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ABSTRACT 
Virtual reality (VR) has increasingly been used in many areas, and 
the need to deliver notifcations in VR is also expected to increase 
accordingly. However, untimely interruptions could largely impact 
the experience in VR. Identifying opportune times to deliver notif-
cations to users allows for notifcations to be scheduled in a way 
that minimizes disruption. We conducted a study to investigate 
the use of sensor data available on an of-the-shelf VR device and 
additional contextual information, including current activity and 
engagement of users, to predict opportune moments for sending 
notifcations using deep learning models. Our analysis shows that 
using mainly sensor features could achieve 72% recall, 71% preci-
sion and 0.86 area under receiver operating characteristic (AUROC); 
performance can be further improved to 81% recall, 82% precision, 
and 0.93 AUROC if information about activity and summarized user 
engagement is included. 

CCS CONCEPTS 
• Human-centered computing → Virtual reality; Empirical stud-
ies in ubiquitous and mobile computing. 
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1 INTRODUCTION 
Virtual reality (VR) has gained popularity and has increasingly 
been used for many applications, such as in education, therapy, and 
entertainment [36]. Current commercial VR devices provide visual, 
audio, and even haptic feedback, providing an immersive experi-
ence for users. However, the feeling of presence and immersion in 
VR might also lead to disconnection from the real world [49], which 
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could result in missing important messages. Being afraid of miss-
ing important information could cause stress and anxiety [68, 69]. 
Presenting notifcations in VR allows users to stay informed about 
real-world events without removing their headsets, preserving the 
continuity and immersion of the VR experience. However, send-
ing notifcations during the use of VR, presumably when users are 
engaged, can cause feelings of disruption [29, 74]. After all, the 
timing of such interruptions can afect perceptions of disruptive-
ness in many contexts, such as on mobile phones [16, 17], or on 
desktop computers [1, 4]. VR is no exception. More importantly, 
it may not only annoy the user but may also lead to a decrease 
in task performance [5, 55]. To mitigate the disruption caused by 
the interruptions, deferring them to opportune moments, such as 
task breakpoints [34, 80] or rough boundaries during task execu-
tion [4] could largely mitigate the cost of interruption. In addition 
to fnding factors which contribute to the impact of interruption, 
many recent studies have sought to predict opportune and inter-
ruptible moments for receiving notifcations that leverage features 
including sensor data [39, 76] and contextual information such as 
the current activity [65, 95] and engagement [20, 64] of users. As 
VR is not yet prevalent in people’s daily lives, only a few attempts 
to investigate the sending of real-life notifcations in VR have been 
made (e.g. [24, 29, 74, 96]). To the best of our knowledge, there 
has not been any research work that has attempted to predict op-
portune moments for sending notifcations in VR, which we deem 
important to reduce the likelihood of disrupting users during their 
VR experience. 

In this paper, we present the frst research attempt aimed at ex-
ploring the feasibility of predicting opportune moments for sending 
notifcations in VR. We primarily focus on sensor features available 
on VR devices, including head-mounted displays (HMD), controllers 
and eye-trackers, for prediction since they ofer easily accessible 
information open to developers and provide rich information about 
users. In addition, we also consider additional information that can 
be supplied by other parties, including metadata about VR activity 
at the time of data collection that can be supplied by VR content 
providers and information that may be collected via crowdsourc-
ing (e.g., engagement labels provided by the crowd). Our primary 
objective is to examine the performance of prediction using only 
sensor data for prediction, as well as performance after including 
the aforementioned additional features. As far as sensors are con-
cerned, since there are various sensors available on VR devices, 
our research questions are as follows. RQ1: How well can sensors 
alone predict opportune moments for sending notifcations in VR? A 
follow-up sub-question is: Which sensor type contributes the most 
to the prediction? Furthermore, with the additional information 
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about the VR activity and engagement information provided by 
users, our second research question (RQ2): How much improvement 
can information about activity condition and user engagement make, 
respectively, in prediction performance? Finally, for each of the explo-
rations above, we examined whether a personalized model would 
outperform a general model. Thus, our RQ3 is: Does a personalized 
model outperform a general model for predicting opportune moments 
in VR? 

We recruited 20 participants to participate in data collection. 
The participants underwent a total of six VR sessions composed of 
three diferent VR applications, during which we collected sensor 
information and used a cued retrospective method to collect en-
gagement labels on VR sessions they had just experienced. Using 
these data, we built deep learning models for the prediction tasks. 

Overall, our results, which are the main contribution of this 
paper, reveal that in predicting opportune moments for sending 
notifcations, (1) personalized models outperformed general models; 
(2)using only sensor features achieved 71% precision, 72% recall, 
and 0.86 area under receiver operating characteristic (AUROC) in 
the personalized models. (3) no single sensor in the VR devices 
dominated, and diferent types of sensor were advantageous in 
predicting opportune moments in the diferent types of VR activity; 
and (4) with the inclusion of information about activity condition 
and user engagement information, the personalized model can 
achieve 82% precision, 81% recall, 0.93 AUROC; the general model 
can also achieve 70% precision, 66% recall, 0.81 AUROC. 

2 RELATED WORK 

2.1 Interruption and Notifcation Management 
Many studies have suggested that interruptions during tasks have 
many negative efects, such as decreasing task performance and 
impacting an individual’s emotional state [1, 5, 7, 55]. However, not 
all interruptions are equally unacceptable. Studies have shown that 
many factors, such as the type of primary task, the level of task 
engagement, and the timing of an interruption, could afect the 
disruptiveness of interruptions [34, 56, 64]. Various other studies 
have been conducted to reduce the impacts of interruptions; for 
example, scheduling interruptions at task breakpoints or transitions 
has been found to mitigate interruption cost [1, 4, 34, 80]. 

Today, since people receive numerous notifcations every day 
from their mobile phones [45], many studies have been conducted to 
understand the impacts of notifcations on mobile phone use, as well 
as mobile users’ behaviors around phone notifcations [10, 43, 52, 
66, 75]. Because VR has gained popularity in the past decade, recent 
works have also explored the efect of notifcations in VR. Ghosh 
et al. [24] investigated noticeability and perception in diferent VR 
interruption scenarios across diferent modalities. Zenner et al. [96] 
proposed a method for delivering notifcations in an immersive, 
ambient way to preserve the immersion of VR. Rzayev et al. [74] 
examined the noticeability, distraction, and intrusiveness of four 
notifcation placements (Head-Up Display, On-Body, Floating, and 
In-Situ); they found that while showing notifcations using a Head-
Up Display placement decreased the response time and the number 
of missed notifcations, it increased the noticeability, distraction, 
and intrusiveness of the notifcations Hsieh et al. [29] investigated 
individuals’ receptivity to message notifcations delivered using 

three types of display during four VR activities;they found that 
afxing a notifcation to the upper left corner in the user’s feld 
of view could increase the recall rate by more than 20% compared 
to afxing a notifcation to a controller or making a notifcation 
a movable panel. All such notifcation research in VR has been 
conducted to investigate the modality, position or display design of 
notifcations, rather than to predict the best timing for the delivery 
of notifcations in VR. 

2.2 Attention and Interruptibility Prediction 
Many previous works have aimed to determine moments at which 
people’s activities might be interruptible. Earlier works have fo-
cused on interruptibility and breakpoint prediction in desktop or 
workplace contexts. For example, Hudson et al. [31] found that a 
simple set of simulated sensors and manually coded features could 
construct an interruptibility prediction model with an overall ac-
curacy of about 78%. Later, Fogarty et al. [19] further showed that 
sensor-based models of human interruptibility can provide robust 
estimates for a variety of ofce workers in a range of circumstances, 
with an accuracy of up to 79.5%. Horvitz et al. [28] utilized computer 
activity and users’ environment to predict the cost of interruptions 
with an accuracy of up to 82.3%. Fogarty et al. [20] used low-level 
event logs to train a statistical model to diferentiate interruptible 
situations from other situations (engaged or deeply engaged) with 
an overall accuracy of 71.8%. Iqbal et al. [33] utilized the charac-
teristics of task structure to predict the costs of interruptions, and 
their model correctly predicted 53% of the costs of interruptions. 
Tanaka et al. [79] used head motion to predict interruptibility dur-
ing PC work and non-PC work in ofce environments and obtained 
F-scores between 0.5 and 0.7. 

In recent years, increasing attention has been given to leveraging 
wearable sensors and mobile devices. Kern et al. [39] showed that 
users’ personal and social interruptibility could be determined with 
an accuracy of up to 91%. Ho et al. [27] used wireless accelerome-
ters to detect postural and ambulatory activity transitions in real 
time with an average accuracy of 91.2%; their results showed that 
participants were more receptive to the delivered messages. Haa-
palainen et al. [26] used psycho-physiological sensors and found 
electrocardiogram median absolute deviation and median heat fux 
measurements were the most accurate at distinguishing between 
low and high levels of cognitive load, with an overall accuracy of 
80% when used together. Zuger et al. [99] also demonstrated that 
using psycho-physiological sensors to classify the interruptibility 
of a software developer could achieve high accuracy (91.5% for a 
lab study and 78.6% for a feld study). However, later, in a subse-
quent feld study [100], they found that information from computer 
interactions was more accurate at predicting interruptibility dur-
ing computer use than biometric data (74.8% vs. 68.3% accuracy) 
and that combining both ultimately yields the best results (75.7% 
accuracy). 

Focusing on mobile phones, Hofte et al. [84] explored the use of 
context information that users provide to predict a person’s avail-
ability for a phone call with an accuracy of 63.9%. Pejovic et al. 
[63] also showed that users’ reported context information, such as 
activity, location, time of day, emotions, and engagement, could be 
leveraged to predict whether a user would respond to a notifcation 
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with a precision of 60%. However, when using such information 
to predict whether a user would perceive a moment as an oppor-
tune moment for receiving notifcations, the precision ranged from 
40% to 80%, depending on a cut-of threshold that was used for 
defning opportuneness. Despite the limited precision, their deploy-
ment study showed that notifcations that were scheduled using 
their model were more favorably received, (i.e., 26.4% of them were 
marked as “very good” moment to interrupt, compared to 15.4% for 
randomly scheduled notifcations.) Also aiming at predicting oppor-
tune moments but mainly based on sensor information, Poppinga et 
al.’s model achieved an accuracy of approximately 77% [70]. Okoshi 
et al. explored the use of both physical activity-based and UI event-
based breakpoint detection to reduce workload perceptions caused 
by interruptive notifcations on smart phone [58] and multi-devices 
mobile environments [59], with an 82.6% accuracy and 82.7% pre-
cision. Yuan et al. [95] explored the inclusion of personality traits 
and the use of a two-stage hierarchical interruptibility prediction 
model for smartphone interruption; their model achieved an overall 
accuracy of 66.1%. Pielot et al. [65], in contrast, aimed to predict 
if a user would engage with proactively recommended content, 
achieving a 66.6% better precision than a baseline model. 

Opportune moment detection for interruption was also examined 
in specifc contexts. For example, in the context of driving, Kim et 
al. [40] employed sensor and human-annotated data about drivers’ 
states and driving situations to predict the drivers’ interruptibility 
with an accuracy of 94%. In social context, Park et al. [61] utilized 
build-in sensors to detect social context and identifed breakpoints 
for smartphone notifcations; their model achieved a precision of 
92.0% in a controlled social interaction setting and was measured 
against ground truth obtained from manually labeling captured 
videos. 

Finally, other than opportune moment, Pielot et al. [67] predicted 
high attentiveness to mobile instant messages (i.e., seeing a mes-
sage within a few minutes) using phone sensor data and users’ 
interaction with mobile phones; their model achieved 70.6% overall 
accuracy and 81.2% precision. 

To sum up, these studies indicate that using contextual infor-
mation provided by sensors, software events, or self-reports has 
allowed researchers to build models for predicting interruptible and 
opportune moments for sending notifcations. However, the wide 
range of prediction performances shown above suggests that the 
task of prediction can be challenging in some contexts and high 
accuracy cannot be guaranteed. A recent study shows that even 
human beings may falsely recognize interruptible moments for a 
person wearing an HMD simply by observing their movement and 
gestures [23]. Nevertheless, most opportune moment prediction 
studies have been conducted in a workplace or mobile setting, and 
no research has investigated whether opportune moment predic-
tion in VR is feasible and can be performed efectively. After all, 
the sensory immersion experience and involvement of physical 
movement in VR applications may make the perception of oppor-
tune moments for receiving a notifcation diferent from that in a 
workplace or mobile environment. 

In our study, we build upon prior work by using sensors in VR 
devices that capture users’ movements and additional contextual 
information, including the current activity and engagement of users, 
to predict opportuneness for delivering notifcations to users in 

three diferent types of VR activities. To the best of our knowledge, 
this is the frst study to predict the opportune moment for sending 
notifcations in VR settings. 

3 DATA COLLECTION 
To predict opportune moments for sending notifcations in VR, we 
recruited 20 participants to experience three types of VR activities 
in a random order, and collected opportune and inopportune labels 
using a cued retrospective method, since retrospective methods 
with visual cues (e.g., image or video) have been proven to be ef-
fective in collecting accurate data for short-term studies [72, 73]. 
Specifcally, participants were asked to annotate opportune and 
inopportune moments with the assistance of video replays that 
reminded them of their reactions during VR interaction. We did 
not use a simple in-situ prompt to collect momentary experience 
because much time is necessary to collect large amounts of momen-
tary experience data to obtain sufcient data points to train a model, 
which could have easily caused fatigue and sickness for the study’s 
participants with the current VR device. The participants of this 
study experienced three kinds of VR activities, each of which was 
divided into two sessions to avoid an excessively long timeframe 
for the study, not merely to prevent fatigue and sickness, but also 
to reduce bias in recalling perceived opportune moments. Each 
session was designed to be fve minutes long, during which the 
participants saw four visual notifcations. In the study, notifcation 
delivery was designed to create stimuli to elicit participants’ feel-
ings when seeing notifcations in these VR applications. Since prior 
research has suggested that diferent modalities of notifcations 
(e.g., visual, audio, and haptic) could impact the disruptiveness of a 
notifcations [9, 24, 47, 52, 92], we chose to only use the modality 
of visual notifcations in data collection, as this is most common in 
today’s consumer VR platforms.1 In particular, we used message 
notifcations, which have been suggested to be the most pervasive 
type of notifcation users see in numerous notifcation studies (e.g., 
[9, 47, 52, 75, 92]). Each of the four notifcations was randomly sent 
within a 25-second time window, and a 40-second interval was 
placed between any two such time windows. After each session, 
participants were asked to annotate their perceived opportune mo-
ment (opportune vs. inopportune) for receiving notifcations using 
the interface we developed (Figure 3). We asked participants to 
label opportune moments as a binary outcome (i.e., opportune vs. 
inopportune) instead of rating using a scale for two reasons. First, 
prior research on interruptibility and opportune moments typically 
adopted a binary outcome as prediction targets. It was found that 
predicting an interruptible moment could efectively reduce the 
negative impact of interruption [50, 60, 86, 98]. In addition, the 
performance of interruptibility prediction could decrease signif-
cantly when predictions involved multiple levels of interruptibility 
[31, 67, 99, 100]. Finally, in addition to opportune moment, partici-
pants also described their engagement during the session. Below. 
we describe our study in more details. 

1SteamVR and Oculus 

https://store.steampowered.com/steamvr
https://www.oculus.com
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3.1 VR Activity 
We deemed it important to collect diverse VR experiences to make 
our prediction model more generalizable to diferent VR applica-
tions. To collect diverse VR experiences, we decided to collect data 
from diferent types of VR activities. We focused on two dimen-
sions that are related to interruptibility. The frst dimension was 
body movement because it has been suggested that moving one’s 
body might produce high cognitive load [35], which is an impor-
tant factor for interruptibility [1, 3]. The second dimension was 
visual attention because Hsieh et al. [29] found that their partic-
ipants preferred not to receive visual notifcations during a VR 
activity that required a high degree of visual attention. Therefore, 
we designed three kinds of VR activities that varied across these 
two dimensions—namely, 360 video, VR ftness, and the rhythm 
game—all of which are common activity types in today’s consumer 
VR platform.1. In particular, to make the participants feel more en-
gaged and perceive the latter VR activities as realistic, participants’ 
performance were scored and displayed after the activity in both 
VR ftness and the rhythm game. Further details about each activity 
are given below. 

Figure 1: Three type of VR activities in the data collection 
(a) Watching a 360° Video (b) Doing a workout move in VR 
Fitness (c) Playing a Rhythm Game 

3.1.1 360° Video. 360° video is a common application of VR. Since 
users do not need to move when watching a 360° video, diferent 
video content might attract diferent levels of visual attention. We 
therefore considered this activity to require a low level of body 
movement and various levels of visual attention. We selected videos 
which varied in their arousal score from an open 360° video dataset 
[46], because an arousal level has also been linked to interruptibility 
[25]. The dataset provided 360° videos varying in arousal ratings 
from 1.57 to 7.42 on a 9-point rating scale. We sorted the videos in 
the dataset by their arousal scores. With diverse arousal scores, we 
aimed to also ensure the diversity of visual attention in the videos. 
To do so, we downloaded 18 pre-selected videos and trimmed each 
one to 50 seconds. We then asked participants to label preselected 
videos in pilot studies. We fltered out videos that were labeled 
by the participants as demanding high and low visual attention 
throughout the entire video because these videos featured a low 
degree of diversity in drawing visual attention. Eventually, this 
process resulted in our fnal selection of twelve videos: four videos 
from the lowest third as low-arousal (average arousal = 1.80), four 
videos from the middle third as medium-arousal (average arousal 
= 3.95), and four videos from the highest third as high-arousal 
(average arousal = 6.22). In each session, participants watched two 
low, medium, and high arousal videos, respectively, in a random 
order. The videos did not require participants’ interaction. 

3.1.2 VR Fitness. Exergaming,2 or doing exercise in VR, has gained 
popularity in recent years. To collect data which featured diverse 
amounts of body movement with relatively low levels of visual 
attention, we designed an application called VR ftness. In VR ft-
ness, participants were in a virtual ftness room and followed the 
workout moves from videos displayed on the wall. At the begin-
ning of each move, participants would need to pay some degree 
of visual attention to watch a demonstration and learn how to 
correctly perform the move. Over time, we assumed that the need 
for visual attention would gradually decrease since participants 
simply needed to repeat the same moves. To ensure diversity of 
body movements, we designed diferent types and diferent inten-
sities of movements, assuming that they might require diferent 
levels of body movement. Specifcally, we designed two types of 
movements and arranged for a break after each one. The frst type 
of movement was rotational, requiring participants to rotate their 
torso as well as their head (e.g., bend waist and toe touch). The 
second type of movement was translational, requiring participants 
to move their entire body (e.g., jumping jack and kick squat). We 
also designed two intensity levels for each movement, namely low-
intensity and high-intensity—where the speed of the low-intensity 
workout videos was half of that of the high-intensity videos. In each 
session, participants performed four types of movements; each type 
of movement started at a low intensity for 20 seconds, followed 
by high-intensity ones for 35 seconds and a 15-second break time 
before the next movement. 

3.1.3 Rhythm Game. Rhythm games are a popular genre of VR 
game.3 To collect data that were diverse in both visual attention 
and body movement, we designed a game that refers to a popular 
VR rhythm game called Beat Saber.4 In this game, participants used 
controllers to hit incoming beat cubes at the right time to earn 
points. The difculty of the game (e.g., number of beat cubes per 
second, CPS) and the diferent stages of the game (e.g., in-game and 
break) might afect the level of visual attention and body movement. 
To ensure diversity of visual attention and body movement, we se-
lected songs and beat maps of diferent difculties adopted from 
[6] and arranged diferent game stages. Specifcally, we trimmed 
each song to 85 seconds; in each session, we selected songs from 
three difculty levels, including easy (average CPS = 1.38), nor-
mal (average CPS = 2.03), and hard (average CPS = 2.88). For each 
song, we arranged 10-second and 15-second breaks as in-game and 
between-game breaks, respectively. 

3.2 Notifcation Display 
The participants received four visual notifcations in each session. 
As previously mentioned, the purpose of this was to allow partic-
ipants to experience receiving notifcations at diferent moments 
in these VR activities so that they could recall their feelings when 
annotating the opportuneness of the moments for receiving noti-
fcations during these sessions. To make the experiences realistic, 
when the notifcations appeared, the system also allowed partici-
pants to respond to them through the controllers if they wanted 
to, including clicking the touchpad on the controller, sliding the 

2https://en.wikipedia.org/wiki/Exergaming 
3https://store.steampowered.com/sale/2018_so_far_top_vr_titles 
4https://beatsaber.com/ 
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Figure 2: We presented notifcations in VR activities as real-
istic stimuli and providing a reference for annotating inter-
ruptibility afterward: (a) Notifcations were fxed in the up-
per region of feld of view; (b) Notifcations were delivered 
during delivery windows. 

touchpad, or both, similar to the interaction experience of swiping 
away smartphone notifcations. We did not use these inputs for the 
prediction task; this was because the absence of a response does not 
necessarily mean an inopportune moment, as participants might 
simply forget to respond. Instead, these inputs were intended to 
provide participants with a reference during annotation so that they 
could observe their reactions to those notifcations in the moment. 
Each notifcation disappeared whenever a participant responded to 
it or lasted 10 seconds if the participant did not respond. 

Regarding notifcation placement, we chose to display notifca-
tions in the upper region of a user’s feld of view (Figure 2 (a)), 
as research has indicated that notifcations placed at this position 
would be more likely to be noticed than those attached to a con-
troller or foating in the air [29, 74]. Given that placing notifcations 
in a noticeable spot is also likely to cause visual disturbance [74, 83], 
we assumed that if participants perceived a moment as opportune 
when they saw notifcations appear at this position, it was likely 
that they would also perceive the moment as opportune if the 
notifcations had appeared in other positions. 

Regarding notifcation content, a notifcation displayed a sender 
name and a summary “A New Message.” As to the former, prior 
research (e.g. [43]) has suggested that the senders of notifcations 
could afect users’ receptivity. Thus, we asked participants to pro-
vide us with the names of three contacts they most frequently 
exchanged messages with. We used these names as the senders 
of the messages they received during the study to make the ap-
pearance of these notifcations more realistic. As to the latter, since 
notifcation content has also been found to afect users’ receptivity 
[53], we did not display the content but only showed “A New Mes-
sage” to minimize the infuence of the notifcation content. This 
short notifcation summary has also been incorporated in some 
instant messaging (IM) services, one of which is Line messenger, 
the most popular IM service in our country. Thus, we assumed 
that our participants would have been familiar with seeing such a 
summary. 

3.3 Video Annotation of Opportune Moment 
and Engagement 

After participants experienced each session, they took of their 
headsets and then labeled notifcations in the VR activity they just 
experienced as opportune or inopportune according to their own 
perceptions. Specifcally, each VR session was recorded through 
our program, and the participants used the interface we designed to 

Figure 3: Interface of annotation program. Participants label 
the opportuneness and engagement during the activity as-
sisted by (a) frst-person-view video replay and (b) responses 
to notifcation 

perform annotations (Figure 3). In addition to labeling opportune-
ness, the participants also labeled their engagement throughout 
the session, which, as mentioned earlier, was used as additional 
information to help the prediction task. We assumed that this in-
formation could be obtained by content providers who adopted 
crowdsourcing to obtain the information in advance, an increas-
ingly common practice in processing multimedia data [8, 37, 82, 97]. 
Other than this, we did not use any subjective scales to provide 
information for the task of prediction, as we assumed that these 
pieces of information would not be available in real time. 

During labeling, participants watched the video replay of the 
session they had just experienced, including the appearance of the 
four notifcations. In the annotation interface, the participants used 
sliders to set time windows and label time windows as opportune or 
not and to describe their level of engagement. For opportuneness, 
participants could characterize timing as opportune, inopportune, 
or unknown. For engagement, they could mark the activity as low 
engagement, high engagement, or unknown. All of these labels 
as well as the language on the interface were in the participants’ 
native language (i.e., Mandarin Chinese). Prior to annotation, the 
researchers also ensured that all of the participants understood 
these two concepts. 

3.4 Participants 
We recruited 20 participants to participate in the data collection. All 
were graduate or undergraduate students, consisting of 10 female 
and 10 male participants between the ages of 20–28 (M = 22.65, SD 
=1 .62). Four (20%) had never used a VR device before, while 11 
(55%) had used VR between one and fve times. (25%) had used VR 
more than fve times. 

3.5 Study Procedure 
We used HTC Vive Pro Eye, which consists of two controllers and 
an HMD equipped with an eye tracker, as the VR device for this 
study. The participants were informed of the goals of data collection 
and then given a tutorial on HTC Vive Pro Eye and its controllers. 
They then wore the HMD and over-the-ear headphones, and we 
performed inter-pupillary distance adjustment and eye-tracking 
calibration. Before the main phase of the study, the participants 
performed a warm-up task, in which they experienced the three VR 
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Table 1: Features used in our study grouped by type and references to prior related works on these features. 
Feature Type Description Reference 

Sensor VR device (HTV Vive Pro Eye) [13, 14, 27, 39, 41, 70, 76, 88] 

HMD : velocity, angular velocity, rotation 
Controller : velocity, angular velocity 
Eye-Tracker : gaze angle, gaze-shift speed 

Activity Predefned Categories (13 Categories) [51, 65, 80, 90, 95, 100] 

360° video : low-arousal, mid-arousal, high-arousal 
VR Fitness : rest, low-intensity rotation, high-intensity rotation, 
low-intensity translation, high-intensity translation 
Rhythm Game : in-game break, ending screen, easy, normal, hard 

Engagement User-provided label (2 levels) [20, 43, 57, 63, 64, 100] 

Low engagement, high engagement 

activities, notifcations, and the annotation program to ensure that 
they understood how to operate the equipment and the programs. 
We did not inform participants of the length and timing of the 
breakpoints in each of the VR activities, but expected them to learn 
about how long and when these would appear after the warm-up 
task naturally. 

During formal data collection, the participants experienced the 
three VR activities in a random order, and each activity was split into 
two sessions, with each session lasting approximately fve minutes 
long. The content of each activity (i.e., the videos, movements, 
and songs within the 360° video, VR ftness, and rhythm game 
activities, respectively) was presented in a random order. At the start 
of each session, the participants were asked to recalibrate the eye 
tracker to ensure that the collected gaze data were accurate. After 
each session, the participants took of the headset and annotated 
opportune moments and engagement for the activity they had just 
experienced. Then, they took part in a short interview about their 
perceptions of opportuneness and engagement during the activity. 

3.6 Features and Data Processing 
We recorded the sensor data from the VR device at 60 Hz and made 
note of the predefned current activity category in the programs 
during each session. The opportune moments and engagement 
labels were obtained through the participants’ annotations after 
each session. 

For the sensor data, we focused on the features that captured 
users’ movement in VR. Previous research found that interrupt-
ibility could be predicted through velocity [27, 39, 41, 76] and the 
rotation of the device users wear [70, 88]; as such, we used the 
velocity and angular velocity of the HMD and the controllers, as 
well as the rotation of the HMD, as features. We also used the angle 
between the HMD and gaze, as well as gaze-shift speed over time, 
as features since previous research has found that diferent tasks 
afect eye-head dynamics [13] and gaze-shift dynamics [14]. 

The gaze angle and gaze-shift speed were computed as follows: 

θt = arccos(д̂t · ĥt ) 

ωt = arccos(д̂t · дt −̂1)/dt 

Annotation

Sliding
Window

1 sec

5 sec

Interruptible

Not Interruptible

Ignored

Label

Figure 4: Sample data points from continuous labeled data 
using sliding window approach 

The gaze angle θt (in radian) at time t is the vector angle between 
normalized gaze direction vector д̂t and normalized head forward 
direction vector ĥt at time t , where the vector angle is computed 
using the inverse cosine of the dot product of the normalized vectors. 
The gaze-shift speed ωt (rad/sec) at time t is the angle between 
normalized gaze direction д̂t and дt −̂1 at time t and t − 1 divided 
by the diference between time t and t − 1, which is 60

1 seconds 
in our case. All of the above features from the sensor data were 
smoothened to remove noise using a moving average flter with a 
window size of 60 time frames (1 second). 

To answer the second research question, we also included the 
predefned activity category and the level of engagement marked by 
participants as features. Note that we assumed that these types of 
information would be supplied by the VR content supplier and were 
are obtained beforehand, unlike the sensor information obtained in 
real time. As a result, given that the engagement label data were 
obtained from the participants, later, in training the model, we used 
summarized engagement information (i.e., considering the majority 
of the engagement annotation for every moment; for example, if 
16 participants considered the ffth second of a roller coaster 360° 
video as high engagement and four participants considered it as 
low engagement, we considered that moment high engagement). 
Given that prior research has found that interruptibility is related 
to contextual information such as the current activity [51, 65, 80, 90, 
95, 100] or engagement [20, 43, 57, 63, 64, 100] of users, we assumed 
that these features could improve the prediction. 

As sensor data were obtained in real time, to predict opportune 
moments in real time, we used the sensor data fve seconds prior 
to predict a perceived opportune moment. We chose fve seconds 
as the threshold because it resulted in the best performance among 
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fve candidate thresholds (1.0 s, 2.5 s, 5.0 s, 7.5 s, 10 s) in our results. 
Activity and engagement information was obtained in advance for 
every moment in the activity. Thus, we used the activity and engage-
ment information associated with a particular “present” moment 
as the features. 

Our labeling method gave us continuously labeled data. As a 
result, we used a sliding window to sample data points, where the 
size of the window was fve seconds (300 frames) with an ofset of 1 
second (60 frames). For example, sensor data from the 600th frame 
to the 900th frame were used to predict whether the moment at the 
901st frame was opportune for receiving a notifcation. In sampling 
the data points, we ignored data points that would contain noise, 
which were points that satisfed either of the following conditions. 
First, we removed data points that were at transitions between 
periods of opportune moments and inopportune moments (i.e., data 
points that were within 0.5 seconds before and after the boundary), 
to avoid labeling errors. Second, we removed data points associated 
with the period where a notifcation appeared because a notifcation 
itself was an interruption and its presence might have changed the 
participants’ eye gaze and movement data. Finally, we removed 
data points that participants labeled as unknown for either oppor-
tune moment or engagement. This sampling method produced a 
dataset containing 33,219 total samples, consisting of 13,236 posi-
tive samples (suitable) and 19,983 negative samples (not suitable). 
We present our evaluation of the model in the next section. 

4 ANALYSIS AND RESULT 

4.1 Machine Learning Model 
To examine which classifcation technique worked the best in pre-
dicting opportune moments in VR, we started with several tradi-
tional classifers commonly used in previous interruptibility re-
search, including Naive Bayes, Logistic Regression, SVM, and Ran-
dom Forest [87]. We used scikit-learn [11], a widely used machine 
learning library, to implement those classifers. Previous works 
have often extracted statistical features (e.g., mean, min, and max) 
from time-series data as features [2], and we also found that using 
the statistical features of time-series data was suitable for tradi-
tional classifers with our dataset. Therefore, we extracted these 
pieces of information from our time-series data as features to train 
the classifers mentioned above. 

Next, since approaches based on neural networks (NN) have 
achieved success in many tasks involving time-series classifcation, 
such as anomaly detection [93], human activity recognition [44], 
and gaze pattern recognition [78], in comparison with the tradi-
tional classifers, we also used a NN-based approach to process time-
series sensor data. The pipeline of our model is shown in Figure 5. 
Specifcally, sensor data (time-series data) were frst fed into a time-
series NN-based model to output a 64-dimensional feature vector. 
Additional contextual information (activity category and engage-
ment) were categorical data, and we thus encoded them as a one-hot 
vector and fed them into a fully connected layer to output another 
64-dimensional feature vector. Finally, these two feature vectors 
were concatenated and processed by another fully connected layer 
with a softmax activation function that performed binary classifca-
tion. For the time series NN architecture that processes time-series 
sensor data, we initially explored two commonly used architectures 

for time series classifcation [15], including one-dimensional convo-
lutional neural networks (1D-CNN), and a variant of the recurrent 
neural network named long short term memory (LSTM). Our com-
parison further included a more recent architecture [38]—namely, 
multivariate long short term memory fully convolutional network 
(MLSTM-FCN)—which combines the use of 1D-CNN and LSTM to 
achieve state-of-the-art results on many time-series classifcation 
tasks. The details of NN layers are described in Appendix A. 

We implemented the NN-based models using PyTorch [62], a 
widely used deep-learning framework for Python. We trained the 
models end-to-end using standard cross-entropy loss and SGD 
optimizer with an initial learning rate of 10−1, a momentum of 0.5, 
and a batch size of 64. The learning rate was scheduled to decrease 
to 10−5 over time. 

For our dataset, the NN-based approach outperformed tradi-
tional classifers mentioned above. Therefore, in the remainder of 
this paper, we present the results of the NN-based approach. Mean-
while, we note that all the NN-based models could achieve real-time 
prediction; the inference times of all the NN-based models on our 
1080Ti machine were less than 10 ms. 

Figure 5: Pipeline of our NN-based approach. We explore 
1D-CNN, LSTM and MLSTM-FCN for processing sensor data. 
Legend: "TS NN":Time-Series Neural Net,"FC Layer": Fully Con-
nected Layer. 

Sensor Data
Activity

Engagement

FC Layer

Prediction

TS NN FC Layer

4.2 Validation Method 
To investigate how predictive the features were for building a per-
sonalized model vs. a general model, we frst trained personalized 
models for each individual participant. Since the data we collected 
was time-series data, we split the data into a training and a test 
dataset according to time interval to avoid overlapping between 
the two sets. For example, for 300 seconds of VR activity recording 
data, we took 0 to 30 seconds as test data and the remaining data 
as training data. Similarly to Zuger et al. [100], we applied 10-fold 
cross-validation for each participant, for which 10% of the data were 
used as testing data and the remaining 90% were used as training 
data. The result was averaged over 10 runs. This method provides 
a metric for how personalized models performed on similar but 
unseen data. 

Next, to gather further insights on the generalizability of the 
features across individual participants, we performed a leave-one-
participant-out cross-validation to build a general model. That is, 
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Table 2: Comparison of models that used sensor-only features (HMD, controller and gaze). We report accuracy, recall, precision 
and F1-score which are calculated under classifcation threshold 0.5, and AUROC for each model. Legend: "Con.": Controller, 
"Prec.": Precision., "F1.": F1-Score, "AUC": AUROC 

Personalized Model General Model 
Sensors-only Acc Recall Prec. F1. AUC Acc Recall Prec. F1. AUC 
Baseline 0.6103 0.2390 0.5240 0.3282 0.5000 0.6016 0.000 NaN NaN 0.5000 
1D-CNN 0.7616 0.6985 0.7018 0.7002 0.8572 0.6727 0.5308 0.6012 0.5638 0.7257 
LSTM 0.7444 0.6918 0.6748 0.6832 0.8199 0.6581 0.5709 0.5710 0.5710 0.7014 

MLSTM-FCN 0.7738 0.7202 0.7144 0.7173 0.8559 0.6715 0.5880 0.5878 0.5879 0.7253 

one participant’s data were used as test data, and the data from 
the remaining 19 participants were used as the training data. The 
results were averaged over 20 runs. This method provides a metric of 
how a general model might perform for new users. To evaluate the 
models, we frst adopted accuracy, which was the fraction of correct 
predictions and often used to evaluate the performance of classifers 
in previous interruptibility works [87]. However, while accuracy 
treats all misclassifed data equally, some misclassifcations might 
be more undesirable in certain situations. In our study, the aim was 
to not disturb VR users with notifcations; thus, a false positive 
(being predicted as an opportune moment but in fact being an 
inopportune one) was more undesirable and costly than a false 
negative (being predicted as an inopportune moment but in fact 
being an opportune one). Thus, in addition to accuracy, we also 
evaluated the model using metrics including recall, precision, F1-
score, and the area under the receiver operating characteristic curve 
(AUROC). Recall measured how many of the actual opportune 
moments were predicted as opportune. A high recall means that 
most of the users’ opportune moments are successfully detected. 
Precision measured how many of the moments being predicted 
as opportune were truly opportune moments. As a result, given 
our goal of reducing disruption, we deemed a model that achieved 
high precision to be more desirable than a model that achieved 
high recall. On the other hand, F1-score was the harmonic mean of 
precision and recall, providing a balance measure between precision 
and recall. Finally, the receiver operating characteristic (ROC) curve 
shows the true positive rate (TPR) and false positive rate (FPR) at 
diferent classifcation thresholds, which is benefcial for optimizing 
the model for diferent preferences regarding TPR and FPR. AUROC 
then measures the overall performance of a classifcation model at 
all classifcation thresholds. 

4.3 Model Performance 
4.3.1 Performance Comparison of Sensor-Only Models. We frst 
examined the performance of only using sensor data for prediction 
tasks. The results of each model that used only sensor features 
are presented in Table 2 for both a personalized and a general 
model. For the baseline, we report the AUROC from a random 
classifer commonly used for this metric; for other metrics, we 
report the results from a majority classifer that always predicts 
classes containing more samples in the training dataset, often used 
as a baseline in works on interruptibility prediction [87]. 

Overall, our results showed that personalized models outper-
formed general models for all combinations of sensor types. This 
implies that individual variances in sensor data patterns among the 
participants might be so large so that the information learned from 

Figure 6: ROC curve of models that using diferent sensors. 
(Left) MLSTM-FCN personalized model. (Right) MLSTM-
FCN general model 
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a group of individual participants was not sufcient to be predictive 
for a new user. In addition, Table 2 shows that all NN-based models 
performed signifcantly better than the baseline according to all 
metrics; this indicated that sensor features were helpful for pre-
dicting opportune moments for sending notifcations in VR. For a 
personalized model, among the three NN-based models, MLSTLM-
FCN achieved the best overall performance—highest accuracy (0.77), 
precision (0.71), recall (0.72), and F1-score (0.72), with only a slightly 
lower AUROC (0.86) than that of 1D-CNN. Notably, the recall of 
MLSTLM-FCN was noticeably higher than the other models for 
both the personalized model and the general model, respectively. 

Next, we were interested in exploring which combination of sen-
sor features best predicted the opportune moment for sending noti-
fcations in VR. Figure 6 shows an ROC curve of all combinations, 
of which we only displayed the performance of the MLSTLM-FCN 
models to maintain the readability of the fgure. The detailed results 
for each model can be found in Appendix B. 

4.3.2 Sensor Importance in Diferent Activities. Generally speaking, 
the results show that combining more types of sensor achieved 
better AUROC for both the personalized model and the general 
model and that no single sensor seemed to dominate the others. 
This suggests that the three types of sensor features complemented 
each other quite well in making predictions; perhaps they captured 
diferent aspects of participants’ conditions, which were indicative 
of diferent aspects of a moment being perceived as opportune for 
receiving notifcations in VR. Because combining three sensors 
yielded the best performance, when comparing the performances 
of the sensor-only models with the models using additional features 
(i.e., activity information and engagement), we used this confgura-
tion as the basis for making comparisons. 
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Table 3: Performance comparison of the models using all the features (sensors, activity condition, and summarized engage-
ment). We report their accuracy, recall, precision, F1-score, and AUROC. Legend: "Con.": Controller, "Prec.": Precision, "F1.": F1-
score, "AUC": AUROC 

Personalized Model General Model 
All-Features Acc Recall Prec. F1. AUC Acc Recall Prec. F1. AUC 
1DCNN 0.8503 0.8032 0.8178 0.8104 0.9304 0.7440 0.6460 0.6913 0.6679 0.8004 
LSTM 0.8457 0.8049 0.8072 0.8061 0.9240 0.7549 0.6644 0.7039 0.6836 0.8101 

MLSTM-FCN 0.8530 0.8127 0.8174 0.8150 0.9273 0.7212 0.6246 0.6583 0.6410 0.7724 

Figure 7: Feature importance of each sensor in the per-
sonalized MLSTM-FCN model for the diferent VR ac-
tivities, quantifed by mean loss of accuracy when re-
moving the features of individual sensors. 

Because each sensor seemed to capture diferent aspects of the 
participants’ conditions, we were also interested in the feature 
importance of each type of sensor in diferent VR activities (360° 
video, VR ftness, and the rhythm game). Because we could not 
directly compute the feature importance in a neural network, we 
measured each sensor’s importance by comparing the performance 
diference between the model trained with and without the features 
of that sensor type. This approach is commonly adopted to examine 
the necessity of certain features or modules in neural networks 
(e.g., [54, 94]). We particularly examined the performance diference 
in diferent activities, as these activities entailed diferent kinds 
and intensities of eye and physical movement. Figure 7 shows the 
decline in accuracy when removing the features of each sensor 
type in each activity. The fgure clearly shows that removing each 
of them resulted in difering performance drops in each activity, 
suggesting that each sensor contributed diferently to prediction 
in the diferent types of VR activity. For instance, the HMD and 
gaze sensors seemed to contribute more to the prediction than 
the controller did in 360° videos. Since participants did not need to 
interact with the video, this result was not surprising. Moreover, the 
HMD and controller seemed to contribute to prediction more than 
the gaze sensor did in VR ftness. Additionally, all three contributors 
to prediction in the rhythm game. These results resonate with the 
aforementioned observation that diferent sensors capture diferent 
aspects of users’ conditions. Thus, when participants experienced 
VR activities that incorporated those aspects, dropping features 
that captured information about those aspects from consideration 
harmed the prediction of opportune moments in those particular 
VR activities. 

Figure 8: ROC curves of models using diferent combina-
tions of feature type. (Left) Personalized 1D-CNN model. 
(Right) General LSTM model. 
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4.3.3 Performance Improvements with Additional Information. 
Next, we examined the performances of the models using all the 
feature types (sensors, activity conditions, and summarized engage-
ment). The results for both personalized models and general models 
are presented in Table 3. For the personalized models, 1D-CNN- and 
MLSTM-FCN-based models performed better than LSTM. Specif-
ically, whereas 1D-CNN achieved better precision and AUROC, 
MLSTM-FCN achieved better accuracy, recall, and F1-score. How-
ever, in general models, LSTM-based models performed the best 
across all performance metrics. 

Next, we compare the performance of the models using diferent 
combinations of feature types, shown in Table 4; Figure 8 shows 
their ROC curves. Similarly, the table and the fgure only show the 
results from the models that performed the best among the three 
NN-based models (1D-CNN for personalized model and LSTM for 
general model, respectively). Overall, using all the features—sensor, 
activity, and summarized engagement—to predict opportune mo-
ments in VR achieved an accuracy of 85% and an AUROC of 0.93 for 
a personalized model and an accuracy of 75% and an AUROC of 0.81 
for a general model, comparable to the interruptibility prediction 
results on desktop computers (e.g., [20, 31, 79, 81, 100]) and mobile 
phones (e.g. [57, 70, 76, 88, 90, 95]). 

Interestingly, the results showed that models that leveraged ac-
tivity condition information seemed to achieve the best AUROC, 
compared to sensor and engagement information; even using only 
the activity information feature alone achieved an AUROC of 0.91. 
Combining this information with either sensor or engagement in-
formation further improved performance. This indicates that the 
provision of activity information from a VR content provider to 
help such prediction may be worthwhile. It was unexpected, how-
ever, that using engagement information alone, which involved 
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Table 4: Comparison of feature types. Sensors combine features of HMD, controller, and gaze sensor. Activity is a label for 
predefned categories and subcategories of VR activities. Engagement is based on the majority of participants’ engagement 
labels. Legend: "Sen.": Sensors, "Act.": Activity, "Eng.": Engagement, "Acc.": Accuracy, "Prec.": Precision, "F1.": F1-Score, "AUC": 
AUROC 

1D-CNN Personalized Model LSTM General Model 

Acc. Recall Prec. F1. AUC Acc. Recall Prec. F1. AUC 
Sen. 0.7616 0.6985 0.7018 0.7002 0.8572 0.6581 0.5709 0.5710 0.5710 0.7014 
Act. 0.8210 0.7887 0.7683 0.7784 0.9101 0.7504 0.6947 0.6839 0.6893 0.8022 
Eng. 0.7253 0.4207 0.7926 0.5497 0.7454 0.7253 0.4090 0.8061 0.5427 0.6667 

Sen.+Act. 0.8436 0.8038 0.8037 0.8037 0.9257 0.7447 0.6946 0.6744 0.6844 0.8011 
Sen.+Eng. 0.7983 0.7165 0.7629 0.7390 0.8831 0.7180 0.4092 0.7777 0.5362 0.7264 
Act.+Eng. 0.8287 0.7795 0.7881 0.7838 0.9166 0.7505 0.6590 0.6980 0.6779 0.8140 

Sen.+Act.+Eng. 0.8503 0.8032 0.8178 0.8104 0.9304 0.7549 0.6644 0.7039 0.6836 0.8101 

summarized information by the participants, would obtain the low-
est AUROC (0.75). We found that this was because it only achieved 
low recall (nearly 40%) in both the personalized and general models. 
In contrast, it achieved particularly high precision (nearly 80%) in 
both the personalized and general models. 

In examining the performances of the models that combined 
features against those which used only one type of features, we 
found that combining either two types of features generally im-
proved the performance of the personalized models. Notably, while 
engagement alone achieved relatively low recall, adding either sen-
sor information or activity information to it signifcantly raised 
the recall (i.e., raising the likelihood of capturing actual opportune 
moments), especially in a personalized model. Finally, combining 
all three types of features achieved the best performance in nearly 
all metrics for the personalized model. However, it did not achieve 
any of the best performance metrics for the general model. 

4.3.4 Additional Insight : Activity, Engagement and Opportuneness. 
To gather further insights into the prediction results, we examined 
the proportion of opportune and inopportune moments in difer-
ent VR activities. Here, we provide some explanations from the 
participants’ perspectives gained from interviews we conducted 
with them. Figure 9 shows the percentages of opportune moments 
against engagement—making, in total, four combinations—in dif-
ferent activity conditions. Blue and red represented opportune and 
inopportune moments, respectively. Considering the rightmost bar, 
the rhythm game at a difculty level of hard, for example, nearly all 
moments associated with this activity conditions were associated 
with high-engagement and inopportune moments for notifcations. 
In the difculty level of easy, however, a few more moments were 
associated with opportune for notifcations (thus a greater propor-
tion of blue), among which nearly half were associated with high 
engagement and the rest were associated with low engagement. 
Overall, the chart explains the strong predictive power of activity 
conditions of opportune moments; the ratios of red to blue varied 
among activity conditions. For example, the length of opportune 
moments in 360° videos of high arousal was 2.9 times and 3.8 times 
shorter than that in 360° videos of medium and low arousal, respec-
tively. The length of the opportune moments in VR ftness with 
high-intensity translational exercises was 3.4 times and 4.7 times 
shorter than with VR ftness of low intensity of translation and 
low intensity of rotation, respectively. It was even 5.9 times shorter 

than in resting in VR ftness. Most participants supported these ob-
servations in the end-of-study interviews, mentioning that whether 
or not notifcations were timed well depended on the content of 
the activity they were engaged in at the time. Many users reported 
examples of this: "While the video content is rapidly changing, I do 
not want to receive a notifcation" (P6) and "I feel that notifcations 
are very annoying when I am playing the game" (P10). 

Interestingly, while all of the levels of gameplay in the rhythm 
game (i.e., easy, normal, and hard) were considered to be mostly 
inopportune for notifcations, nearly 40% of the break times were 
also considered to be inopportune. This implies that break times 
are not necessarily considered to be timed well. It is possible that 
perceptions of opportuneness still depend on the pace and intensity 
of an activity near the break time. Perhaps in a more static game, 
break time would be more likely considered opportune for notifca-
tions. Another notable fnding is that in all of the scenarios, nearly 
20% of the time was labeled as inopportune, suggesting possible 
disagreement among participants on opportuneness in the various 
scenarios. In the interviews, we learned diferent opinions about 
the opportuneness of these moments. For example, some partici-
pants stated that even when they were having a break, they did not 
want to receive a notifcation in the rhythm game; as P14 stated, 
"I want to prepare for the following game, so the notifcations are 
not welcome, even during the break of the game." However, some 
participants considered it as suitable; P15 stated, "I am not busy in 
the break, so it is OK to receive a notifcation." The diversity of these 
perceptions seems to be refected in the prediction results, which 
may largely explain why activity information performed better in 
a personalized model than in a general model. 

Another interesting and noteworthy fnding is that while par-
ticipants tended to associate low-engagement moments with op-
portune moments, Figure 9 clearly illustrated a diference between 
engagement and opportune moments. There were moments of 
low engagement with which participants associated inopportune 
moments (light red on the bottom) and also moments of high en-
gagement with which participants associated opportune moments 
(dark blue on the top). 

Overall, the former situation (i.e., associations between low en-
gagement and inopportune moments) were less prevalent, but was 
relatively higher in VR ftness during rest (8%) and high intensity 
of translation (12%). In these moments, participants considered 
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Figure 9: Activity, engagement, and opportuneness. Legend: " 360°": 360° Video, "Fit": VR Fitness, "Game": Rhythm Game, "Low-
Rot": Low-Intensity-Rotation, "Low-Transl":Low-Intensity-Translation, "High-Rot": High-Intensity-Rotation, "High-Rot": High-
Intensity-Translation. 

themselves not engaged in the activity, but they were reluctant to 
receive notifcations during these moments because they felt tired; 
as P9 mentioned, "That was when I was physically tired. I was not en-
gaged, but I did not want to receive notifcations." Situations in which 
participants associated high engagement with opportune moments 
were more frequent than associations between low engagement 
and inopportune times. These moments were more prevalent when 
participants were watching low-arousal 360° videos (28%), were 
resting (22%), were performing low-intensity rotation exercises 
(29%) in VR ftness, were on a break (30%), or during the end screen 
(27%) in the rhythm game. Participants reported diferent reasons 
why they thought these moments were opportune for receiving 
notifcations even though they were engaged: "I was engaged in 
exploring in a static scene in the 360° video, but I was willing to re-
ceive notifcations because I could explore the scene later" (P9); "I was 
engaged when working out, but I could read notifcations as long as 
the move was not too hard" (P16); and "At the break of the rhythm 
game, I still feel engaged because of the visual and audio content was 
immersive. But I can respond to a notifcation because I am not busy" 
(P18). The fact that participants felt it was opportune to receive no-
tifcations in many high-engagement situations explained why the 
model using the engagement feature alone missed these moments 
in its predictions, resulting in low recall (about 40%). 

5 DISCUSSION 
In this section, we discuss our results, including the implications of 
the results for the personalized and general models, sensor compar-
ison, and model performance when including activity information 
and summaries about engagement. 

5.1 Sensor Comparison and Importance 
Our results show that using of-the-shelf VR devices can achieve 
an accuracy of 77.38% and an AUROC of 0.86 for the personalized 
model and an accuracy of 67.15% and AUROC of 0.73 in the general 
model, respectively. These results are comparable with the predic-
tion performance in previous similar works that focused on the 

workplace and mobile context (e.g., [20, 21, 70, 89, 100]), demon-
strating the feasibility of predicting opportune moments for sending 
notifcation in VR. 

From the results of feature comparison, we found that no single 
sensor dominated the others and each sensor was important in 
diferent types of VR activities. For example, each sensor type cap-
tured diferent aspects of the participants’ activity (e.g., head move-
ment, hand movement, gaze movement), which were demanded 
to diferent extents in diferent VR activities. As a result, we ob-
served difering performance declines when removing each sensor 
type from the prediction in each VR activity. For instance, infor-
mation from the gaze sensors were important in activities that 
required various levels of visual attention; information from con-
troller sensors was important in activities that required various 
degrees of body movement; and information from HMD sensors 
was important in both types of activities. Moreover, the sensors 
seemed to complement each other well, such that combining all 
sensors yielded the best performance metrics, including precision, 
which is the preferred metric for reducing the number of false pos-
itives (i.e., identifying an inopportune moment as an opportune 
one) and ultimately reducing interruptions in which a user would 
fnd notifcations disruptive. All in all, these results show that it is 
feasible to use machine learning techniques to identify opportune 
moments for notifcation delivery, mainly based on the sensors 
from of-the-shelf VR devices. Furthermore, to build a model that 
can be used in various activities, it is important to include diferent 
sensors because they capture diferent aspects of users’ movement. 

5.2 Personalized vs. General Model 
Several prior works have found interruptibility estimation models 
difcult to generalize to new users due to individual diferences 
[21, 90, 99, 100]. Our results resonate with this observation: over-
all, personalized models outperformed general models. This might 
indicate that individual diferences in movement patterns and per-
ceptions of timing for receiving notifcations made it difcult for 
a general model trained from a group of participants to identify 
a new participant’s perceptions of such timing. As a result, when 
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only using sensor information from VR devices (including eye gaze 
data), the precision was only 60.12%, meaning that nearly 40% of 
the moments predicted as opportune for notifcations were actually 
inopportune. However, the precision increased to 70% when build-
ing a personalized model. Nevertheless, while a personalized model 
sounds appealing because of its superior performance in nearly all 
aspects to a general model in our predicting task, building a person-
alized model requires more time and efort, as more individual data 
are needed. One possible way to resolve this dilemma is to start 
with a general model and then to use machine learning techniques 
to reduce the amount of personalized data required to achieve a 
high performance. That said, in our study, collecting each individual 
participant’s data took, on average, 30 minutes per activity, and the 
time and efort to collect personalized data may be further reduced 
through techniques such as user clustering (e.g., [90]) and active 
learning (e.g., [18]). Developers can consider the trade-of between 
cost and performance based on their own needs. 

5.3 Sensor-Based Only or Including Metadata 
for Opportune Moment Prediction? 

Assuming that activity conditions and summarized engagement in-
formation could potentially be supplied from VR content providers 
and crowdsourcing [37], we examined whether the inclusion of 
these two types of information improved the performance of the 
prediction of opportune moments for receiving notifcations. Our 
results consistently show that the inclusion of information about ac-
tivity conditions and engagement improved the performance (about 
5 to 13% of improvement in all metrics in both the personalized and 
the general models). Figure 9 also shows that activity conditions 
and engagement information both signifcantly infuence and relate 
to participants’ perceptions of opportune moments for receiving 
notifcations. Considering these results together, it seemed most 
ideal to obtain all three types of information to train a predictive 
model. 

However, because obtaining both of these pieces of informa-
tion requires more efort and time, the key question is whether 
it is worth the efort to collect this information. For example, if 
developers want to focus on using real-time sensor information 
to make such predictions, a personalized model with a nearly 0.86 
AUROC and 72% F1 score should sufce. However, with slightly 
more efort from content providers or developers to supply meta-
data about VR activity at the time of participation, including even 
one piece of information (in our case, activity condition), the pre-
diction performance can be considerably improved (nearly 5 to 
9% across all metrics in a personalized model and nearly 5 to 13% 
across all metrics in a general model). As for engagement informa-
tion, video annotation was not as common as other crowdsourcing 
tasks on a somewhat smaller scale (e.g., image tagging, translation, 
handwriting recognition) that have been prevalent on some online 
crowdsourcing platforms (e.g., Google Crowdsource5); these other 
crowdsourcing tasks have appealed to a large number of crowd 
workers who have performed these tasks, but video annotation has 
increasingly been gaining in popularity in felds related to com-
puter vision [91], multimedia [85], and HCI [12]. In our study, we 

5https://crowdsource.google.com/ 

used annotations from only 20 people and could already see im-
provement in the performance of the personalized model. Given 
that many participants in our study produced similar descriptions 
of engagement, it is likely that even several people’s engagement 
descriptions would help improve the performance of the models. 
Furthermore, with the activity conditions and engagement infor-
mation combined, developing a general model may become even 
more appealing because it saves the efort required to access sensor 
information and convert them into features. If a practitioner favors 
precision over recall in predicting opportune moments, even using 
engagement information alone to build a general model may be a 
good starting point. However, if a practitioner favors recall over 
precision, it should be noted that a model with the engagement 
information alone may likely miss the majority of actually oppor-
tune moments because users are likely to feel engaged because 
of the immersive experience of VR while still feeling receptive to 
notifcations. 

We deem that there is no right answer regarding whether it is 
worthwhile to obtain each type of information to help the predic-
tion of opportune moments because there is a choice of who bears 
the burden. Using of-the-shelf sensors is convenient because they 
are all accessible. It also makes development work and prediction 
models independent from content providers and more portable 
across VR platforms because the prediction would mainly rely on 
real-time sensor information, which would presumably be available 
on most VR products. Even without engagement information from 
a crowd, many works have demonstrated that engagement level 
can be inferred from EEG [22] and video [71]. However, taking 
such a direction would mean that the burden is mainly on the de-
velopers of the VR platform (presuming that the platform takes 
the responsibility of delivering real-world notifcations across vari-
ous VR applications). If using metadata, it is likely that when VR 
becomes pervasive among consumers, crowdsourcing video anno-
tation tasks will also become more common. Moreover, if content 
providers commonly supply metadata from their VR content, de-
velopers of VR platforms may fnd it easier to access and process 
sensor information to build an appropriate prediction model. How-
ever, the downside of this scenario is that prediction may not work 
in applications where no metadata are supplied. 

In hoping that users will encounter fewer disruptions caused 
by notifcations regardless of which VR application they are using, 
we deem that developers of the VR platform ought to take respon-
sibility for leveraging sensors to identify opportune moments for 
notifcation delivery but meanwhile encourage (or instruct) content 
providers to provide more metadata from the activities to further 
improve their predictions. Given that VR platforms may soon be-
come prevalent, delivering notifcations from the real world to users 
in VR may be unavoidable, and preventing these notifcations from 
disrupting the immersion experience is crucial. Our study has shed 
some light on useful information for identifying opportune mo-
ments for delivering notifcations. We hope the results can be a 
useful reference for VR platform developers and content providers 
when making decisions. 

https://crowdsource.google.com/
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6 LIMITATIONS AND FUTURE WORK 
The current study was subject to a number of limitations. The 
frst limitation relates to generalizability. Although we tried to col-
lect diverse data from three activities that varied in terms of body 
movement and visual attention, these VR activities could not be 
representative of all kinds of VR applications. The number of par-
ticipants was also small, and the participants were skewed toward 
a younger population. Therefore, their experience might also not 
be generalizable to the broader population. In terms of notifcation 
presentation and position, we only considered visual notifcations 
fxed at the upper region of the feld of view; however, diferent 
display designs might afect the perceived opportuneness of the 
timing (e.g., notifying the user visually might be more disruptive 
than notifying them haptically in activities that require high visual 
attention). Given these limitations, we encourage future research 
to explore this topic with more diverse populations, notifcation 
presentations and modalities, and VR activities. 

Second, in terms of ecological validity, the participants experi-
enced the VR activities in a lab setting. Thus, their perceptions of 
opportune moments for notifcation delivery may be afected by 
other factors, such as recent context, content of the message, and 
sender-recipient relationships in a real-life setting. Moreover, we 
did not tell participants how long each activity and break would take. 
However, participants’ awareness of the length of each scenario 
could infuence their perceived interruptibility. For example, some 
of the participants told us that their uncertainty about the length of 
the breaks in the rhythm game afected their willingness to receive 
notifcations during these moments. Although participants could 
establish some rough idea about how long the duration of each 
break and activity session would be through the warm-up tasks, 
such an awareness could be diferent from real-life VR experiences, 
which could be reinforced through additional experiences with a 
VR particular activity. We encourage future research to examine 
the prediction performance, as well as how much a system that 
equips the prediction, can reduce interruptions from notifcations 
in a feld study. 

Third, as VR is not yet widely used in daily life as desktop com-
puters and mobile phones, individual diferences in VR experience 
might also infuence participants’ categorization of both opportune 
moments and engagement. For example, it is likely that participants 
with less VR experience might fnd themselves more engaged due 
to the novelty efect and report less opportune moments. Although 
we did not observe such pattern in our study, future research can 
also explore if diferences in VR experiences can afect perceptions 
of opportune moments for notifcations. 

Fourth, instead of using the experience sampling method, we 
used the retrospective method to collect the data in this study. Since 
the retrospective method might involve a memory bias problem, 
we kept each session short (fve minutes). As a result, most users 
reported that it was easy and clear to label the data. However, we 
recognized that experience after-the-fact might still be slightly dif-
ferent from the experience in-the-moment. In addition, the post 
hoc continuous labeling method in our study simplifed the dynam-
ics and rapidness of change in people’s perceptions of opportune 
moments, which is also likely to be on a continuum of choice rather 
than a binary choice. Using additional tools to provide reference 

points (e.g., using EEG to detect changes in brain waves) could help 
to collect more precise and fne-grain labeled data. 

Sixth, in our work, we only considered sensors that captured 
users’ movement in this study. However, many prior studies found 
the predictive power of biometric features (e.g., pupil size [21], EEG 
[48], EDA [99] and so on) and interactional features (e.g., click 
events [20] and keystroke [100]) to predict interruptibility. We also 
did not use computer vision techniques to extract features of the 
visual elements that participants saw in the VR activities. This was 
because we aimed to use of-the-shelf sensors directly available on 
the VR device, which would be more accessible and require less 
specifc knowledge of vision to build this model. Nevertheless, we 
believe that the inclusion of these features would further improve 
predictions using only real-time information. We deem this work 
to be the frst step in the prediction of opportune moments for 
notifcation delivery in VR. Future research can consider combining 
more biometric, interactional features, and even vision features to 
further improve predictions. 

7 CONCLUSION 
To reduce the potential disruption to VR users caused by real-life 
notifcations, we aimed to build prediction models using sensors on 
VR devices to predict opportune moments for real-life notifcation 
delivery in VR. We additionally examined if adding metadata from 
activities and engagement information potentially obtainable via 
crowdsourcing could improve the prediction performance. Our 
results show that using sensors from of-the-shelf VR devices could 
achieve an AUROC of 0.86 for personalized models and 0.73 for a 
general models. In addition, we found that no single sensor in the VR 
devices was superior to the others, and each sensor was important 
in diferent types of VR activities. Because each sensor seemed 
to complement the others well, combining all sensors achieved 
the best performance among the other combinations. Finally, we 
showed that by including the activity conditions and summarized 
engagement information, the prediction achieved an AUROC of up 
to 0.93 for the personalized model and 0.81 for the general model. 
These results not only demonstrate the feasibility of identifying 
opportune moments for notifcations in VR but also indicates that 
such predictions could achieve great performance. Nevertheless, 
to examine whether such prediction tasks can also achieve similar 
performance in the real world requires more investigation and 
validation in feld studies. 
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A DETAIL OF NEURAL NETWORK LAYERS 
We follow the network architecture of EEGNet [42] as our 1D-
CNN because of its compact architecture, and only modify layers’ 
confguration to better ft the dataset. For the LSTM model, we 
use 1 layer LSTM with 64 hidden cells. Similar to 1D-CNN, we 
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follow the architecture of MLSTM-FCN [38] and only modify layers’ 
confguration. In Table 5, we specify the confguration of each layer 
in our 1D-CNN and MLSTM-FCN, including kernel size k , stride s of 
convolutional and pooling layer, probability p of dropout [77] layer, 
reduction r of Squeeze-and-Excitation block (SE-Block) [30], hidden 
size h of LSTM, and output dimension dout of fully-connected layer. 

Table 5: Layer details of our 1D-CNN and MLSTM-FCN model. C is the number of channels in time series data. Legend: 
"Conv1D":, 1D Convolution Layer, "BN":Batch-Normalization [32] "DepConv": Depthwise Convolution Layer, "SepConv": Sepa-
rable Convolution Layer, "AvgPool" : Average Pooling Layer., "DimShufle": Dimension Shufle 

1D-CNN Layer Input Shape 

Conv k = (1, 51) 1 × C × 300 
BN - 16 × C × 300 
DepConv k = (C, 1) 16 × C × 300 
BN+ReLU - 32 × 1 × 300 
AvgPool k = (1, 4), s = (1, 4) 32 × 1 × 300 
Dropout p = 0.25 32 × 1 × 75 
SepConv k = (1, 15) 32 × 1 × 75 
BN+ReLU - 32 × 1 × 75 
AvgPool k = (1, 8), s = (1, 8) 32 × 1 × 75 
Dropout p = 0.25 32 × 1 × 9 
Dense dout =64 32 × 1 × 9 

MLSTM-FCN Layer Input Shape 

Conv1D k = 31 C × 300 
BN+ReLU - 32 × 300 
SE-Block r = 16 32 × 300 
Conv1D k = 17 32 × 300 
BN+ReLU - 64 × 300 
SE-Block r = 16 64 × 300 
Conv1D k = 9 64 × 300 
BN+ReLU - 32 × 300 
GlobalAvgPool - 32 × 300 

DimShufe C × 300 
LSTM h = 8 300 × C 
Dropout p = 0.25 8 

Concate 32, 8 
Dense dout =64 40 
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B DETAIL METRICS OF EACH MODEL presented in Table 6 and Table 7. Note that these models are only 
diferent while using sensor features, therefore the result without The detail of recall, precision, and AUC of each personalized model 
using sensor feature are the same across three models. and general model based on 1D-CNN, LSTM, and MLSTM-FCN, are 

Table 6: Detail of sensors and features comparison of each personalized NN-based model. Legend: "Prec.": Precision., "AUC": 
AUROC, "Con.": Controller, "Sen.": Sensors (HMD+Con.+Gaze), "Act.": Activity Category, "Eng.": Summarized Engagement 

1D-CNN LSTM MLSTM-FCN 

Recall Prec. AUC Recall Prec. AUC Recall Prec. AUC 
HMD 0.6363 0.6838 0.8178 0.5508 0.6405 0.7554 0.6559 0.6938 0.8267 
Con. 0.7314 0.6484 0.8300 0.6839 0.6353 0.7916 0.6955 0.6657 0.8351 
Gaze 0.5834 0.6505 0.7796 0.4651 0.5793 0.6813 0.5962 0.6587 0.7917 

HMD+Con. 0.7194 0.6750 0.8483 0.6708 0.6712 0.8153 0.7037 0.7084 0.8541 
HMD+Gaze 0.6482 0.6968 0.8322 0.6139 0.6468 0.7730 0.6731 0.7036 0.8357 
Con.+Gaze 0.6946 0.6573 0.8322 0.7027 0.6397 0.7943 0.7161 0.6795 0.8403 

Sen. 0.6985 0.7018 0.8572 0.6918 0.6748 0.8199 0.7202 0.7144 0.8559 
Act. 0.7887 0.7683 0.9101 0.7887 0.7683 0.9101 0.7887 0.7683 0.9101 
Eng. 0.4207 0.7926 0.7454 0.4207 0.7926 0.7454 0.4207 0.7926 0.7454 

Sen.+Act. 0.8038 0.8037 0.9257 0.8014 0.7848 0.9186 0.8016 0.8033 0.9224 
Sen.+Eng. 0.7165 0.7629 0.8831 0.7040 0.7358 0.8583 0.7414 0.7580 0.8815 
Act.+Eng. 0.7795 0.7881 0.9166 0.7795 0.7881 0.9166 0.7795 0.7881 0.9166 

Sen.+Act.+Eng. 0.8032 0.8178 0.9304 0.8049 0.8072 0.9240 0.8127 0.8174 0.9273 

Table 7: Detail of sensors and features comparison of each general NN-based model. Legend: "Prec.": Precision., "AUC": AUROC, 
"Con.": Controller, "Sen.": Sensors (HMD+Con.+Gaze), "Act.": Activity Category, "Eng.": Summarized Engagement 

1D-CNN LSTM MLSTM-FCN 

Recall Prec. AUC Recall Prec. AUC Recall Prec. AUC 
HMD 0.4222 0.5609 0.6787 0.3343 0.4791 0.6212 0.3976 0.5429 0.6485 
Con. 0.5406 0.5336 0.6790 0.7110 0.5479 0.6864 0.5943 0.5365 0.6776 
Gaze 0.5228 0.5622 0.6964 0.2038 0.5195 0.5911 0.3877 0.5802 0.6976 

HMD+Con. 0.5188 0.5813 0.7185 0.5246 0.5451 0.6889 0.5311 0.5891 0.7173 
HMD+Gaze 0.4478 0.5981 0.7060 0.2136 0.5135 0.6029 0.4340 0.5582 0.6772 
Con.+Gaze 0.5647 0.5528 0.6995 0.6065 0.5338 0.6805 0.6063 0.5470 0.6924 

Sen. 0.5308 0.6012 0.7257 0.5709 0.5710 0.7014 0.5880 0.5878 0.7253 
Act. 0.6947 0.6839 0.8022 0.6947 0.6839 0.8022 0.6947 0.6839 0.8022 
Eng. 0.4090 0.8061 0.6667 0.4090 0.8061 0.6667 0.4090 0.8061 0.6667 

Sen.+Act. 0.6757 0.6682 0.8040 0.6946 0.6744 0.8011 0.6322 0.6463 0.7635 
Sen.+Eng. 0.4843 0.7138 0.7656 0.4092 0.7777 0.7264 0.5885 0.6226 0.7477 
Act.+Eng. 0.6590 0.6980 0.8140 0.6590 0.6980 0.8140 0.6590 0.6980 0.8140 

Sen.+Act.+Eng. 0.6460 0.6913 0.8004 0.6644 0.7039 0.8101 0.6246 0.6583 0.7724 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Interruption and Notification Management
	2.2 Attention and Interruptibility Prediction

	3 Data Collection
	3.1 VR Activity
	3.2 Notification Display
	3.3 Video Annotation of Opportune Moment and Engagement
	3.4 Participants
	3.5 Study Procedure
	3.6 Features and Data Processing

	4 Analysis and Result
	4.1 Machine Learning Model
	4.2 Validation Method
	4.3 Model Performance

	5 Discussion
	5.1 Sensor Comparison and Importance
	5.2 Personalized vs. General Model
	5.3 Sensor-Based Only or Including Metadata for Opportune Moment Prediction?

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Detail of Neural Network Layers
	B Detail metrics of each model

