

0.81 0.88 0.85 
0.84 
0.87 
0.78 

0.81 0.80 0.68 
0.70 
0.68 
0.70 

0.76 0.77 0.38 
0.46 
0.39 
0.63 

0.54 0.59 
0.77 0.77 0.89 0.91 0.87 0.84 0.75 0.78 0.44 0.55 
0.77 0.78 0.95 0.93 0.82 0.82 0.75 0.72 0.48 0.50 
0.74 0.77 0.74 0.77 0.78 0.79 0.73 0.77 0.69 0.74 

Average 0.74 0.75 0.76 0.82 0.84 0.87 0.83 0.82 0.81 0.69 0.75 0.76 0.47 0.54 0.60 

General model 0.74 0.76 0.76 0.80 0.81 0.83 0.85 0.86 0.81 0.65 0.67 0.72 0.45 0.49 0.62 
Note. The white, light gray, and dark gray backgrounds indicate the results for SensorOnly, ScreenshotOnly, and 
Fusion (SensorOnly+ScreenshotOnly) models, respectively. 

cluster users. The same k-means and Elbow methods as described 
above were performed, and the resulting k-value for user clustering 
was 4. Thus, we divided our participants into four groups, with the 
number of participants being 11, 11, 9, and 5 respectively. The posi-
tive (time-killing) and negative (non-time-killing) instance ratios 
of those four groups were 13:6, 3:1, 81:19, and 3:2, respectively. 

6.2 Overall Performance of the Cluster-based 
Models 

We built the same fusion model for each of the four user groups, 
and examined each one’s average performance separately via the 
same three-fold cross-validation approach mentioned in Section 5.1. 
Table 4, which presents the respective performance of those four 
models along with their average performance, shows that both their 
average AUROC (0.76) and precision (0.87) were higher than those 
of the general model (AUROC: 0.72, precision: 0.83). In terms of 
individual model performance, all four models’ AUROC values were 
at least as good as that of the general model, with three signifcantly 
higher than it; and three models’ precision values were also higher 
than the general model’s. These results suggest that it is benefcial 
to divide users into groups according to their phone-usage behavior 
and build a time-killing prediction model for each such user group. 

We also looked at the correlations between time-killing moments 
and phone-sensor features for each user groups. Table 5 shows the 
15 non-category features most highly correlated (either positively 
or negatively) with time-killing moments, by user group. In each 
such group, some features were more correlated with time-killing 
moments than their counterparts in the general model, suggesting 
that clustering users into behavioral groups was also benefcial 
to time-killing prediction: i.e., doing so revealed features corre-
lated with time-killing moments specifcally for certain participants, 
which would not have been revealed had they not been divided into 
groups. That being said, the results in Table 4 also show that the 
performances of the four models varied, suggesting that some user 
groups’ time-killing moments might be more difcult than others’ 
to predict. We discuss each user group’s model performance and 
time-killing behaviors in the next section. 

6.3 Model Performance and Behavior by User 
Group 

First, Group 2’s fusion model achieved the best AUROC among 
the four user groups. It is also worth noting that Group 2’s Screen-
shotOnly model achieved better performance than its SensorOnly 

model for all metrics except specifcity, suggesting that it was ac-
curate in predicting time-killing moments but less so in predicting 
non-time-killing moments. When observing features correlated 
with time-killing moments in Group 2, we found that screen-on 
events, the number of calls, the volume of communication, and the 
volume of ringtones negatively correlated with the members’ time-
killing moments. In other words, when participants in this group 
were not killing time, they tended to increase the audio volume of 
their phones and frequently turned their screens on and of. Their 
switching to normal ringer mode was also positively correlated 
with time-killing moments; this refected their higher usage of the 
two relatively quiet modes, vibrate and silent, when they were not 
killing time. All of this implies that these participants’ non-time-
killing moments were more often associated with making calls. As 
prior research has reported a high association between quiet ringer 
modes and proactive phone-checking behaviors [13], the Group 2 
behaviors we observed could have indicated participants checking 
their phones frequently to avoid missing calls and/or notifcations. 
The fact that these behaviors might have been captured better by 
sensor data than by screenshot data could explain why – in this 
group alone – the SensorOnly model performed better at identify-
ing non-time-killing moments (i.e., higher specifcity; true negative 
rate) than the ScreenshotOnly model did. 

Secondly, Group 1’s and Group 4’s fusion models both achieved 
AUROCs of 0.77. However, the reasons for these two models achiev-
ing this same value difered dramatically, as shown by the signif-
icant diferences in their other performance metrics. Specifcally, 
whereas Group 1’s fusion model achieved signifcantly higher pre-
cision (0.88) than Group 4’s fusion model (0.77), Group 4’s fusion 
model performed particularly well in specifcity (0.74): signifcantly 
higher than any of the other models. In other words, Group 1’s 
fusion model was better at predicting its members’ time-killing mo-
ments, whereas Group 4’s fusion model was better at predicting its 
members’ non-time-killing moments. As shown in Table 5, Group 
4’s key features for prediction were predominantly battery-related 
ones, which were negatively correlated with time-killing moments. 
Also, while the feature number of charging events is not displayed 
in Table 5, its correlation was -0.27 – higher than many other 
features in other user groups – suggesting that this group’s mem-
bers’ non-time-killing moments were associated with high values 
of battery-related features, very likely linked to battery-charging 
at non-time-killing moments. We further observed the app-usage 
distribution of Group 4’s members, as shown in Fig. 6, and found 
that they played games much more often during non-time-killing 
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Table 5: The 15 non-category features most highly correlated (either positively or negatively) with time-killing moments, by 
user group 

Group 1 corr. Group 2 corr. Group 3 corr. Group 4 corr. General Model corr. 
call_count 
is_adjusted_vol_noti 
is_adjusted_vol_ring 
T_Silent 
is_adjusted_vol_voicecall
is_adjusted_vol_sys 
T_game_apps 
MAX_vol_ring 
MAX_vol_noti 
MAX_vol_sys 
STD_vol_sys 
STD_vol_noti 
STD_vol_ring 
MIN_vol_voicecall 
T_InComm. 

screen-on_past_900s 
screen-on_past_600s 
screen-on_past_300s 
screen-on_past_1800s 
call_count 
screen-on_past_3600s 
screen-on_past_180s 
T_InComm. 
T_normal_audio 
T_ringtone 
MAX_vol_sys 
MAX_vol_noti 
T_mobile_network 
freq_text_changed 
MAX_vol_ring 

T_photography_apps 
scrolling_past_3600s 
screen-on_past_600s 
screen-on_past_1800s 
screen-on_past_900s 
scrolling_past_1800s 
T_normal_ringer 
screen-on_past_300s 
T_map_apps 
scrolling_count 
long-clicking_count
T_social_apps 
scrolling_past_900s 
scrolling_past_600s 
screen-on_past_180s 

battery_level 
AVG_battery 
MED_battery
MIN_battery 
MAX_battery 
MAX_vol_music 
AVG_vol_music 
MED_vol_music 
MIN_vol_ring 
strm_vol_music 
AVG_vol_ring 
MED_vol_ring 
strm_vol_ring 
AVG_vol_sys 
MAX_vol_sys 

T_vibration 
scrolling_past_3600 
call_count 
scrolling_past_1800s 
T_InComm. 
MIN_battery 
T_ringer_silent 
MED_battery 
AVG_battery 
scrolling_past_900s 
T_photography_apps 
scrolling_past_600s 
battery_level 
focus_event_past_3600s 
MAX_vol_music 

-0.25 -0.22 -0.18 -0.40 -0.17 
-0.25 -0.22 0.15 -0.40 0.15 
-0.25 -0.21 -0.15 -0.40 -0.15 
0.24 -0.21 -0.15 -0.39 0.14 
-0.24 -0.21 -0.14 -0.37 -0.14 
-0.24 -0.21 0.14 0.36 -0.14 
0.24 -0.21 0.14 0.35 0.13 
-0.21 -0.19 -0.14 0.33 -0.13 
-0.21 0.19 -0.13 0.32 -0.13 
-0.20 -0.16 0.13 0.32 0.13 
-0.19 -0.16 0.13 0.31 -0.12 
-0.19 -0.16 0.13 0.31 0.12 
-0.19 0.15 0.13 0.31 -0.12 
0.18 -0.15 0.13 0.31 0.12 
-0.16 -0.15 -0.12 0.30 0.12 

Note. The T prefx indicates the cumulative time; the green and blue backgrounds indicate positive and negative correlations, respectively, with darker 
colors indicating higher correlations. 

Figure 6: Percentage of application categories used by each user group when killing time and not killing time Note. Categories 
1) related to the launcher and 2) with percentages <2.5% are not displayed. 

moments than during time-killing ones (37.2% vs. 21.7%); this per-
centage was also the greatest among the four groups. When we 
took a closer look at the games they played, we found that 88.6% of 
their game time during non-time-killing moments was taken up by 
Pokémon Go, and 95% of the time, they were correctly predicted 
by the model to be non-time-killing moments. Possibly because 
of the large quantity of this distinctive behavior during non-time-
killing moments, the Group 4 fusion model’s true negative rate was 
particularly high. Interestingly, Group 1 was another group whose 
members spent considerable time playing games, but in contrast to 
the Group 4 members, they were much more likely to do so during 
time-killing moments, and rarely did so in non-time-killing ones. 
The Group 1 participants also often used social-media applications, 

watched videos, and engaged in IM during their time-killing mo-
ments, but seldom did so during their non-time-killing moments. 
It is noteworthy that Group 1’s SensorOnly model achieved much 
poorer specifcity than its ScreenshotOnly model, suggesting that 
the fusion model relied heavily on screenshot data to recognize 
non-time-killing moments. 

Finally, Group 3’s fusion model achieved the lowest AUROC 
(0.72) among the four groups’ fusion models, an outcome even 
worse than that of its ScreenshotOnly model (0.75). This was be-
cause, despite having the highest precision among the four groups, 
it had a particularly low true-negative rate. In part, this distinc-
tive characteristic of the model might be attributed to it having the 
most unbalanced dataset: 80% of the instances were time-killing mo-
ments, which might have made it tend to predict Group 3 members’ 
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moments as time-killing ones. The chief reason this user group’s 
dataset was unbalanced was that its members used their phones 
mainly to kill time. Notably, correlations between features and 
time-killing moments were also lowest for Group 3, suggesting 
that its members’ time-killing behaviors tended to be diverse and 
not associated with solid patterns. Also, when we looked into the 
Group 3 members’ app-usage distribution in their time-killing vs. 
non-time-killing moments, we found it to be likewise highly diverse 
and evenly distributed. In short, a lack of clear patterns in phone 
usage during time-killing moments might explain the relatively low 
performance of this user group’s SensorOnly model, which in turn 
seemed to lead the fusion model astray. 

7 DISCUSSION 
To take advantage of the benefts of distinguishing phone use for 
killing time from use for specifc purposes, we developed an An-
droid app that collects smartphone users’ phone use data, including 
screenshots and sensor data, as well as time-killing annotations 
from users. We then used them to build a model to detect time-
killing phone use and evaluated its performance. We found that 
a deep-learning model fusing screenshot and phone-sensor data 
could achieve a precision of 0.83 and an AUROC of 0.72. However, 
there are two even more important takeaways from our results. 

First, leveraging both phone-sensor and screenshot data in time-
killing detection can achieve better performance than using either of 
these data sources by itself, including Chen et al. [16]’s screenshot-
based model, particularly good at distinguishing non-time-killing 
moments from time-killing-ones. This vital capability could help 
prevent a future system from sending users digital content or mes-
sages at falsely detected time-killing moments. This is particularly 
important for avoiding sending intervention messages that remind 
users to reduce or pause their current phone use during productive 
phone use. 

We suspect that the fusion model has this capability because, 
to some extent, sensor features and the visual information ex-
tracted from screenshots complement each other. For example, 
while screenshots do not inform us about various aspects of phone 
status such as battery, voice, and network, and are thus unhelpful 
in recognizing certain time-killing moments characterized by these 
features, they contain rich and unambiguous contextual informa-
tion about the activity a user is undertaking during time-killing 
and non-time-killing-moments alike. It may be possible that the 
complementary nature of the two data sources might be also helpful 
in the detection of other behavior/moments on phones and other 
devices, such as interruptible moments [2, 62, 64, 95], moments 
of boredom [72], moments of mirco-waiting [12, 41], moments of 
normative dissociation or absentminded use of the phone [6, 84], 
and/or breakpoint [1, 34, 63]. In addition to identifying these mo-
ments, we believe that our approach can usefully be employed in 
future research more generally in felds that have already lever-
aged screenshot data to analyze broader behavior patterns, such as 
smartphone users’ media consumption [27]. 

The second key takeaway of our results is the benefts of clus-
tering users according to their phone-usage behaviors and then 

tailoring fusion models to the resulting clusters. That is, the user-
cluster-based model outperformed both Chen et al. [16]’s non-
cluster-based model and the general model that was based on all 
users’ data. However, Chen et al. [16]’s sample only comprised six 
smartphone users, implying that clustering may not be necessary 
for such a small dataset. Compared to the general model, on the 
other hand, we attribute the superior performance achieved via this 
group-based approach to the diverse time-killing patterns of our 
participants, which sometimes were even opposite to each other, 
confusing the general model. A vivid example of this phenome-
non was that participants in Group 1 tended to play games during 
time-killing moments, whereas those in Group 4 tended to do so 
at non-time-killing ones. Unsurprisingly, after these participants 
were separated, both their groups’ respective models achieved sig-
nifcantly higher AUROC than the general model did. 

The profound benefts of building user-cluster-based models 
were also manifested in the complementarity between sensor data 
and screenshot data. This was because some participants’ behavior 
changes were associated more with changes in sensor data than 
phone-screen data, while others were the opposite. For example, 
Groups 1, 2, and 4 exhibited phone-usage behavior that was clearly 
associated with time-killing moments (see Table 5). Thus, the extra 
information from sensors complemented that from screenshots, 
because each captured some aspect(s) of time-killing moments that 
the other missed. In contrast, Group 3’s fusion model achieved 
lower AUROC than its ScreenshotOnly model. This may provide an 
example of conficting instead of complementary information pro-
vided by the two data sources: i.e., the sensor information collected 
from this group of participants did not assist the fusion model in 
distinguishing time-killing moments from non-time-killing ones. 
This can also be seen from the low correlations between sensor 
features and this group’s time-killing behaviors. 

These results suggest that the efectiveness of phone sensor data 
for predicting time-killing moments depends heavily on phone 
users’ behavior patterns. They also imply that decisions about 
whether it is worthwhile to engage in the privacy-intrusive and 
phone-resource-demanding process of capturing users’ screenshots 
should take into account the objective of such detection. For exam-
ple, the SensorOnly models of both Group 1 and Group 3 achieved 
higher recall than their fusion models; so, if one’s objective were 
to capture as many time-killing moments as possible, capturing 
only sensor information on the phones of users of the Group 1 and 
Group 3 types would be adequate to purpose. On the other hand, if 
one’s main aim was to reduce falsely detected time-killing moments, 
leveraging screenshot data would generally be more helpful. 

In sum, we believe the approach we have presented in this pa-
per will help researchers and practitioners interested in leveraging 
screenshot data for predicting or detecting specifc smartphone-
user behavior and moments. In particular, we expect it to be useful 
for those interested in detecting time-killing moments for deliver-
ing content to which people may not be receptive at other moments, 
such as crowdsourcing tasks [61] or questionnaires7. On the other 
hand, if the researchers intend to make these moments more pro-
ductive, they can send productive content such as reading and/or 
material [22]; if the purpose is to reduce habitual, addictive, or 

7https://play.google.com/store/apps/details?id=com.google.android.apps.paidtasks 

https://play.google.com/store/apps/details?id=com.google.android.apps.paidtasks


Time-Killing Detection CHI ’23, April 23–28, 2023, Hamburg, Germany 

compulsive phone use [87], to or reduce phubbing in social con-
texts [85], which are likely be associated with time-killing moments, 
researchers can also send intervention prompts or reminders dur-
ing these detected periods. Moreover, researchers can also analyze 
when and how frequently time-killing phone use occurs in users’ 
daily lives. 

8 LIMITATIONS 
This research has several limitations. First, it is possible that there 
is an overlap between the moments when people are killing time 
and the moments when they feel bored. However, our study did 
not use the experience sampling approach to collect data on partici-
pants’ boredom, so we cannot provide quantitative evidence on the 
diferences between these two moments. Second, despite the same 
approach having been leveraged by other research for studying 
phone usage [9, 74], given the sensitive data this current research 
collected, our participants might feel conscious of the data being 
collected and adjust their phone use behavior during the study 
period. Moreover, while our participants were allowed to choose 
which screenshots not to upload, they were not provided with the 
same option for sensor data. Although all of our participants were 
fully informed and aware of this limitation, it was still likely that 
this limitation might have also impacted the participants’ behavior. 
Future research should consider these ethical considerations, for 
example, by blurring screenshots on the phone before uploading 
them to the server or only uploading abstract features. 

Third, our data collection inherently relied on participants’ in-
the-wild annotations, which might not always be reliable. Even 
though we have tested the employed annotation interface and mech-
anism with twelve pilot participants, we could not deny the pos-
sibility that, given participants’ annotations being added post hoc 
rather than in situ, participants’ annotated data might be subject 
to recall errors. Also, although we strove to ease our participants’ 
screenshot-annotation burdens – on the grounds that otherwise, 
their compliance would have been much lower – it is possible that 
the user-friendly drag-and-drop interface we developed to address 
this problem facilitated mislabeling. That is, some subjects might 
have considered it more efcient, at least in some cases, to label a 
whole block of data at once. Indeed, our observations of the dataset 
indicated that some screenshots were mistakenly labeled, which 
could account for some of our models’ apparent inaccuracies. 

Fourth, we did not include other features that can be used to 
infer the users’ activity on the phone screen such as activity name, 
picture-in-picture mode, or names of UI elements. It is possible that 
these features might have helped the SensorOnly model recognize 
the user’s activity, which can be explored in future work. 

Fifth, our dataset was established based on a small (n=36) sample 
of smartphone users in Taiwan; all our participants were under 55 
years old, and half of them were students. As a result, it is unclear 
whether our models’ detection performance can be generalized to 
populations that display even more diverse time-killing behaviors 
or diferent phone-usage patterns. For example, we believe that 
such behaviors may be clustered into more types than the four that 
our small sample suggested. Thus, longer-term and larger-scale 
data collection could lead to more reliable results. 

Sixth, we utilized the raw screenshots and sensor data collected 
directly from participants’ phones without applying additional pri-
vacy protection techniques. This may have infuenced some partici-
pants’ willingness to share the captured screenshots. In future inves-
tigations, encryption techniques can be employed to decrease the 
identifable information in the gathered screenshot and sensor data 
for ethical and data-completeness considerations. For screenshots 
in particular, blurring or pixelizing can be applied to screenshots 
before they are uploaded. It should be noted, however, that the 
performance of the proposed models may drop on blurred or pixe-
lated screenshots, and the extent to which performance is afected 
would require further analysis. As a result, instead of modifying 
the fdelity of the images, an alternative is to extract high-level 
information from the screenshots on participants’ phones or even 
run the models on their smartphones. However, if these operations 
take place on the phone, researchers would need to take the phone’s 
computation power and battery into account. 

Finally, although we collected other aspects of the participants’ 
tendencies and characteristics that might have afected their time-
killing behaviors, such as their demographic characteristics and 
occupations, we did not include them in this paper. We also did not 
analyze their notifcation-attendance behavior during time-killing 
moments. These aspects should be given greater attention in future 
studies. 

9 CONCLUSION 
In this paper, we leveraged both phone-sensor and screenshot data 
to predict time-killing moments using deep-learning techniques. 
We collected 967,466 pairs of annotated phone-sensor data and 
screenshots from 36 participants over 14 days for training our time-
killing models. We have shown that phone-sensor and screenshot 
data each have their advantages in such detection tasks; and that 
integrating these two data sources can yield better model perfor-
mance than using either of them by itself can. We also have shown 
that separating users into groups according to their phone-usage 
patterns and building individual time-killing models for each group 
can achieve strong overall performance, with most group-specifc 
models also achieving better performance than a general model. 
Additionally, we have provided insights into how and why the 
efectiveness of sensor data and phone screenshots as a basis for 
detecting time-killing moments vary across diferent user groups. 
We believe this paper ofers a good starting point for researchers 
and practitioners who are interested in leveraging both screenshot 
and sensor data in their prediction tasks, and that it will be useful 
for practitioners who want to incorporate this detection into their 
applications. 
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10 APPENDIX 

A MODEL MEMORIZATION EVALUATION 
Fig. 7a and 7b depict the learning curves of the fusion model pre-
sented in Section 5.2.1, which was trained on our dataset with 
randomly assigned labels, for the purpose of investigating potential 
model memorization. In addition, Fig. 7c and 7d show the model 
performance in terms of ROC and PR curves, respectively. The 
model trained with true labels is denoted as “true labels” in the 
fgures, while the one trained with random labels is denoted as 
“random labels.” During the investigation, we found that the model 
trained on randomly assigned labels failed to converge, despite 
our eforts to optimize hyperparameters such as the learning rate 
and weight decay to prevent overftting. This suggests that the 
model was unable to identify meaningful patterns in the data and 
was, therefore, unlikely to overft. Hence, we conclude that our 
proposed model learned informative patterns of time-killing from 
the data rather than memorizing them, as it would have been able 
to memorize the random labels if that were the case. Therefore, it 
results in signifcantly better performance than the model trained 
on randomized labels, as shown in Figures 7c and 7d. 

(a) Accuracy Curves (b) Loss Curves 

(c) ROC Curves (d) PR Curves 

Figure 7: (a) The training accuracy and (b) the training loss of 
our fusion model, Sensor+Screenshot, when trained on true 
or random labels are plotted on the respective curves. The 
performance of the fusion model on the test set is evaluated 
using the (c) ROC and (d) PR curves. Note. Points on the ROC 
and PR curves represent a classifcation threshold equal to 
0.5. 
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