J Supercomput
DOI 10.1007/s11227-007-0132-6

Energy-aware scheduling and simulation methodologies
for parallel security processors with multiple voltage
domains

Yung-Chia Lin - Yi-Ping You - Chung-Wen Huang -
Jenq Kuen Lee - Wei-Kuan Shih -
Ting-Ting Hwang

© Springer Science+Business Media, LLC 2007

Abstract Dynamic voltage scaling (DVS) and power gating (PG) have become
mainstream technologies for low-power optimization in recent years. One issue that
remains to be solved is integrating these techniques in correlated domains operat-
ing with multiple voltages. This article addresses the problem of power-aware task
scheduling on a scalable cryptographic processor that is designed as a heterogeneous
and distributed system-on-a-chip, with the aim of effectively integrating DVS, PG,
and the scheduling of resources in multiple voltage domains (MVD) to achieve low
energy consumption. Our approach uses an analytic model as the basis for estimating
the performance and energy requirements between different domains and addressing
the scheduling issues for correlated resources in systems. We also present the results
of performance and energy simulations from transaction-level models of our security
processors in a variety of system configurations. The prototype experiments show that
our proposed methods yield significant energy reductions. The proposed techniques
will be useful for implementing DVS and PG in domains with multiple correlated
resources.

Y.-C. Lin - Y.-P. You - C.-W. Huang - J.K. Lee () - W.-K. Shih - T.-T. Hwang
Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
e-mail: jklee@cs.nthu.edu.tw

Y.-C. Lin
e-mail: yclin@pllab.cs.nthu.edu.tw

Y.-P. You
e-mail: ypyou@pllab.cs.nthu.edu.tw

C.-W. Huang
e-mail: cwhuang @pllab.cs.nthu.edu.tw

W.-K. Shih
e-mail: wshih@cs.nthu.edu.tw

T.-T. Hwang
e-mail: tingting @cs.nthu.edu.tw

@ Springer

Y.-C. Lin et al.

Keywords Security processor - Scheduling - Power management - Dynamic voltage
scaling - Power gating - Parallel processing

1 Introduction

The development of techniques to reduce the power consumption of embedded
system-on-a-chip (SOC) systems is receiving increasing attention. Pure software
techniques [1] and hardware techniques [2, 3] can demonstrably reduce power re-
quirements at the instruction and circuit levels, respectively. Several techniques in-
volving hardware/software collaboration [4, 5] have been proposed to achieve power
reduction at the architecture and system levels. Among the developed techniques, dy-
namic voltage scaling (DVS), power gating (PG), and multiple-domain partitioning
are considered the most practical to achieve SOC designs with low power consump-
tion.

DVS [6] can reduce both the dynamic and static power consumption. DVS re-
duces the dynamic power consumption P by dynamically scaling the supply volt-
age V;4 and the relative running frequency f of the processing element (PE) when
maximum-speed operation is not demanded. DVS uses the following equations for
the architecture-level estimation of dynamic power consumption:

Paynamic = C X a X f % ded’
f =k x (Vaa — Vin)*/ Vads

where C is the switching capacitance, « is the switching activity, & is a proportionality
constant specific to the CMOS technology, and Vi, denotes the threshold voltage.

The leakage power at the architecture-level is usually estimated using the follow-
ing equation [7]:

Pgtatic = Vag X N X kdesign X Deakage

where N is the number of transistors, kdesign 18 the effective transistor width of the
cell which depends on the design, and ieakage denotes the normalized leakage current
that depends on the silicon technology, threshold voltage, and a sub threshold swing
parameter. The equation above indicates that DVS is also effective for leakage power
reduction, since it reduces the supply voltages.

Other useful techniques include PG and the use of multiple voltage domains
(MVD). PG [8] is an effective technique for leakage power reduction as it reduces
the number of active devices by using a sleep circuit that disconnects the supply
power from inactive circuitry. The main difficulty in PG technology is issuing off/on
commands at the appropriate times so as to minimize performance degradation and
maximize the reduction in leakage power [9-13]. In its use of MVD or voltage is-
lands [14], PG also gives more opportunity to reduce the voltage consumption at
each decomposed power domain.

There are several issues associated with the application and integration of DVS and
PG techniques in MVD with correlated resources that still need to be explored. This
article investigates a scalable security processor (SP) as a case study to illustrate how

@ Springer

Energy-aware scheduling and simulation methodologies

to address the issues about the power-aware voltage/frequency assignment of MVD
and the correlation of multiple resources among MVD. In this article, we present
a practical scheme to effectively integrate DVS, PG, and the scheduling of multiple
domain resources to achieve low energy consumption, for addressing the problem of
power-aware task scheduling on scalable cryptographic processors that are equipped
with heterogeneous distributed SOC designs.

Our testbed is a scalable SP that has been developed in collaboration with the VLSI
design group at our university [15-20]. This project is aimed at producing a config-
urable prototype of high-performance low-power SPs, and it incorporates DVS, PG,
and multiple-domain partitioning in the designed processors. The architecture of the
SPs is that of a heterogeneous distributed embedded system in which the PEs are
various cryptographic modules. Each cryptographic module is designed to have DVS
and PG capabilities.

We propose a novel three-phase iterative scheme equipped with an analytic model
that estimates the performance and energy requirements of different components in
a system and addresses the scheduling issues for correlated resources in systems. The
employed scheduling algorithm in our case study for SP utilizes a heuristic that in-
tegrates DVS and PG and thereby increases the total energy saving. We also present
our methodologies used for the transaction-level modeling (TLM) of our SPs for
both performance and energy simulations. This allows design-space explorations and
experiments on a variety of system configurations. The simulators are written in Sys-
temC, and they model the bus and controller at a cycle-accurate transaction level and
the cryptographic engines at a timed-transaction level. These proposed techniques
are essential to implementing DVS and PG with multiple domain resources that are
correlated. Experiments performed in the simulation environments for our SPs have
revealed that the discrepancies in the cycles and the power usage of our environment
relative to a hardware RTL simulation result are less than 4.55% and 9.3%, respec-
tively. The scheduling results of our proposed mechanisms show energy reductions
of up to 32.41% without any degradation in the throughput of the SPs.

The remainder of the article is organized as follows. The architecture used in our
target platform and the design of its power management are described in Sect. 2. The
proposed iterative scheduling scheme and the corresponding analytical modeling-
based approach to handling correlations among PEs and non-PEs are explained in
Sect. 3. The implementations of the simulator with MVD and configurable functions,
and the experimental setup and the results are described in Sect. 4. Section 5 reviews
related works about MVD techniques and scheduling methods, and Sect. 6 concludes
the article. Additionally, Appendix 1 details the joint variable-voltage scheduling with
power gating which is employed in our case study, and Appendix 2 gives the expla-
nation of the analytical models used in our proposed iterative approach.

2 Configurable SP with multiple-voltage-domain architecture

In this section we briefly describe a configurable architecture for SPs. Variations of
this architecture have been used by many network-device manufacturers, such as
Broadcom, Hifn [21], Motorola [22], and SafeNet. SPs may include the following
key cryptographic functions:

@ Springer

Y.-C. Lin et al.

— Data encryption (e.g. DES, 3DES, RC4, and AES).

User authentication only (e.g. DSS and DSA).

Hash function (e.g. SHA-1, MD5, and HMAC).

— Public-key encryption (e.g. RSA and ECC).

Public-key exchange (e.g. Diffie-Hellman Key Exchange).
— Compression (e.g. LZS and Deflate).

The main feature of our SP is the scalable architecture, which is achieved by con-
structing internal buses therein. Therefore, versatile cryptographic engines can be
integrated into the SP by adopting compatible bus interface wrappers. The other con-
figurable parameters include the number of external buses, transfer engines, channels,
and the internal buses. In the SP, a descriptor-base DMA controller is implemented to
interpret the descriptors and manipulate the cryptographic engines to perform appro-
priate cryptographic operations. The processing flow and cryptographic operations
are handled by descriptors to reduce the control signals from the main processor. The
descriptor is a data structure that contains the type of encryption/decryption functions,
the encryption key, the length of data, and data-address pointers. The descriptor also
has a pointer to the next descriptor, so the DMA module could utilize the link list of
descriptors to gather data without much overhead.

Figure 1 shows our architecture, consisting of a main controller, DMA modules,
internal buses, and crypto modules [15-20]. The main controller has a slave interface
to an external bus that accepts the control signals and returns the operation feed-
back via the interrupt port. In the main controller, the instruction decoder and the
microprogram sequencer are in charge of descriptor decoding and signal passing.
The resource-allocation module distributes the resources as the descriptor demands.
Process-scheduler and power-management modules are added to the main controller
for task scheduling and optimizing power consumption.

The DMA module integrates the master interfaces of external bus with the chan-
nels and the transfer engines. Each channel stores the header of its processing de-
scriptor. The transfer engines pass the data from the external bus to dedicated cryp-

< CE’ Voltage Domain 0
Main Instruction Decoder || Resource PN v
Controller] Microprogram Allocation 4‘3\; > Bus
Sequencer Process (<> wrapper CEO
1 l Power Management || Scheduler w |1 [
v 2| ‘
Q| e—p
a7 Descriptor-based DMA B @ | Bus CE 1
RIS ! E t«-{»| wrapper
=3
=y AHB Slave Channel 0 1 = i CE Voltage
% | Interface M E ! Domainll
y Internal Bus |{ | 2 |
<[Channel 1 =
= ! AHB Master anne Master 4:’ =
g1 : H i .
< e Transfer . T P
M, Engine _| Channel n i Bus
<~ [S vner | CEE
T\,/E; L y Internal-Bus
System Voltage Domain Voltage Domain CE Voltage Domain €

* CE is the abbreviation of Cryptographic Engine

Fig. 1 Security processor (SP) architecture

@ Springer

Energy-aware scheduling and simulation methodologies

Table 1 Voltage scaling delays of the DVG

Voltage: scaling up Voltage: scaling down
State Delay (us) State Delay (us) State Delay (us)
Vo-12 20 Vi2-15 10 Vis—1s 8
Vo1 35 Vi2-138 30 Vig—12 12
Vo138 63 Vis5-5138 16 Vissi2 5

tographic engines via the internal bus which is designed to support multiple layers
for high-speed data transmission. Because the execution time of the cryptographic
engine may be varied, this cryptographic engine will signal the main controller when
operations are complete.

The SP is separated in several voltage domains, where each domain can operate
at certain voltage/frequency. If communication signals cross between different volt-
age domains, we need level converters to downshift/upshift them [23-25]. Therefore,
clustering modules with frequent communications into the same voltage domain can
reduce the use of level shifters and thereby improve the delays and power consump-
tion. The main controller and descriptor DMAs frequently share the descriptor infor-
mation that is grouped in the system voltage domain. The internal buses and cryp-
tographic engines have their own voltage domains. The power-management module
in the main controller provides software-controllable voltage/frequency adjustment
of voltage domains. Components controlled by the power-management module have
four main power states: Full(1.8 V), Low(1.5 V), Ultralow(1.2 V), and Sleep(0 V).
Cooperating with the process-scheduler module, tasks can be assigned power states
from among Full, Low, and Ultralow, with PG as the Sleep modes.

For supplying multiple operating voltages, the power-management module con-
trols a dynamic voltage generator (DVG) chip that provides the voltages to be used
for DVS. The DVG works at 60 MHz and can output three supply voltages (1.2 V,
1.5V, and 1.8 V) for the SP from a 3.3 V input. Table 1 lists the voltage scaling
delays of the DVG. The DVG delays are estimated from the Cadence mixed-mode
environment (Verilog_XL™). When the power-management module sets the power
state to Sleep, it calls the clamping modules to gate off the power supply of specified
cryptographic module without scaling the voltage.

To illustrate the kernel operations of SPs, Fig. 2 shows an AES operation in the ar-
chitecture. The user program first calls the encryption libraries that pack the process-
ing data as descriptors and activate the SP. When the SP controller is aware of a start
signal, it retrieves the memory address of descriptors and makes a channel ready to
receive the descriptor information. At the “setup channel data” phase, the main con-
troller continually arranges the transfer engine and the master interface of the external
bus to move the descriptor information into the channel.

Next, in the “AES operation” phase, after sequentially requesting the AES crypto-
graphic engine, internal bus, transfer engine, and master interface of the external bus,
the transfer engine will read data from memory and fill the buffer of the AES crypto-
graphic engine. Once data transmission is complete, the main controller releases the
requested resources except for the AES cryptographic engine. When the operation of
the AES engine is complete, it will send a signal to the main controller. As the main

@ Springer

Y.-C. Lin et al.

(Setup Channel Data

Start

External Bus

Yo
\Extemal Bus)
— P4

—_—

-~ Transfer” N

Channel u \Enginﬁ _

© Request Resource
— - =

¢ N Release Resource
-

R p—

(AES Operation)

Internal Bus

External Bus

i
\External Bus)
— P4

—_—

~ Transfer- N\
\ Engine

Ve -~
\Internal Bus)
- s

=

~——

Store Result

Internal Bus

Transfer
Engine

External Bus

PN
\External Bus) N Channel)

—_—

~ Transfer- N\
\ Engine

L

Ve

\Internal Bus)
~ — /
L

—_—

Fig. 2 AES operation on a descriptor-based SP

controller is aware of this state, it enters the “store result” phase in which it requests
the internal bus, transfer engine, and external-bus-master interface to store the out-
put data. The main controller then releases all the resources. The steps and phases in
Fig. 2 can also be interleaved.

3 Power-aware scheduling approach

In this section we discuss the scheduling issues for lowering the power usage in our
parallel security architectures, focusing on the problem of scheduling independent pe-
riodic tasks. We consider a distributed embedded system containing major PEs (cryp-
tographic modules) which are capable of K-level supply voltages and the PG mode.
Moreover, we assume the other non-PE components (such as buses and channels)
are capable of DVS. Non-PEs may greatly correlate with the PEs and the correlation
cannot be determined before scheduling. For example, in our SP design, a typical
encryption or decryption task must take additional time slots beside the processing
inside cryptographic engines as shown in Fig. 3. The additional time slots, which are
engaged by the transmissions using the shared DMA channels and internal buses,
will vary for each task because they depend on the scheduling of other tasks and the
DVS/PG state of non-PEs.

To efficiently handle the scheduling problems involving all the components in
such a complicated system, we propose a three-phase iterative scheme for power-
aware scheduling, namely the iterative analytical approach on MVD (IAA-MVD)
scheduling method as follows:

@ Springer

Energy-aware scheduling and simulation methodologies

Fig. 3 An illustration of Transmitting Processin Transmitting
correlation between non-PEs in DMA & Internal Bus ,g in DMA & Internal Bus
and PEs in SP ____ |en/de-cryption| ")
T PE T » time
Arrival at SP Deadline

Bhecheduled A0 Initialoic;ré(;uling ksl Resuts goheduling

Tasks Results on PEs

Results of IAA-MV

fezative P10V ?
¢ Analytical Myes |
Re-Scheduling = yoil o —2 N,
Approximated
on PEs Plalncy Approximation Stable? |
Correlated to 1
Non-PEs Minimal Performance !
lﬁcquh:mcm to Achieve II_N; "I 1
Scheduling Results P :
Lowest Power — ' L4

Settings
for Non-PEs

./ Final Low-Power

| Scheduling for PEs
\ and Low-Power
Settings for Non-PEs

e

Fig. 4 Main procedures of the proposed IAA-MVD

. Employ a scheduling method to schedule only the processing on PEs, including
the settings of the running voltage/frequency of each task in major PEs and the
appropriate times to invoke PG, and assume the maximum performance of non-
PEs (such as bus and channels) to give initial values of additional latency caused
by non-PEs for all task.

. Apply analytic approximation techniques to rapidly determine the running volt-
ages/frequencies of the remaining components in the system. Analytic methods
also allow correct estimation of computation latency in PEs caused by these com-
ponents in the system.

. Reemploy the scheduling method involved in phase 1 with information generated
in phase 2, and deliver the final scheduled setting of each task. Iteratively proceed
with phases 2 and 3 until the scheduling results are constant.

The overall procedures of IAA-MVD are illustrated in Fig. 4. The scheduling

method used in our JAA-MVD is not dedicated and most of the variable-voltage
scheduling methods developed for multiple PEs may be incorporated appropriately
into the proposed scheme. In the remainder of this section we brief the scheduling
method used in our experiments, which is the extended work based on our previous

research efforts [26], and present the second phase of the scheduling method.

3.1 Joint variable-voltage scheduling with power gating for PEs

It is known that the scheduling problem of a set of nonpreemptable independent tasks
with arbitrary execution times on fixed-voltage multiprocessors is NP-complete [27].

@ Springer

Y.-C. Lin et al.

The application of the reduction techniques reveals that the same scheduling problem
on variable-voltage multiprocessors is NP-hard. To deal with the problem of reduc-
ing power consumption in real-time systems, we propose a heuristic algorithm to
schedule tasks executing in a system with a variable supply voltage. The proposed
scheduling algorithm is based on the EDF (Earliest Deadline First) [28] algorithm
which, as the name implies, always executes the task with the earliest deadline.

The proposed scheduler maintains a list, called the reservation list [29], in which
these tasks are sorted by deadlines. Since each periodic task arrives with a certain
periodicity, we can obtain the arrivals and deadlines information of tasks in a given
interval. Initially, all the tasks are in the list sorted by their deadlines, and the task
with the earliest deadline is then picked for scheduling. The scheduler first checks if
the task can be executed completely prior to its deadline at a lower voltage without
influencing any unscheduled tasks in the reservation list. In this way the scheduler
will determine how to schedule tasks at the lowest voltage as possible. The scheduler
will also decide if idle PEs can be turned off so as to also maximize the static power
reduction. Although the scheduler handles tasks with only homogeneous PEs, it can
effectively handles the systems with heterogeneous PEs if tasks can be categorized
and only performed on their dedicated types of PEs. In our SP, for instance, AES
and RSA tasks can only be processed by AES cryptographic engines and RSA cryp-
tographic engines, respectively. Therefore, we can separate the scheduling of these
tasks with their dedicated PEs by our method. The detailed algorithm is explained in
Appendix 1. As our focus will be on correlating scheduling with analytical models,
we think this scheduling algorithm only represents one of the possible methods on
the scheduler for major PEs.

3.2 Voltage/speed selection of non-PEs

We apply analytic modeling techniques to compute the suitable voltages for non-PE
components (such as buses and transfer engines) such that the total performance of
the system fits the scheduling results of major PEs.

We first describe the analytical model developed for th SP. Suppose the system
has multiple PEs that are labeled with an index in the range 1, ..., /. Several channels
labeled with one such index (1, ..., n) are built into the control unit for simultane-
ously accessing the PEs. Data are transferred between channels and PEs across a few
internal buses, which are labeled with indexes in the range 1, ..., m. We can view
each kth PE and jth internal bus as a server with a constant service rate of M, and
M;I_ bits per second, respectively. Let P; be the probability that channel i makes its
next service request to PE k. Define @; as the average fraction of the time that the
ith channel is not waiting for a service request to be completed from any of PEs and
internal buses. Also, let §£2; ; and .Qj ; be the fractions of time spent by the ithchannel

waiting for service requests to PE k and internal bus j, respectively. Define # as
ki

the ratio of the time that descriptors of the ith channel spend performing overhead
of PE service requests (not including the time waiting in queues and having requests
serviced by the kth PE) to the total processing data size. Let

n
M;
Nk = Z Pix—
i=1

ki
Sk

1 M
and)»kz—(-',;ek) ,Sk,
Zj:lMSj

@ Springer

Energy-aware scheduling and simulation methodologies

where ¢ is the average scaling ratio of the data size throughout the processing per-
formed by the kth PE. The average time that each channel spends on initiating, host
memory communication, and descriptor processing (®;) is related to the time spent
waiting (§2% ; and Q}’i) as follows:

1 m
ity ity 2),=1,
k=1 j=1

n
[0 -2 +mei=1,
i=1

n I
[Ja-2/0+> mudi=1.
i=1

k=1

The detailed model construction and proof are provided in Appendix 2.

Suppose tasks for / PEs are scheduled by the scheduler as described in Sect. 3.1.
We can derive @;, §2;;, and .Q; — the metrics of the expected performance — from
the scheduling results: the average service rate M, of the kth PE and n; ®;, which is
semantically equal to the utilization of the kth PE due to task assignments. Assuming
that the SP has n channels and m internal buses connecting PEs, we can select the
appropriate voltages/frequencies of internal buses and transfer engines by solving the
previous equations: we use the expected values of M ! to evaluate the resulting &;,

$2k.i,and .Q; ;» and choose a minimal M ! that maxumzes the system load efficiency,
for which @;, §2; ;, and .Q’ are all posmve and @; should be as small as possible.
Apart from the Voltage/frequency selection, the proposed analytic modeling tech-
niques is used to revise the latency parameters in the schedulers during phases 2 and
3 of the IAA-MVD scheduling. In realistic environments of the considered systems,
the computation times of tasks in PEs should actually include the latency due to data
transmission and bus contention. The data-transmission latency can be calculated
based on the data size, bus speed, and detailed transfer operations during scheduling.
The bus-contention latency, however, cannot be correctly estimated if any run-time
information is lacking. Thus we shall use the worst-case estimation of the latency
to calculate the task computation time in order to avoid missing any deadlines un-
der run-time conditions. In the first phase of [AA-MVD scheduling scheme, we use
the maximum performance settings of internal buses and transfer engines (which re-
lax the slack-time computation) to schedule tasks. We conservatively assume that the
worst case for each task is waiting for all tasks in PEs except the one in which it
is scheduled to complete their data transmission with the maximum time spent by
the largest possible data transmission. The proposed analytic approximation phase
of voltage selection estimates the possible low-power settings of internal buses and
transfer engines that match the scheduling results, and is also able to estimate a more-
accurate worst-case latency in each PE than the theoretical one using .Q; and n; ®;,
which would reflect the possible worst-case latency in the scheduling results. We then
perform the third phase of the IAA-MVD scheduling scheme that uses values derived
in the second phase to obtain the final scheduling results. Due to the monotonicity
property of PE usage in our scheduling algorithms in Sect. 3.1, iteratively performing

@ Springer

Y.-C. Lin et al.

phases 2 and 3 of the IAA-MVD scheduling will converge on a stable scheduling
result.

4 Experiments

In this section, we first evaluate the accuracy of performance and power of the SP
simulator. We then show how our IAA-MVD scheduling methods can be used for
energy reductions to a set of benchmarks.

4.1 Security processor simulation methodology

The simulators for performance evaluations and design space explorations are im-
plemented in SystemC. SystemC can model the hardware/software co-design at the
(untimed) functional level, the transaction level [30], and the pin level (RTL level). In
the simulator, the bus and controller are modeled at a cycle-accurate transaction level
and the cryptographic engines are modeled at a timed-transaction level.

In our experiments, we evaluated the precision of our architecture-level energy
simulator, and used this model as a basis for evaluating our proposed scheduling
methods.

The first experiment evaluated the cycle accuracy of our configurable SystemC
TLM simulation using the Verilog RTL simulation by Cadence NC_Verilog. The
architecture comprised one internal bus, one RSA module, two AES modules, two
HMAC modules, one RNG module, and one cryptographic DMA with four channels.
In RSA operation patterns, the maximum error in the cycles is 0.14% and the mean
error is 0.05%, where the error is measured as the difference between two simulation
cycles of SystemC TLM and Verilog RTL divided by the simulation cycles of Verilog
RTL. In our AES operation patterns, the maximum error is 4.55% and the mean error
is 0.21%. The mean errors of the HMAC and RNG modules are less than 0.2%.

In Table 2, the RSA and AES power model in SystemC which established in
the simulator are compared with the power results of PrimePower™ (Synopsys) in
the Verilog RTL. The errors in the mean powers of the RSA and AES are 0.57%
and 9.30%, respectively, where the error is measured as the difference between two
power results of SystemC TLM and Verilog RTL divided by the simulation cycles of
Verilog RTL.

4.2 Tterative analytical approaches

We evaluated our proposed scheduling methods by implementing a randomized
security-task generator to generate benchmark descriptor files for the simulator. The

Table 2 Power values for RSA and AES

Type Avg. power (SystemC TLM) Avg. power (Verilog RTL) Error avg.(%)
RSA 0.2232 W 0.2245 W 0.57
AES 0.0176 W 0.01941 W 9.30

@ Springer

Energy-aware scheduling and simulation methodologies

Table 3 Benchmark settings and results

Suite 1 2 3 4 5 6 7 8 9
Arrival distribution Uniform Normal Exponential

Number of jobs 300

Jobs/time (us) 1500 375 1500 375 1500 375
AES:RSA 30:1

Max data size (bytes) 1280

Maximum AES deadline (us) 3072 3430 3072 3430 3072 3430
Maximum RSA deadline (us) 13312 15872 13312 15872 13312 15872

Iterate dynamic energy 28.14 2821 27.24 1693 3133 16.13 16.03 29.05 30.28

only once reduction (%)
leakage energy 82.33 83.52 83.40 83.57 83.53 83.67 83.51 83.67 83.38
reduction (%)
total energy re- 28.30 28.38 27.41 17.13 31.49 16.34 16.24 29.22 30.44
duction (%)
Iterate till dynamic energy 30.41 32.19 29.01 21.34 3475 1937 17.49 3247 35.08
end reduction (%)
leakage energy 83.61 83.77 83.97 84.65 83.98 85.06 84.48 84.37 84.77
reduction (%)

total energy re- 30.58 32.35 29.17 21.53 3491 19.57 17.69 32.63 35.23
duction (%)

generator produced simulated operating-system-level jobs of decryption/encryption,
with each job having operation types, data sizes, keys and content, arrival times, and
deadlines randomized on the basis of an adjustable configuration of job-arrival distri-
butions, job numbers, job density, ratio of distinct operation types, job-size variance,
and job-deadline variance. Each generated job was then converted by the generator to
the corresponding descriptors that could be executed by the simulator. In our prelim-
inary experiments, we assumed that the SP comprised six AES modules, two RSA
modules, five internal buses, and eight channels and transfer engines. The generated
benchmarks come from nine test suites with the task-generator configurations listed
in Table 3. They can be divided into three types of arrival distribution. Each distrib-
ution type has three suites with different task slackness dependent on the job density
and job deadline range: the first suite features a high density and a short deadline,
the second features a high density and a long deadline, and the third features a low
density and a long deadline.

We generated 100 distinct descriptor files for each suite and computed their av-
erage energy consumptions for different components from the results of the simu-
lator, as shown in Fig. 5. The bars labeled by N are the scheduling results without
power management, and others labeled by P and PI are the results with enabling our
proposed power management by iterating only once and iterating till the results un-
changed respectively. The numbers of iterations in the results labeled by PI vary with
respect to the workloads, averaging between five and six. The energy overhead of
applying DVS and PG is too low to appear clearly on the charts, as is the leakage of
RSA modules. The top chart gives the energy reduction for AES modules, the middle

@ Springer

Y.-C. Lin et al.

[CIAES Overhead
B AES Leakage
O AES Dynamic

Energy Consumption (micraJ)
g B

g & 8 8

i=1

Suite of Benchmarks
45000

40000

35000

a2 2 3 8
g 8 &8 8

Enargy Consumption (microJ)

10000

5000

140

120 O Misc Control
O Misc TE

B Misc Channel
@ Misc Bus

=
=

@
t=1

Energy Censumption (microJ)

Suite of Benchmarks

Fig. 5 Energy consumption estimated by the simulator with (“P”—iterate only once; “PI”—iterate till
end) and without (“N”) our proposed power management

@ Springer

Energy-aware scheduling and simulation methodologies

chart gives the energy reduction for RSA modules, and the bottom chart shows the
energy reduction for non-PE components which are assigned by our analytic approx-
imation phase, for all benchmark suites. The simulations also finally confirm that no
deadline is missed using the latency approximation by our analytical modeling tech-
niques. Although the energy consumptions is dominated by RSA operations in our
experimental architecture and workloads, the charts show that our scheme performs
well for all components in the system. Moreover, combining PG with DVS schedul-
ing reduces the leakage by up to 85.06% (as indicated in Table 3), which is expected
to become even more important as the leakage power increases in chips constructed
using CMOS processes down to below 0.13 pm [31, 32]. Table 3 also gives the overall
energy reduction for all test suites. The bottom row of the table indicates that a to-
tal energy reduction of up to 35.23% was achieved by our power-aware scheduling
scheme. Furthermore, the results by using only one iteration show that limiting the
number of iterations may still provide adequate energy reduction, which could be
feasible for incorporating methods of online scheduling.

5 Related work and discussion
5.1 Low-power design

In hardware design, the operating voltage and clock rate are the two primary factors
affecting the power consumption and processing speed. There is a great demand for
a hardware device to exhibit sufficient performance with low power consumption.
Clock gating (CG) [2] refers to inactivating the input clocks in a hardware circuit
when there is no work to be done. For sequential circuits, the clock signal is consid-
ered to be a major contributor to the dynamic power dissipation since the clock is the
only input that switches all the time and usually is highly loaded, hence the CG tech-
nique is quite helpful. Frequency scaling (FS) [33] supports different operating fre-
quencies. When the operating requirements are low, the frequency is scaled down to
reduce the number of wasted/useless cycles whilst keeping the supply constant. The
PG [8] technique clamps the supply voltage of the hardware module. It uses high-Viy
transistors to switch the supply voltage and reduce the leakage power. DVS supports
different voltage levels and switches the operating voltage during run-time. It must
employ multiple- Vi, transistors and the DVG. Because frequency scaling accompa-
nies voltage scaling at run-time, this technique is also called as dynamic voltage and
frequency scaling (DVFES) [34]. In the multiple clock domain (MCD) [35] technique,
the hardware is separated into modules based on certain attributes, with each domain
having its own clock. The synchronization of domains and power reduction in this
technique are referred to as The globally-asynchronous locally-synchronous (GALS)
design is one of the popular techniques to implement MCD systems, and the available
power-reduction techniques are also beneficial for this kind of implementation [36].
The supply voltage of MCD may be uniform. If the voltage level differs between the
domains, the hardware design is in MVD or multiple voltage islands [14]. To support
the required throughput with lower power consumption in the design with multiple
voltage domains, techniques such as CG, PG, FS, and DVFS could be applied.

@ Springer

Y.-C. Lin et al.

5.2 Variable-voltage scheduling

Variable-voltage scheduling manages tasks with execution deadlines and reduces the
energy consumption by lowering the running voltage/frequency, whilst ensuring that
all tasks finish execution before their deadlines. Several variable-voltage scheduling
techniques have been developed to exploit DVS for power reduction in real-time sys-
tems. For example, workload descriptions have been used to statically schedule tasks
on the basis of energy efficiency for variable-voltage processors [37], and a heuristic
non-preemptive scheduling algorithm have been proposed for independent tasks ex-
ecuting on variable-voltage processors [38]. DVS scheduling for dependent tasks in
distributed embedded systems has also been studied [39, 40]. However, none of the
developed techniques considers task scheduling employing the advantages of both
DVS and PG to jointly reduce dynamic power dissipation and static power leaks,
or addresses the issue that in a complex SOC design there may be additional DVS-
enabled components that correlate the operation of DVS-enabled PEs and affect the
task scheduling for the entire system. Also, some researches have been exploited to
use analytical techniques for minimizing energy in a two-device data flow chain [41],
and optimizing energy consumption on systems of multiple voltage islands based
on rate and latency constraints [42], while we primarily focus on the systems with
task-based scheduling problems on PEs, differentiated from their studies.

6 Conclusions

The growing complexity and numbers of transistors involved in the SOC designs
with multiple domains demand new and more-effective power-reduction techniques
than ever. In this article, we have presented a practical method to integrate and ex-
tend the existing dynamic and static power-reduction mechanisms for increasing the
power efficiency in complex distributed embedded systems. A novel three-phase it-
erative scheme was proposed to effectively estimate the performance and energy re-
quirements of various components correlated in systems. By using of an analytical
approximation, this approach selects voltages/frequencies of minor components (and
not major PEs) so as to decrease the complexity of the overall scheduling problem
in systems of with multiple correlated domains. We have demonstrated the proposed
method on a fast SP capable of executing various cryptographic computations in par-
allel, which is a significant application of a complex SOC design. The experimental
results reveal that our power-management scheme achieves a significant power re-
duction on our testbed, and may also profit other complex SOC designs.

Appendix 1 Joint variable-voltage scheduling with power gating

Slack-time computation

We first define slack time in the scheduling. Suppose we are going to schedule task 7;,
and there are still (n —i) unscheduled tasks (i.e., Tj+1, Tj+2, - .., T;;) in the reservation

@ Springer

Energy-aware scheduling and simulation methodologies

list. The slack time §; (V') is the maximum period allowed for 7; while the remain-
ing (n — 1) tasks are scheduled at supply voltage V in reverse order. To obtain the
information for 7;, we first build a pseudo scheduler for the (n — i) tasks with the
following behaviors. The (n — i) tasks are scheduled in a reversed manner, in which
deadlines are treated as arrivals and the arrivals as deadlines, and starts from the point
of the latest deadline (i.e., d, is the deadline of T},) via the well-known earliest dead-
line first (EDF) algorithm [28]. We then record the time of the end point of the pseudo
schedule as A; (V).

The slack time of the pseudo schedule at a supply voltage V can be obtained from
the following equation:

8i (V) =4 (V) — Maximum(a;, fi-1),

where g; is the arrival time of 7;, f;_ is the finishing time of the last task 7;_;. Fig-
ure 6 gives an example of the slack-time computation, in which there are four tasks
in the reservation list. Here two reservation lists are maintained: one is created by
a pseudo scheduler to schedule tasks at the lowest voltage, and the other is compiled
by the highest-voltage scheduler. The slack time §;(Vy) and §; (VL) is the time from
the finishing time of the last task to the end point of the reservation list from the
highest- and lowest-voltage schedulers, respectively. If we consider the overhead of
DVS, the highest-voltage scheduler should add the maximum time-overhead of DVS
to fi_1 to compute §; (Vy). During the scheduling an exception is flagged if any dead-
line cannot be met when scheduling at the highest voltage. This is because the for-
ward and backward scheduling are equivalent on the qualification of time-constrained
tasks, and hence if there is no backward scheduling there is also no forward schedul-
ing. However, when the low voltage is supplied, we ignore deadline misses in the
pseudo scheduling.

AV din di+2 di+3 divs

(a)

\

(b)

(")

7 = TTTT
T, \T. k! —T
2.5 SR —

i+3

A

Tie
P

Fig. 6 Examples of slack-time computation while scheduling 7;: (a) tasks performed at the highest volt-
age; (b) tasks performed at the lowest voltage

@ Springer

Y.-C. Lin et al.

Scheduling algorithm

The proposed scheduling algorithm is based on the EDF algorithm which, as the
name implies, always executes the task with the earliest deadline. Figure 7 lists the
algorithm. Assume that there are n periodic tasks to be scheduled. First, we sort the
tasks in ascending order by deadlines, namely 77, T3, ..., T,, and put them in a list of
unscheduled tasks, i.e., the reservation list. We then extract each task from the list on
the basis of the schedule. Suppose the system provides m PEs, and each PE is capa-
ble of K -level supply voltages, where level 1 represents the lowest voltage and level
K represents the highest voltage. In order to reduce the complexity and expense of
maintaining K reservation lists, we maintain two reservation lists: one for the pseudo
scheduler at the lowest voltage and the other for the scheduler at the highest voltage.
Steps 1-3 in Fig. 7 describe these procedures. For utilizing PG capabilities, we at-
tempted to both make tasks run continuously and concatenate the idle time because
PG mechanisms cost much more than DVS in terms of both performance and power.
Next, in step 4 we compute the slack time for task 7; with both §; (Vy) and 8; (V).

Real-time scheduling algorithm with variable-voltage
reservation lists in multiple PEs

Input: » unscheduled periodic tasks and m PEs
Qutput: Schedule of gating commands and the n tasks
with variable supply voltages at PE;

1. Sort tasks by deadlines in ascending order; i.e., T1, T, ..., Ty.
2. Put them in the reservation list of
the target PE (P E ;). Initially, j = 1.
3. Remove the first task, namely 7;, that has the earliest deadline from
the reservation list. Repeat steps 3—6 while the list is not empty.
4. Compute the slack time for task 7; with both the highest and
lowest voltage pseudo schedulers, i.e., §; (Vy) and §; (V).
5. Compute the computation time of 7; at the highest
and lowest voltages, i.e., ¢; (V) and ¢; (VL).
6. Letting o (i) be the voltage scaling time, schedule 7; using the following rules:
- If ¢; (VL) + 0 (i) < 8;(VL), schedule T; for PE; at VL if possibleT.
- If 8; (VL) < ¢; (VL) 4 0: (i) < 8;(V), call the decision algorithm.
- Ifcj (VL) +0: (i) > 6; (V) and
- if ¢; (Vi) + 01 (i) < 8;(VH), schedule T; for PE; at Vy.
- if ¢; (VH) 4 0: (i) > 6; (Vi), put T; in an unscheduled list Lyp.
7. Check the idle time of P E; and insert gating commands if possiblei.
8. If PEj is the last available PE and the list Lyn is not empty,
then report a possible failure of real-time scheduling.
9. If the list Lyy is not empty, let j = j + 1 and use the list
Lun as the reservation list of the target PE j. Next, go to step 3.
10.If j < m, then gate off PEJ_H, ..., PEy, all the time.

Schedule T; at VL, if deadline is met and the energy overhead is acceptable.
Gate on/off if tasks are unaffected and the energy overhead is acceptable.

Fig. 7 Reservation-list scheduling algorithm for variable-voltage problems in multiple PEs

@ Springer

Energy-aware scheduling and simulation methodologies

Fig. 8 Scenarios of scheduling
task T;

oLV oLV a1
oV, U] 9V

it H i H

(a) (b) ()

I:I : T, at low voltage

The slack time &§; (V) represents the maximum time interval allowed for task 7; to
execute while all the remaining tasks in the reservation list are scheduled in reverse
order with supply voltage V. In step 5 we compute the computation time of task 7;
at both the highest and lowest voltages, denoted as ¢; (V) and ¢; (V). In step 6 we
compare ¢; (V) and ¢; (Vy) with §; (VL) and §; (V) to decide which voltage should
be applied to the task. This algorithm results in three possible scenarios, as depicted
in Fig. 8:

1. ¢; (VL) plus the time overhead of voltage scaling is smaller than or equal to 8; (VL).
If the energy overhead of voltage scaling is less than the energy saving, we can
schedule task 7; at the lowest voltage without affecting any future task because
there are no overlaps between task 7; and the unscheduled tasks while those tasks
are assumed to be executed at the lowest voltage.

2. ¢;j (VL) plus the time overhead of voltage scaling is larger than §; (V1) and smaller
than or equal to §; (Vy). In this case we call the decision algorithm described
in Sect. 6 to determine the voltage at which task 7; should be scheduled. This
algorithm weights the alternatives to optimize the overall costs, using a criterion
such as the power consumption.

3. ¢; (VL) plus the time overhead of voltage scaling is larger than §; (V). This means
that it is impossible for task 7; to complete executing by its deadline at any volt-
age lower than the highest voltage, and hence it must be scheduled at the highest
voltage. If task 7; is unschedulable for the current PE, we put it in a new list called
Ly, that contains all unschedulable tasks.

In step 7 we check the remaining idle time between the scheduled tasks in the
current PE and determine PG commands to be inserted if this reduces the energy
consumption. In steps 8 and 9, if the list Ly, generated in step 6 is not empty, we
use this list as the reservation list for the next-available PE and schedule it using the
procedures in steps 3—6. If no PE is available for scheduling, the scheduler should
report failure. At the last step we turn off all unused PEs via PG to maximize both the
static and dynamic power savings.

Decision algorithm

Assume that we are scheduling task 7; and that the computation time of 7; at the low
voltage, ¢; (VL) + 0;(i) is larger than §; (V1) and smaller than or equal to §; (V). An-
other viewpoint is that the finishing time of task 7; at the low voltage falls within the

@ Springer

Y.-C. Lin et al.

Fig. 9 Watersheds of
a population

Watersheds that divide the bell-shaped distribution into
| |Q parts with equal areas

region bounded by A; (VL) and X; (V). To achieve the objective of power reduction,
we propose several algorithms for deciding at which voltage tasks should be sched-
uled when weighting trade-offs between tasks. We use a probability density function,

1 —=pw?
e 272 where —oc0 < x < 00,
V2o

which defines the probability density function for the value x of a random observation
from the population [43], to divide the population of a group into Q equal parts in
terms of area under the distribution, and then schedule tasks at levels corresponding
to the parts that the tasks belong to. In other words, let wl, Wz, ..., and w1 pe
a demarcation that separates the population into Q parts (as shown in Fig. 9); a task
will be scheduled at level ¢ if its value falls between W/~ and W’. The detailed
algorithms are described as follows:

f) =

1. Reservation list with first-come first-served scheduling
Tasks are always scheduled at the lowest voltage possible without missing dead-
lines. This algorithm does not apply a cost model to the decision.

2. Reservation list with average power consumption
We use the switching activity «; to select the voltage level for 7;. We schedule
atask atlevel (Q — 7+ 1) if

Ve 1 —wi-w? ¢
/ e 202 = —,
-0 V2o 0
where W, denotes the tth watershed of the population of switching activities of
tasks.

Appendix 2 Analytical models

Here we detail the analytic model developed for the security architectures given in
Sect. 2 as follows. We consider the typical execution process of an operation in the

@ Springer

Energy-aware scheduling and simulation methodologies

system described in Sect. 2. The execution of each operation can be viewed as a pro-
cedure in which a channel requests an internal bus twice to serve the data transmission
and requests a PE to manipulate the data. Assume that each channel execution can be
treated as an exponentially distributed random process that produces sets of service
requests with three correlated operations in the following fixed order: two for the in-
ternal bus, and one for the PE. Following the notation in Sect. 3.2, let system_cycles;
be the total time spent by the ith channel on transmitting over the system bus (in-
cluding accessing the host memory, descriptor processing, and idling). We can now
define request_cycles;, which has two elements: (i) the total time spent by the ith
channel on preparing the PE request, the internal bus request, and processing time,
and (ii) the total time for the data to traverse the channel, internal buses, and PEs.
Now let channel_cycles; be

channel_cycles; = system_cycles; + request_cycles;.

We define My, ; as

data_amounty ;
My, =—""7"""—,
channel_cycles;
which is the ratio of the amount of data requested to the time that descriptors of the
ith channel spend performing the overhead of PE service requests, not including the
time spent waiting in queues and having requests serviced by the kth PE.
If we neglect the interaction between channels and assume that all internal buses
are utilizable by all channels and PEs, we have the following analytic model devel-
oped on top of a previous parallelizing theorem [44, 45]:

Theorem 1 Let

n
M, (1 + ex) Ms,
=) Py—— and A= -=5—"7",
; Msk Z?:l Méj

where € is the average scaling ratio of the data size throughout the processing by
the kth PE. The average time that each channel spends performing initiation, host
memory communication, and descriptor processing (®;) is related to the time spent
waiting (§2y.; and ‘Q},i) as follows:

1 m
Bty ity 2),=1,
k=1 j=1

n

[0 -2 +mei=1,
i=1

n l
[Ja-2/0+> mudi=1.
i=1

k=1

@ Springer

Y.-C. Lin et al.

Proof The first equation simply infers time conservation. Letting Cy ; be the aver-
age channel-i-to-PE-k request cycle time for the system and total_cycle be the total
operation time per request yields

1 data_amounty ;

ey

Cr.i - total_cycles

on average. By observing the workloads, we can compute My, ; (which is the ratio of
the amount of requested data to the channel cycles). Based on the definition of M, ;
and equation (1), we obtain

1 . channel_cycles;

= =&;. 2)
My, ; Cr.i total_cycles
Moreover, we define
_ [1 if channel i is not waiting for module %,
Sk,i = . 3)
0 otherwise
/ 1 if channel i is not waiting for bus j,
J 0 otherwise.

Let wux be the probability that PE k is busy and ,u/j be the probability that internal bus
Jj is busy. We have

e =1—E@10k2" - 6kn), (5)
wy=1- E(5},1 },2'~5},,,), 6)

where E(v) is the expected value of the random variable v. Therefore, i M, and
M/j MS/]_ are the rates of completed requests to PE k and internal bus j, respectively.
When the system is in equilibrium, i Mj, is equivalent to the rate of submitted re-
quests to PE k, and u’] ng is equivalent to the rate of submitted requests to internal
bus j. Since Y/, % is the total rate of submitted requests to PE k from all chan-
nels,we have the equi{/alence

n

Pik
E = uxMs,. (N
—~ Cy,i
i=1
Likewise, 22: D g(k is the average rate of submitted requests to all internal

buses from all channels. Due to the law of data indestructibility, 22: D w

is the average rate of submitted requests to all internal buses from all channels and
all PEs. Accordingly, we have the following equivalence:

1 n m
Pi (1 +€;) ' g
ZZ Cr.i JZ_}M] Sj (8)

k=1i=1

@ Springer

Energy-aware scheduling and simulation methodologies

By combining (2), (5), (6), (7), and (8), we get

My _ (He)My,
e =20=1 Pk M= M
!
Ek,18k2 - 8kn) + i @i =1, E(8 16,5+ 87) + gy M Pi = 1.

€))

Nevertheless, since both & ; and 8} ; are binaries, we have by symmetry
E@i)=1—2; and E@;)=1-2},

for each channel i. We now make a critical approximation by assuming that all the
channels have noncorrelated activities, and get

n
E@k1882++8kn) = EGr)EGr2) -+ EGrn) = [[(1 = 20,

i=1

(10)
n
E(5},18372 e 5},,1) = E(s;,l)E(agl) e E((S}’n) = 1’[(1 - 9}’,.).
i=1

The result follows. O

Acknowledgements This work was supported in part by Ministry of Economic Affairs under grant no.
95-EC-17-A-01-S1-034 and 96-EC-17-A-01-S1-034, by National Science Council under grant no. 95-
2220-E-007-001 and 95-2220-E-007-002 in Taiwan.

References

1. Lee CR, Lee JK, Hwang TT, Tsai SC (2003) Compiler optimizations on vliw instruction scheduling
for low power. ACM Trans Des Automat Electron Syst 8(2):252-268

2. Devadas S, Malik S (1995) A survey of optimization techniques targeting low power Vvlsi circuits. In:
Proceedings of the design automation conference, pp 242-247

3. Singh D, Rabaey J, Pedram M, Catthoor F, Rajgopal S, Sehgal N, Mozdzen T (1995) Power conscious
cad tools and methodologies: a perspective. Proc IEEE 83:570-594

4. Hsu CH, Kremer U, Hsiao M (2001) Compiler-directed dynamic voltage/frequency scheduling for
energy reduction in microprocessors. In: Proceedings of the 2001 international symposium on low
power electronics and design

5. Azevedo A, Issenin I, Cornea R, Gupta R, Dutt N, Veidenbaum A, Nicolau A (2002) Profile-based
dynamic voltage scheduling using program checkpoints. In: Proceedings of the conference on design,
automation and test in Europe

6. Weiser M, Welch B, Demers A, Shenker S (1994) Scheduling for reduced CPU energy. In: Proceed-
ings of USENIX symposium on operating systems design and implementation (OSDI), pp 13-23

7. Butts JA, Sohi GS (2000) A static power model for architects. In: Proceedings of the international
symposium on microarchitecture, pp 191-201

8. Powell MD, Yang SH, Falsafi B, Roy K, Vijaykumar TN (2000) Gated-vdd:a circuit technique to
reduce leakage in deep-submicron cache memories. In: Proceedings ISLPED

9. You YP, Huang CW, Lee JK (2005) A sink-n-hoist framework for leakage power reduction. In: Pro-
ceedings EMSOFT

10. You YP, Lee CR, Lee JK (2002) Compiler analysis and support for leakage power reduction on mi-
croprocessors. In: Proceedings LCPC
11. You YP, Lee CR, Lee JK (2006) Compilers for leakage power reductions. ACM Trans Des Autom

Electron Syst 11(1):147-166

@ Springer

Y.-C. Lin et al.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Duarte D, Tsai Y, Vijaykrishnan N, Irwin MJ (2002) Evaluating run-time techniques for leakage power
reduction. In: Proceedings ASPDAC

Rele S, Pande S, Onder S, Gupta R (2002) Optimizing static power dissipation by functional units
in superscalar processors. In: Proceedings of the international conference on compiler construction,
pp 261-275

Lackey DE, Bednar PSZTR, Stout DW, Gould SW, Cohn JM (2002) Managing power and perfor-
mance for system-on-chip designs using voltage islands. In: Proceedings of the 2002 IEEE/ACM
international conference on computer-aided design, pp 195-202

Su CY, Hwang SA, Chen PS, Wu CW (1999) An improved Montgomery algorithm for high-speed rsa
public-key cryptosystem. IEEE Trans Very Large Scale Integr Syst 7:280-284

Hong JH, Wu CW (2003) Cellular array modular multiplier for the rsa public-key cryptosystem based
on modified booth’s algorithm. IEEE Trans Very Large Scale Integr Syst 11:474-484

Lin TF, Su CP, Huang CT, Wu CW (2002) A high-throughput low-cost aes cipher chip. In: 3rd IEEE
Asia—Pacific conference ASIC

Su CP, Lin TF, Huang CT, Wu CW (2003) A highly efficient aes cipher chip. In: ASP-DAC

Wang MY, Su CP, Huang CT, Wu CW (2004) An hmac processor with integrated sha-1 and md5
algorithms. In: ASP-DAC

Lee MC, Huang JR, Su CP, Chang TY, Huang CT, Wu CW (2002) A true random generator design.
In: 13th VLSI design/CAD symposium

Hifn (2003) 7954 security processor Data Sheet

Gammage N, Waters G (2003) Securing the smart network with Motorola security processors

Chang JM, Pedram M (1997) Energy minimization using multiple supply voltages. IEEE Trans Very
Large Scale Integr Syst 5(4)

Yu CC, Wang WP, Liu BD (2001) A new level converter for low-power applications. In: The 2001
IEEE international symposium on circuits and systems, pp 113-116

ARM (2004) Intelligent energy controller technical overview

You YP, Lee CR, Lee JK (2001) Real-time task scheduling for dynamically variable voltage proces-
sors. In: Proceedings of the IEEE workshop on power management for real-time and embedded sys-
tems

Stankovic JA, Spuri M, Natale MD, Buttazzo G (1995) Implications of classical scheduling results
for real-time systems. Computer 28(6):16-25

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard read-time envi-
ronment.] ACM 20(1):46-61

Shih WK, Liu JWS (1996) On-line scheduling of imprecise computations to minimize error. SIAM J
Comput 25(5):1105-1121

Pasricha S (2002) Transaction level modeling of soc with Systemc 2.0. Technical report, Synopsys
Users Group Conference

Semiconductor Industry Association (2003) International technology roadmap for semiconductors
2003 edition. Technical report

Doyle B, Arghavani R, Barlage D, Datta S, Doczy M, Kavalieros J, Murthy A, Chau R (2002) Tran-
sistor elements for 30 nm physical gate lengths and beyond. Intel Technol J 6:42-54

Kim JM, Chae SI (1996) New mpeg2 decoder architecture using frequency scaling. In: IEEE interna-
tional symposium on circuits and systems. ISCAS ’96, vol 4, pp 253-256

Pouwelse J, Langendoen K, Sips H (2001) Dynamic voltage scaling on a low-power microprocessor.
In: 7th ACM international conference on mobile computing and networking (Mobicom), Rome, Italy,
pp 251-259

Semeraro G, Magklis G, Balasubramonian R, Albonesi D, Dwarkadas S, Scott M (2002) Dynamic
frequency and voltage control for a multiple clock domain microarchitecture

Iyer A, Marculescu D (2002) Power and performance evaluation of globally asynchronous locally
synchronous processors. In: Proceedings 29th annual international symposium on computer architec-
ture, pp 158-168

Pouwelse J, Langendoen K, Sips H (2001) Energy priority scheduling for variable voltage processors.
In: Proceedings ISLPED

Hong I, Kirovski D, Qu G, Potkonjak M, Srivastava MB (1999) Power optimization of variable-
voltage core-based systems. IEEE Trans Comput Aided Des 18(12):1702-1714

Luo J, Jha NK (2000) Power-conscious joint scheduling of periodic task graphs and aperiodic tasks
in distributed real-time embedded systems. In: Proceedings ICCAD, pp 357-364

Luo J, Jha N (2002) Static and dynamic variable voltage scheduling algorithms for real-time hetero-
geneous distributed embedded systems. In: Proceedings ASPDAC

@ Springer

Energy-aware scheduling and simulation methodologies

41.

42.

43.

44,
45.

Rao R, Vrudhula S (2004) Energy optimization for a two-device data flow chain. In: Proceedings of
the 2004 international conference on computer aided design, pp 268-274

Niyogi K, Marculescu D (2005) Speed and voltage selection for gals systems based on volt-
age/frequency islands. In: Proceedings of the ACM/IEEE Asia—Pacific design automation conference,
China

Lapin LL (1997) Modern engineering statistics. Wadsworth, Belmont

Hwang K, Briggs F (1984) Computer architecture and parallel processing. McGraw—Hill, New York
Bodin F, Windheiser D, Jalby W, Atapattu D, Lee M, Gannon D (1990) Performance evaluation and
prediction for parallel algorithms on the bbn gp1000. In: Proceedings of the 4th ACM international
conference on supercomputing, pp 401-403

@ Springer

	Energy-aware scheduling and simulation methodologies for parallel security processors with multiple voltage domains
	Abstract
	Introduction
	Configurable SP with multiple-voltage-domain architecture
	Power-aware scheduling approach
	Joint variable-voltage scheduling with power gating for PEs
	Voltage/speed selection of non-PEs

	Experiments
	Security processor simulation methodology
	Iterative analytical approaches

	Related work and discussion
	Low-power design
	Variable-voltage scheduling

	Conclusions
	Appendix 1: Joint variable-voltage scheduling with power gating
	Slack-time computation
	Scheduling algorithm
	Decision algorithm

	Appendix 2: Analytical models
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

