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SUMMARY

Wide varieties of register file architectures — developed for embedded processors —
have turned to aim at reducing the power dissipation and die size these years, by
contrast with the traditional unified register file structures. This article presents a
novel register allocation scheme for a clustered VLIW DSP, which is designed with
distinctively banked register files in which port access is highly restricted. Whilst the
organization of the register files is designed to decrease the power consumption by using
fewer port connections, the cluster-based design makes register access across clusters
an additional issue, and the switched-access nature of the register file demands further
investigations into optimizing register assignment for increasing the instruction-level
parallelism. We propose a heuristic algorithm, named ping-pong aware local favorable
(PALF) register allocation, to obtain advantageous register allocation that is expected
to better utilize irregular register file architectures. The results of experiments performed
using a compiler based on the Open Research Compiler (ORC), showed significant
performance improvement over the original ORC’s approach, which is considered to
be an optimized approach for common register file architectures.
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1. Introduction

The large computing power required by today’s numerous embedded applications cannot be
met by typical RISC embedded processors and low-end DSPs with little parallelism, which is
driving investigations into DSPs with efficient parallel architectures. In addition to processor
performance, the power consumption and chip die size of such DSPs are always significant
concern. Exploiting instruction-level parallelism using VLIW architectures typically requires
a large number of registers in a unified file to optimize resource utilization in the instruction
scheduling whilst minimizing processor-memory traffic. This approach is not feasible for
embedded DSP processors due to the design constraints of power dissipation and chip die size.
Furthermore, the ability of all functional units to access larger number of registers demands
more ports, which greatly increases the access time to register files, restricting the possible
processor cycle duration and adding to the difficulty of the design [5]. To solve this weakness,
the variety of decentralized register file architectures that have been developed for embedded
processors in recent years have aimed at reducing the power dissipation and die size compared
with traditional unified register file structures.

One of the techniques for decentralizing a unified register file is clustering, whereby register
files are partitioned for different groups of functional units. For example, members of the
Texas Instruments TMSC6x DSP [17] series use homogeneous clustered architectures with
partitioned register banks, and the CEVA CEVA-X [2] architectures utilize heterogeneous
clustered architectures with partitioned register files. Another technique for reducing power
dissipation without performance degradation is restricting accessing of register file structures,
such as in windowed register files [15] and hierarchical register files [16]. Unfortunately, the
more specific accessing features and irregular register constraints usually apply to processors
incorporating such partitioned register files. Accordingly, compilers require improved code
generation, register allocation, and instruction scheduling schemes for attaining optimal
performance with these processors.

This article describes a novel register allocation scheme for a clustered VLIW DSP, known
as a Parallel Architecture Core (PAC) DSP [3,4,12,13], which is designed with distinctively
banked register files in which port access is highly restricted. The PAC DSP employs a
heterogeneous design comprising a single scalar unit (for simple arithmetic, address calculation,
and program flow control), plus two data-stream processing clusters, each containing a pair
of load/store units and ALU/MAC units with powerful SIMD (Single Instruction stream,
Multiple Data stream) capabilities; each unit in the clusters can utilize three types of register
file, providing different accessing methods and constraints, and the scalar unit has its own
accessible register file. The main feature of the register file architecture of the PAC DSP
processor is that it incorporates a so-called ping-pong register file structure [9,10], which is
divided into two banks that can only be accessed in a mutually-exclusive manner — as a
semicentralized register file among clusters and functional units within a cluster. This cluster-
based design reduces the silicon area and power consumption due to fewer port connections
being required; nevertheless, not only the new design makes register access across clusters an
additional issue, but the switched-access nature of the ping-pong register file demands further
investigations into register assignment for increasing the instruction-level parallelism.
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We propose a heuristic algorithm, named ping-pong aware local favorable (PALF) register
allocation, to improve the register allocation by efficiently utilizing the irregular register file
architectures in the PAC DSP. The algorithm appropriately considers various characteristics
in accessing different register files, and attempts to minimize the penalty associated with the
interference between register allocation and instruction scheduling, while retaining desirable
parallelism despite ping-pong register constraints and intercluster overheads. Experiments
were performed with a compiler for the PAC DSP based on the Open Research Compiler
(ORC), with the results showing a significant performance improvement over the original
ORC’s approach. Moreover, our proposed PALF scheme greatly reduces the compilation time
compared with a simulated-annealing (SA) method [11], which is known as an effective but
time-consuming search heuristic for optimization problems based on randomization techniques.

The remainder of this paper is organized as follows. In section 2 we introduce the processor
architecture and register file organization of the PAC VLIW DSP. Section 3 briefly describes
the complicated issues caused by the strong correlation between code generation, register
allocation, and instruction scheduling in PAC architectures. The proposed PALF register
allocation scheme with the presentation of an illustrative example is addressed in Section 4.
The discussion of our evaluation and experimental results are provided in Section 5. Section 6
reviews related works. Finally, Section 7 concludes this paper.

2. Ping-pong Register Files with Clustered Architectures

This section overviews the VLIW architecture of the PAC DSP and its design of irregular
register files.

2.1. PAC DSP Architectures

The PAC DSP features a clustered VLIW architecture that boosts scalability, and a large
number of registers that are arranged as innovative heterogeneous and distinct partitioned
register file structures. In contrast to the symmetric architectures of most DSPs available
nowadays, the PAC DSP is constructed as a heterogeneous five-way issue VLIW architecture,
comprising two integer ALUs (I-unit), two memory load/store units (M-unit), and the program
sequence control unit/scalar unit (B-unit) that mainly executes control flow instructions such
as “branch” and “jump”. Each unit has its own executable subset of the instruction set, and
each executable instruction has its own register access and constraints. The M- and I-units
are organized in pairs, with each pair containing exactly one M-unit and one I-unit to form
a cluster with associated register files. It is apparent that each cluster is logically appropriate
for processing a single data stream, and in its current design the PAC DSP consists of two
clusters to support a maximum workload capacity of two concurrent data streams. However,
the scalability of the cluster design in the PAC DSP is such that extra clusters could be easily
added to handle a larger data processing workload. The B-unit consists of two subcomponents
(the program sequence control unit and the scalar unit) due to the hierarchical decoder
design for variable-length instruction encoding in the PAC DSP. The program sequence control
unit primarily takes charge of control flow instructions. The scalar unit, which is capable of
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Figure 1. (A) The PAC DSP architecture (B) The ping-pong constraint for a single cluster

simple load/store and address arithmetic, is placed separately from the data-stream processing
clusters, with its own register file. The overall architecture is illustrated in Fig. 1(A).

2.2. Irregular Register Files and Access Constraints

As shown in Fig. 1(A), registers in the PAC DSP are organized into several distinct partitioned
register files (A, AC, D, and R) and organized into clusters. This reduces the wire connections
between functional units and registers, and thereby decreases the chip area and power
consumption. Dedicated local register files are attached to each unit in the processor: they
include an R-register file, AC-register file, and A-register file, which are only accessible by the
B-, I, and M-units, respectively. A global register file named D-register file is designed to be
shared by the pair of M- and I-units in each cluster. The D-register file is further partitioned
into two banks to utilize instructional port switching technology in order to reduce the wire
connections between the M- and I-units. This technology (i.e., the ping-pong register file
structure), decreases the register-bank port connections that limit the accessibility of the two
banks; in each cycle, the two functional units can only access different banks. Each instruction
packet encodes the information of which bank is to be accessed for each functional unit in
the cycle, so that the hardware can perform port switching between the D-register file banks
and the functional units so as to implement data sharing within a cluster. By overlapping
two different data-stream operations in a single cluster, we minimize the occurrence of the M-
and I-units accessing the same data simultaneously; therefore, the access constraints of the
ping-pong register file structure should have little impact on the performance. The assumed
advantage of such a ping-pong register file structure design is that it consumes less power (due
to its reduced number of read /write ports [16]) while retaining the similar data communication
capability. Fig. 1(B) illustrates the constraints of the ping-pong register file. Besides local and
global register files, each cluster contains an additional constant register file that is shared
by both the M- and I-units as one of the read-only operand sources allowable by certain
instructions. Only M-units can initialize the data in the constant register file.

The distributed and ping-pong register file organization used in PAC DSP are demonstrated
to have 76.8% silicon area and 46.9% access time improvement comparing with its equivalent
centralized register files [10]. It was reported that the DSP with such register file organization
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Figure 2. An example of inserting intracluster communications

could achieve comparable performance with state-of-the-art DSPs for popular DSP kernels [4,
10], which implies that lower power consumption is expectable due to the much less silicon
area. This also reveals the importance of a good code generation strategy.

3. Optimizing Register Allocation in the Presence of Irregularity

For architectures supporting instruction-level parallelism, effective register allocation with
scheduling is always one of the crucial issues to optimizing the code performance. Register
allocation and instruction scheduling are typically performed in separate phases by most
compilers so as to decrease the complexity of these two combinatorial optimization problems
and interference between these two processes should be considered when determining a suitable
execution sequence based on the architectural features of the target machine. If register
allocation is performed after instruction scheduling, we may always obtain an infeasible register
allocation for a certain schedule, particularly on architectures with a heterogeneous design
and irregular constraints. Therefore, ensuring that the compiler performs register allocation
before instruction scheduling is more favorable for the PAC architectures than for other target
machines. Since register allocation may create additional dependencies and restrictions that
impact subsequent scheduling, due to the intensive usage and overlapping liveness of registers,
register allocation must be optimized such that the instruction-level parallelism could still be
achieved thereafter.

Compared with other platforms, PAC architectures introduce severe problems in register
allocation. First, the access constraints of ping-pong register file structures restrict the
scheduling of two instructions that use the global D-register files in the same cluster in a
cycle, irrespective of whether dependencies are present. Second, inserting additional code
related to data communication into the original program will frequently be required while
exploiting instruction-level parallelism because of the highly partitioned register files and their
accessibility. A pair of instructions (implying send and receive) must be explicitly issued in
the same instruction packet, for example, to transfer data from one cluster to another cluster,
which uses the internal routing data path (between B- and M-units) of the memory interface
unit [10] (as shown in Fig. 1(A)). This intercluster-communication mechanism used in PAC
DSP is exhibited to have the lower hardware layout area and timing, comparing with the
existing mechanisms in other clustered DSP architectures [10]. But dealing with this kind of
intercluster communication in compilers is complicated, since both the occupation of issuing
slots and the execution latency will affect the scheduling of the clustered programs that involve
the pairs of explicit intercluster-communication instructions. Inserting code for intracluster
data communication is also common after register allocation that utilizes more register files to
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Figure 3. The flowchart of the PALF register allocation scheme

optimize the scheduling, as in the example shown in Fig. 2. To properly handle these issues
with register allocation, we propose a heuristic approach to adapting general graph-coloring
techniques for each register file and attaining an advantageous solution for PAC compilers.

4. PALF Register Allocation

In this section we present a register allocation algorithm that, given a dependency DAG
(directed acyclic graph) [1] that describes the compilation regions, heuristically determines the
appropriate register file/bank assignment and employs state-of-the-art graph-coloring register
allocation for each assigned register file/bank in PAC architectures. An overall flowchart of
the proposed register allocation algorithm is shown in Fig. 3. Our approach requires building
an extended data-dependency DAG, called the component/register-type associated data-
dependency graph (CRTA-DDG), which preserves the information of the execution and storage
relationship for irregular constraint analysis in addition to the original partial order imposed
by instruction-precedence constraints. An example code sequence and its initial CRTA-DDG
are shown in Fig. 4. In the machine-level intermediate representation (CGIR) used by the
ORC, an operand or result used in an instruction is represented as a TN (TemporaryName);
a TN of register type is a virtual register required to be allocated to a physical register,
and a TN of immediate type is converted to a literal value with an assembly format. Nodes
in the CRTA-DDG represent instructions of the input code block, with the component-type
association (which indicates the preferred functional unit to be scheduled for this node) and
the register-type association (which annotates the favorite physical register file/bank, to where
the operands/results will be allocated); the directed edges between the TNs represent data
dependency that serializes the execution order to be followed in the scheduled code sequence.
The advantage of using CRTA-DDG is that it clarifies the allocation and schedule restrictions
for each node whilst considering the complex constraints in PAC architectures, while well-
developed graph partitioning methods may still be readily applied to our register allocation
algorithms. The PALF scheme can be organized into the following five phases:

1. Build the CRTA-DDG and apply the preferred functional-unit assignment to the default
execution type of each instruction by “maximal localization” (see the next section).

2. Assign operands/results (required to be allocated to physical registers) of each node in
the CRTA-DDG to the optimal register files.

3. Partition the operands/results assigned to the global ping-pong register files to the
preferred register banks according to the strategy of optimizing ping-pong parallelism.
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1: movi TN1, 5

2: movi TN2, 6

3: add TN3, TN1, TN2

TN3

Figure 4. A simple code with its initial CTRA-DDG

4. Partition the nodes in the CRTA-DDG into two clusters if the “compiling for two
clusters” option is set.

5. Insert nodes of the required communication code to avoid invalidities caused by the
register file/bank assignment and cluster partitioning, followed by the physical register
allocation for each register file.

For explaining the detail steps in Sec. 4.1-4.5, we also provide a simple example to illustrate
how the PALF register allocation works. Fig. 5(a) shows the CRTA-DDG of an input program
fragment: each rectangle labeled with its component-type association represents an operator,
each circle represents a TN, and each edge presents a data dependency between two TNs; each
type of circles represents one type of TNs as shown in the legend of Fig. 5. In order to avoid
confusion between pre- and unassigned TNs, since our focus is on distributing unassigned TNs
to register files, we simplify the representation by removing preassigned TNs (immediate values
and dedicated registers) from the graphs in Fig. 5(b)-5(1).

4.1. Maximal Localization

Assume that a set of v nodes V- = {nq,no,...,n,} with r TNs R = {t1,ta,...,t,} are in a
given CRTA-DDG, G = (V, R, E), and the dependencies of these nodes are represented by e
directed edges, each of which is denoted by (¢;,t;), where 1 < i < r and t; € R. Assigning a
node n to use functional units of type u is denoted by n*,u € {M, I, B}, and assigning a TN
t to the register file f is denoted by ¢/, f € {D, A, AC, R, C}. If we define TN (k) as the TNs
of the node ng, we can obtain a functional-unit assignment of v nodes that utilizes as many
local register files as possible using the following strategies:

e We prefer to utilize M- and I-units more than the B-unit due to the fact that more
instruction-level-parallelism may be exploited between instructions of M- and I-units by
intra- or intercluster methods. Moreover, compared with the B-unit, M- and I-units have
more register resources that are beneficial to optimizing the scheduling.

e Whereas the most concurrency may occur between M- and I-units, the utilization of M-
and I-units should be balanced, so as to maximize the parallelism between instructions.

e Instructions using the same local register file in the same cluster cannot ever be executed
in parallel, so that if two instructions have a data dependency, allocating the data to
local register files will never be worse than allocating it to global register files. Also,
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Figure 5. A running example for PALF register allocation

instructions with less global register file usage should result in less interference between
scheduling (due to the constraints of the ping-pong structure) and register allocation.

By the strategies stated above, we greedily assign the v nodes to the appropriate functional
unit denoted as u on a path-by-path basis; in each iteration we assign the nodes on a selected
path to the same unit to maximize the possible utilization of local register files; the assignment
follows the order of u= M, u=I,u=M,u =1, ..., and finally u = B:

1. Let ¥ be the set of nodes unassigned to any functional unit.
2. Select a maximal set of s nodes S = {ny,,ny,,...,np,} € V¥, where Vn,_, 1 < ¢ < s,
At ti), 1 < i < r,and t; € TN(pg) N TN(pgt+1). These s nodes have a precedence
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ordering (which means they are not parallelizable) so that they are preferred to use the

same functional unit denoted as u.

Assign all s nodes to u, denoted as S = {np, *, np,"*,...,np,*}, and remove S from ¥.

Repeat steps 1-3 until ¥ = §).

5. Annotate each edge connecting between one node assigned to B-unit and the
other assigned to M- or I-unit, with the mark that indicates pending intercluster
communication code insertion.

= W

Since an M-unit has direct access to memory and intercluster communication, we prioritize
the assigning order that M-unit is prior to I-unit so that it may result in less communication
code to be inserted in the final phase of PALF register allocation. Another order of I-unit prior
to M-unit could also be used for some cases, and the related experiment and discussion could
be found in Sec. 5. The data dependency between the B-unit and other units always need to
be fixed by the insertion of intercluster communication instructions because this is the only
method to share data between these units in the architecture.

Fig. 5(b)-5(g) show the processing scenario; it is preferable that all nodes on a critical
path (i.e., the path with the maximum number of nodes) in the graph operate on the same
functional unit so that their operands can be stored in local register files. Rectangles with a
light thick-border represent the nodes in the longest data-flow path, and those with a dark
thick-border represent the nodes that have been assigned a functional unit.

4.2. Register File Assignment

After determining the functional-unit type of all the instructions, we are ready to assign
the register file used for each TN in G. We first locate the TNs that must be allocated to
global D-register files to avoid unnecessary communication caused by data sharing between
different functional units, and then let other TNs be allocated to the appropriate local registers
associated with their functional-unit assignments. While assigning all TNs to either global or
local register files, we may optionally try to instead use constant register files where possible so
as to aggressively reduce the possible pressure on global and local register files if the compiler
option to utilize the constant registers is set by software developers.
The assignment steps are detailed as follows:

1. Let © be the set of TNs that are not assigned to any register file.

2. Y(t;,t;),1 <i <7, wheret; € TN()NTN(m),1 <1 # m < v with either 3n;'n,, M

or InMn,, T (e.g. the selected edges in Fig. 5(h)). Assign t; to global D-register files,

denoted as ;7.

Remove all tiD, 1<i<r, from Q.

4. Assign t; € Q,1 < i < r to the associated local register file of u, where t; €
TN(z),¥n,*,1 < z<w,and u € {4, AC, R}.

@

The practical approach for the example code is as follows. We first determine which edges
connect two TNs that operate on different functional units — the TNs must be allocated
to a global register file so that they can be accessed for the two operations. The remaining
unassigned TNs of register type are then allocated to the corresponding local register files.
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Fig. 5(h) shows the results of register file assignments: TNs with the mark of @ are allocated
to local register files, and other TNs are allocated to global register files.

4.3. Node Partitioning for Ping-pong Bank Assignment

To optimize the register allocation for ping-pong register files, we employ a partitioning
procedure to determine which bank of ping-pong register file structures should be used for
each TN assigned to D-register allocation. The partitioning for ping-pong bank assignment is
developed to increase the opportunity of parallelizing ping-pong bank access in the schedule;
we will assign TNs whose associated instructions may interfere with each other to different
banks of D-register files. Let A be the set of TNs that are assigned to D-register files in Sec. 4.2,
and w be the number of these TNs. We use the following methods to partition A into two
groups, X (using the ping bank) and Y (using the pong bank), according to the threshold
number A of w:

e Build a new graph G* based on the inverse of the original subgraph that contains only
the edges implying (;7,t;7),Vt; € A,1 < i <rin G where t; € TN(I) NTN(m),1 <
I # m < v with either I’ n,m™ or InyMn,,’, and the corresponding nodes connected
with these edges: G* = (V*, E*); each node of V* maps to an edge (t;,;7) selected in
G and each edge of E* represents a node n, in the original subgraph, where 1 < z < w
and TN(z) 2 {t;?,t;P},1 <i # j < r (which means the nodes accessing two different
TNs that are both allocated to global register files).

e If w is larger than A, we apply multilevel k-way graph partitioning algorithms [8] to
G* to obtain two balanced partitions (in number of nodes) with the minimal number of
cut-edges; one partition produces X and the other produces Y. We need to annotate all
the cut-edges after the partitioning with the mark that indicates pending intracluster
communication code insertion, since a cut-edge implies an illegal scenario that an
instruction requires to access both the ping-pong banks simultaneously, and the insertion
of the additional copy code is needed to fix this scenario; the additional code is added
prior to this instruction and copy one available operand from the global register file into
the local register file that is accessible.

e If w is smaller than or equal to A\, we partition A into the two groups that are
subgraphs without any edge connecting between X and Y, thereby reducing the amount
of communication between different ping-pong banks because the benefit of potential
parallelism between too few instructions may be more than offset by any additional
communication.

Currently the threshold ) is set equal to the total number of D-register banks, by reason of
that the cost of cut-edges is obviously infeasible in the case with w smaller than or equal to the
total number of D-register banks. Fig. 5(i) and the small diagram (Fig. 5(*)) on it illustrate
how the graph is built for partitioning and show the possible result in this phase: TNs with
black-filled and gray-filled circles are assigned to ping and pong register banks, respectively.
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4.4. Node Partitioning for Cluster Assignment

Depending on the compilation options set by software developers, compilers may generate
code that utilizes either two clusters to improve the performance or one cluster to reduce the
power consumption. In generating code that will be scheduled onto two clusters, we employ
an iterative partitioning method based on cost models to obtain two sets of the total graph G
by the following scheme:

1. Given a CRTA-DDG, G = (V,R,E), which is assumed to be a disjoint union of k
subgraphs (1 < k), we could always natively partition G into k pairwise disjoint parts
(that each part has disjoint set of nodes from one another and no edge exists between
parts): GT;,1 < i <k, where G = JGT;,1 <i<k,and GI,NGT; =0,V1 <i#j<k.
This partitioning could be easily done by traversing all the edges once in the linear time
complexity.

2. We group G'1,..., G} into two separate sets, G° and G*, where G° D G';. The two
group sets should be formed to approximately balance the overall schedule length by
estimating a cost model; the current cost model is using the number of instructions,
divided by 1.4 (that could be adjusted to the potential parallelism in a cluster), as the
schedule length for a single cluster; the overall schedule length should be dominated by
the longest length between the two sets. This model could be further revised to use a
pseudo scheduler to calculate the more precise schedule length than the current one. The
grouping procedure is that we first sort GT1,..., G} in the order of the schedule length
(by the cost model), and then greedily insert the longest one from the ungrouped set
into one of the two group sets that results in the better overall schedule length.

3. If G* is the empty set (which means k = 1), or the difference of estimations from the
cost model by step 2 for G° and G* is larger than a threshold, we attempt to balance the
two group sets again, moving appropriate nodes from the set with the longer predicted
schedule length into the other set by iteratively evaluating the cost model with the
addition of the occurred cross-cluster communication-latency cycles.

4. We annotate all edges in G across G° and G* with the mark that indicates pending
intercluster communication-code insertion.

Based on the approach described above, two critical paths (whose nodes are thick-bordered
in Fig. 5(j)) and their adjacent nodes are discovered. Fig. 5(j) presents the possible result of
the cluster assignment, where dark gray, medium gray, and light gray nodes represent cluster
1, cluster 2, and the scalar unit, respectively.

4.5. Communication-Insertion/Postpass Register Allocation

If there is any pending intercluster or intracluster communication code insertion generated
in the previous phases, we will insert the corresponding instructions. The pair instructions
mentioned in Sec. 3 are inserted for intercluster communications. The processing of intracluster
communications are mentioned in Sec. 4.3. Finally, according to the register file assignments
for all » TNs of v nodes in G, we apply register allocation based on graph-coloring heuristics
for each register file to allocate each TN of register type to a physical register.
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Table 1. Average benchmark performance (normalized in cycles) for various choices in PALF scheme

local-preferred

global-preferred

PALT (METIS)

PALF (CHACO)

M-preferred 1.096 1.066 1.067 1.067
I-preferred 1.479 1.065 1.063 1.063
M/I-alternated 1.278 1.019 1 1.016
I/M-alternated 1.294 1.018 1.007 1.024

Fig. 5(k) shows the final result after inserting communication operations among cluster 1,
cluster 2, and the scalar unit; the pair instructions added for intercluster communications are
marked with the dashed frames. By using list scheduling, this example code could perform in
11 cycles with our PALF approach in the PAC DSP architecture, while a naive single-cluster
register allocation that always assigns an operation to an M-unit, if possible, and always
allocates the operand(s) of an M- or I-unit to the ping or pong register file, if possible, could
only produce the result in 20 cycles.

5. Experiment and Discussion

The PALF register allocation scheme was implemented on ORC infrastructure, and
the performance was evaluated on the PAC DSP with a cycle-accurate instruction set
simulator [18], by running the DSPstone benchmark suite [19]. We first inspected the proposed
PALF scheme and validated the effect of several phases. Table I shows the average performance
normalized in cycles for various combinations of preferences, during the phases described
in Sections 4.1-4.3. The four rows list the results with different policies of unit assignment
in Section 4.1: “M-preferred” — to assign as many instructions to M-unit as possible, “I-
preferred” — to assign as many instructions to I-unit as possible, “M/I-alternated” — to
use the default “maximal localization” rule, and “I/M-alternated” — to use the “maximal
localization” with I-unit prior to M-unit. The four columns list the results with different
rules to manage register file assignment: “local-preferred” — to allocate as many TNs to local
register files as possible, “global-preferred” — to allocate as many TNs to global register files as
possible, “PALF (METIS)” — to process as described in Sections 4.2—4.3 by using the METIS
package [8] to implement the multilevel k-way partitioning (for ping-pong bank assignment),
and “PALF (CHACO)” — to process as described in Sections 4.2-4.3 by using the CHACO
package [6] to implement the randomized partitioning instead for comparison. While all the
results were evaluated with the processing of clustering in Section 4.4, we also tested with
the single clustering and acquired the similar results about the relationship among the 16
configurations.

In general, “M/I-alternated” + “PALF (METIS)”, the default process of PALF, produces
the best result as we expected. The results of “PALF (METIS)” are better than or equal
to those of “PALF (CHACO)” since the multilevel k-way partitioning tends to minimize the
number of edge cuts, which result in additional intracluster communication. The randomized
partitioning may only obtain the same results when the input size is small, as shown in the
results using “M-preferred” and “I-preferred”. The results of “global-preferred”, which seems
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Table II. Average benchmark performance (normalized in cycles) for various policies in clustering
single | two (PALF) | two (naive) | two (random)
1.02025 1 1.00044 1.39597

only a little worse than PALF, present that there are often too much data-dependency existing
in a basic block of our programs, limiting the parallelism achievable; the little parallelism also
explains why “M/I-alternated” is usually better than “I/M-alternated” but with only slight
difference. Besides, the results of “local-preferred” reflects the penalty of intra-/intercluster
communication, which also give strong evidence that “M/I alternated” is the best choice for
our scheme.

Table II shows the average performance normalized in cycles for four different clustering

manners: “single” — the non-clustering scheme, “two (PALF)” — the clustering scheme of
PALF, “two (naive)” — the same as “two (PALF)” without the third step in Section 4.4, and
“two (random)” — the randomized clustering scheme. The results reveal that our clustering

policy in PALF profits the performance only a little in our tests; there are two reasons to
explain this: first, only low parallelism could be exploited due to complex data-dependency;
second, we found that the code might include additional penalty caused by the more register-
spills generated by calling conventions in the clustered code than in the non-clustered one, since
the clustering decreases the occurrence of allocating the different TNs with non-overlapping
live-ranges to the same register.

We next examined the effectiveness of the proposed PALF register allocation. Four register
allocation schemes were evaluated: (1) the original register allocation in the ORC, (2) SA
register allocation [14], (3) PALF (METIS), and (4) PALF (CHACO). Fig. 6 shows the
benchmark performance gain relative to using original register allocation with the ORC as
the baseline. The figure shows that our PALF approach provides an average speedup of 1.88
and 1.85 relative to the original approach when using the multilevel k-way partitioning and
the randomized partitioning in Section 4.3, respectively, while the SA register allocation has
an average speedup of 2.16, which can be considered as a lower bound since SA already has
been approved to be an effective approach for such optimization problems [20]. However, a
comparison of the compilation time between the SA approach and the PALF register allocation
scheme reveals the better applicability of our proposed approach, as shown in Fig. 7. Our PALF
approach implemented using the METIS and CHACO libraries achieves average compilation
speedups of 31.62 and 29.16, respectively, compared with SA register allocation.

6. Related Work

There have been many prior studies in clustered VLIW architectures based on instruction
scheduling. Ellis [21] proposed a popular method, BUG (Bottom-Up Greedy), to partition
operations on a trace with scheduling in a two-phases sequence. Ozer et al. [22] proposed an
algorithm, unified-assign-and-schedule (UAS), to combine cluster assignment and instruction
scheduling together into a single phase. Nystrom and Eichenberger [23] presented an algorithm
for modulo scheduling to perform partitioning with heuristics in a pre-modulo scheduling pass
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Figure 6. Benchmark performance speedups for three register allocation schemes
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Figure 7. Benchmark compilation time comparison

to allow modulo scheduling to be effective. Codina et al. [24] used a similar strategy as UAS
but focused on modulo scheduling. Using graph partitioners for clustering operations has also
been investigated in several studies [5,25]. Most of these studies were much different from our
work, since our architecture has more features than clustering, and we mainly focus on register
allocation targeted toward acyclic code to tie in with the phase ordering in ORC infrastructure.

7. Conclusion

Embedded DSPs are currently designed to exploit a high degree of instruction-level parallelism
subject to the technological constraints of cycle time, power dissipation, and die area.
The techniques used in their design commonly tend to include a clustered/partitioned
architecture and low-power register file structures. In this work, we developed and implemented
a novel heuristic approach for generating code for PAC VLIW DSPs that incorporates
highly partitioned register files with a unique ping-pong structure. At the heart of this
work is a proposed register file/bank assignment scheme that could be integrated with the
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existing unified register allocation methodologies to yield a feasible solution. The experimental
evaluation using benchmark programs indicates that our register allocation scheme for PAC
VLIW DSPs utilizes all register files efficiently and delivers comparable results to a SA
approach but with a much lower compilation time.
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