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9.3 Undecidable Problems about TM’s (in part b) 
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9.4 Post’s Correspondence Problems 
 

 Concepts to be taught --- 

 We will study Post’s correspondence problem (PCP) which involve strings rather than 

TM’s. 

 We will define a modified PCP (MPCP) 

 We will reduce MPCP to the original PCP. 

 We will also reduce Lu to the MPCP. 

 So Lu is reduced in two steps to PCP, thus proving PCP undecidable. 

 The double reductions from Lu to PCP may be illustrated by Figure 9.16 (Figure 9.11 in 

the textbook): 

 

 

 
Figure 9.16 Double reductions from Lu to PCP. 

 

 

9.4.1 Definition of PCP 

 Definition --- 

An instance of PCP consists of two lists of strings over some alphabet , where 

 the two lists are of equal length, denoted as A and B; 

 the instance is denoted as (A, B); 

 we write them as A = w1, w2, …, wk, B = x1, x2, …, xk for some integer k; 

 for each i, the pair (wi, xi) is said a corresponding pair; 

 We say this instance of PCP has a solution, if there is a sequence of integers, i1, i2, …, 

im, that, when interpreted as indexes for strings in the A and B lists, yields the same 

string, that is, wi
1
wi

2
…wi

m
 = xi

1
xi

2
…xi

m
.  

 We say the sequence is a solution to this instance of PCP, if so. 

 

 Definition --- 

The Post’s corresponding problem is: given an instance of PCP, tell whether this 

instance has a solution. 

 

 Properties of Post’s corresponding problem --- 
 The solution to an instance of PCP sometimes is not unique.  

 Also, an instance of PCP might have no solution. See Example 9.14. 

 

 Example 9.13 --- 

Two lists of an instance of PCP are shown in Fig. 9.17. Find a solution for it. 

 A solution is 2, 1, 1, 3 because 

w2w1w1w3 = 101111110 = 101111110 = x2x1x1x3 

Algorithm A Algorithm B 
Lu MPCP   PCP 
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 Another solution is 2, 1, 1, 3, 2, 1, 1, 3. 

 

 

Fig. 9.17 Two lists of an instance of PCP. 

 

9.4.2 The Modified PCP (MPCP) 
 Definition ---  

In the MPCP, it is additionally required that the first pair on lists A & B must be the 

first pair in the solution. 

 That is, for lists A = w1, w2, …, wk, B = x1, x2, …, xk, the solution is a list i1, i2, …, im 

such that 

w1wi
1
wi

2
…wi

m
 = x1xi

1
xi

2
…xi

m
. 

 

 Example 9.15 ---  

If Fig.9.17 is used as an instance of MPCP, then it has no solution. 

 

 Reduction of MPCP to PCP --- 

We now show how to reduce MPCP to PCP. We construct an instance of PCP from an 

instance of MPCP as follows: 

 Introduce two new symbols * and $: 

 In list A, * follows each symbol in the string; 

 In list B, * precedes each symbol in the string. 

 Put an extra * before list A. 

 A final pair ($, *$) is added to the PCP instance. 

(The purpose of using extra symbols: to make lengths equal and put an end mark $) 

 

 Example 9.16 ---  

Suppose Fig. 9.17 is an MPCP instance. Then, the corresponding PCP instance 

constructed in the above way is as shown in Fig. 9.18. 

 

 Theorem 9.17 ---  

MPCP reduces to PCP. 

Proof. 

0 10 3 

10 10111 2 

111 1 1 

xi wi i 

 

List B 
 

List A   
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 List A List B 

i yi zi 

0 *1* *1*1*1 

1 1* *1*1*1 

2 1*0*1*1*1* *1*0 

3 1*0* *0 

4 $ *$ 

Fig. 9.18 A PCP instance for the MPCP shown in Figure 9.17. 

 

Proof of the “if” part --- 

 Suppose i1, i2, …, im is the solution to the given MPCP instance with lists A and B. 

 Accordingly, we have w1wi
1
wi

2
…wi

m
 = x1xi

1
xi

2
…xi

m
. 

 Now, replacing w’s by y’s and x’s by z’s constructed as above (see Example 9.16), we 

get y1yi
1
yi

2
…yi

m
 = z1zi

1
zi

2
…zi

m
 which are almost the same. 

 The difference is: the 1
st
 string is missing a * at the beginning, and the 2

nd
 is missing a * 

at the end. 

 We know y0 = *y1, z0 = z1, yk+1 = $, zk+1 = *$ which, when used to replace the initials and 

ends of the two strings, yield y0 yi
1
yi

2
…yi

m
 yk+1= z0 zi

1
zi

2
…zi

m
zk+1. 

 That is, 0, i1, i2, …, im, k+1 is a solution to the instance of PCP. 

 

Proof of the “only if” part --- 

 If the instance of PCP constructed as above has a solution, then since  

 only the 0th pair has strings y0 and z0 that begin with the same symbol *; and  

 only the (k+1)st pair has strings that end with the same symbol $, 

we get to know that the solution is of the form 0, i1, i2, …, im, k+1, which means y0 

yi
1
yi

2
…yi

m
 yk+1= z0 zi

1
zi

2
…zi

m
zk+1. 

 Now remove all *’s and $’s from the two sides, we can get w1wi
1
wi

2
…wi

m
 = x1xi

1
xi

2
…xi

m
 

which is a solution to the MPCP instance.  

 Therefore, the construction above of an MPCP instance from a PCP instance is a 

reduction from MPCP to PCP. Done. 

 

 

9.4.3 Completion of Proof of PCP Undecidability 

 Reducing Lu to MPCP --- 

Now, we want to reduce Lu to MPCP. 

 For this, give a pair (M, w), we construct an instance (A, B) of MPCP such that TM M 

accepts w if and only if (A, B) has a solution. 

 The construction is essentially to use the MPCP instance (A, B) to simulate, in its 

partial solutions, the computation of M on input w. 

 The partial solutions will consist of strings that are prefixes of the sequence of the ID’s 

of M,  

#1#2#3#...,  

where 

 1 is the initial ID of M; 
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 i 
_| i+1 for all i. 

 The string from the list B will always one ID ahead of the string from the list A, unless 

M enters an accepting state. 

 In that case, there will be pairs to use for A to catch up to B. 

 But if no accepting state is entered, then these “catching up” pairs will not be used, and 

so no solution can be found. 

 We will assume the TM used is one with semi-finite (one-sided) tape with no blank 

printed on the tape (see Theorem 8.12). Such a TM is equivalent to the original TM. 

 Given a TM of this type, M = (Q, , , d, q0, B, F), with input w  *, we construct an 

instance of MPCP as follows. 

1. The first pair for TM initialization (simulating initial ID): 

   List A   List B 

     #   #q0w# 

2. Tape symbols and the separator # can be appended to both lists: 

   List A   List B 

    X          X 

    #         # 

3. Simulation of moves of M: 

for all q(Q  F) (non-accepting state), pQ, and X, Y, Z and B the blank symbol: 

   List A   List B 

    qX    Yp   if (q, X) = (p, Y, R) 

    ZqX    pZY   if (q, X) = (p, Y, L); Z 

    q#    Yp#   if (q, B) = (p, Y, R) 

    Zq#    pZY#  if (q, B) = (p, Y, L); Z 

4. Accepting: 

for each final state q and for all possible tape symbols X and Y in  

   List A   List B 

    XqY     q 

     Xq     q 

     qY     q 

5. Appending the ending symbols: 

for each final state q: 

   List A   List B 

    q##     # 

 

 Example 9.18 --- 

Given TM M with its transition table as shown in Table 9.1 and final state q3 with 

input w = 01, the corresponding MPCP instance is shown in Figure 9.19. 

 The moves of M to accept input 01 is  

q101
_| 1q21

_| 10q1
_| 1q201

_| q3101. 

Table 9.1 Transition table of TM in Example 9.18. 

qi (qi, 0) (qi, 1) (qi, B) 

q1 (q2, 1, R) (q2, 0, L) (q2, 1, L) 

q2 (q3, 0, L) (q1, 0, R) (q2, 0, R) 

q3 - - - 
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Rule List A List B Source 

(1) # #q101#   

(2) 
0 

1 

# 

0 

1 

# 
  

(3) 

q10 

0q11 

1q11 

0q1# 

1q1# 

0q20 

1q20 

q21 

q2# 

1q2 

q100 

q110 

q101# 

q111# 

q300 

q310 

0q1 

0q2# 

from (q1, 0)=(q2, 1, R) 

from (q1, 1)=(q2, 0, L) 

from (q1, 1)=(q2, 0, L) 

from (q1, B)=(q2, 1, L) 

from (q1, B)=(q2, 1, L) 

from (q2, 0)=(q3, 0, L) 

from (q2, 0)=(q3, 0, L) 

from (q2, 1)=(q1, 0, R) 

from (q2, B)=(q2, 0, R) 

(4) 

0q30 

0q31 

1q30 

1q31 

0q3 

1q3 

q30 

q31 

q3 

q3 

q3 

q3 

q3 

q3 

q3 

q3 

  

(5) q3## #   

Figure 9.19 MPCP instance of Example 9.18. 

 

 The sequence of partial solutions which mimics the above moves of M is shown below: 

 

 Derivations Used rule 

(Initialization) 

 A: # (1) 

 B: #q101# (1) 

(moves and copying) 

 A: #q10 (3.1) 

 B: #q101#1q2 (3.1) 

 A: #q101#1 (2.2)(2.3)(2.2) 

 B: #q101#1q21#1 (2.2)(2.3)(2.2) 

 A: #q101#1q21 (3.8) 

 B: #q101#1q21#10q1 (3.8) 

 A: #q101#1q21#1 (2) 

 B: #q101#1q21#10q1#1 (2) 

 A: #q101#1q21#10q1# (3.4) 

 B: #q101#1q21#10q1#1q201# (3.4) 

 A: #q101#1q21#10q1#1q20 (3.7) 

 B: #q101#1q21#10q1#1q201#q310 (3.7) 

 A: #q101#1q21#10q1#1q201# (2) 

 B: #q101#1q21#10q1#1q201#q3101# (2) 

(start to eliminate all symbols but q3 in list B) 
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 A: #q101#1q21#10q1#1q201#q3101# (4.8)(2) 

 B: #q101#1q21#10q1#1q201#q3101#q301# (4.8)(2) 

 A: #q101#1q21#10q1#1q201#q3101#q301# (4.7)(2) 

 B: #q101#1q21#10q1#1q201#q3101#q301#q31# (4.7)(2) 

 A: #q101#1q21#10q1#1q201#q3101#q301#q31# (4.8)(2) 

 B: #q101#1q21#10q1#1q201#q3101#q301#q31#q3# (4.8)(2) 

 A: #q101#1q21#10q1#1q201#q3101#q301#q31#q3## (5) 

 B: #q101#1q21#10q1#1q201#q3101#q301#q31#q3## (5) 

Done! 

 

 Therefore, there is a solution for this instance. 

 Try to see the partial solutions for an input which is not accepted by M -- the two sets 

of rules (4) and (5) will not be used, and so lists A and B will not be of the same length, 

implying that no solution is possible. 

 

 

 Theorem 9.19 --- 

PCP is undecidable. 

Proof.  

 We still have to complete the reduction of Lu to MPCP. For this, we want to prove:  

M accepts w if and only if the constructed MPCP instance has a solution. 

Proof of the “if” part --- 

 Example 9.18 gives the fundamental idea of proof of this part. If w is in L(M), then we 

can use the rules of (1) through (5) to generate a solution for the MCPC instance. 

Proof of the “only if” part --- 

 If the MPCP instance has a solution, then it could only be because M accepts w. If not 

accepting, then the final partial solution will not be of the same length because rules (4) 

and (5) will not used. 

(For more details, see the textbook.) 

 

 

9.5 Other Undecidable Problems 
 

 Concepts to be taught --- 

 We may reduce PCP to a variety of other problems that we wish to prove undecidable. 

 

9.5.1 Problems about Programs 
 Reduction of PCP to computer programs --- 

 We may write a computer program that takes an instance of PCP (encoded as a string) 

and searches for solutions in a certain systematic manner (e.g., in order of lengths of 

partial solutions). 

 When the PCP finds a solution, we can then have the program do any particular thing 

we want, e.g., print hello world, call a particular function, ring the console bell, etc. 

 This completes the reduction. 

 Therefore, problems about such things are undecidable. 

 

 Analog of Rice Theorem for programs --- 

Any nontrivial property that involves what the program does is undecidable. 
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9.5.2 Undecidability of Ambiguity for CFG’s 
 Concepts to be taught --- 

 We will prove the problem of deciding if a given CFG is ambiguous is undecidable. 

 We will also prove several problems about the CFG’s undecidability. 

 

 Some definitions --- 

 Let a PCP instance consists of lists A = w1, w2, …, wk, B = x1, x2, …, xk. 

 We construct a CFG with A as the only variable. 

 The terminals are all the symbols of the alphabet  used for this PCP instance, plus a 

distinct set of index symbols a1, a2, …, ak that represent the choices of pairs of strings 

in a solution to the PCP instance. 

 That is, ai means the choice of wi from list A or xi from list B. 

 The productions for the CFG for list A are: 

A  w1Aa1 | w2Aa2 | … | wkAak | … | w1a1 | w2a2 | … | wkak. 

 Call this grammar GA and its language LA.  

 LA is called the language of list A. 

 Similarly, we construct a grammar GB with language LB from list B with the following 

productions: 

B  x1Ba1 | x2Ba2 | … | xkBak | …  | x1a1 | x2a2 | … | xkak. 

 LB is called the language of list B. 

 Finally, we define a grammar GAB by combining grammars GA and GB for the entire 

PCP instance, which consists of: 

 variables A, B, and S (the start symbol); 

 productions S  A | B; 

 all the productions of GA; 

 all the productions of GB. 

 It is proved in the next theorem that GAB is ambiguous if and only if the instance (A, B) 

of PCP has a solution. 

 

 

 Theorem 9.20 --- 

Whether a CFG is ambiguous is undecidable. 

Proof. 

 We only have to show that GAB is ambiguous if and only if the instance (A, B) of PCP 

has a solution. 

Proof of the “if” part --- 

 Suppose i1, i2, …, ik is a solution. Consider the following two derivations: 

S  A  wi1Aai1  wi1wi2Aai2ai1 

    …  wi1wi2…wim1
Aaim1

…ai2ai1 

    wi1wi2…wim1
wimaimaim1

…ai2ai1; 

S  B  xi1Bai1  xi1xi2Bai2ai1  …  

    xi1xi2…xim1
Baim1

…ai2ai1 

    xi1xi2…xim1
ximaimaim1

…ai2ai1. 

 Since i1, i2, ..., im is a solution, we know that wi1wi2…wim = xi1xi2…xim. 

 Thus, the two distinct derivations are derivations of the same string.  

 That means that GAB is ambiguous. 
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Proof of the “only if” part --- 

 Suppose that GAB is ambiguous. 

 It is easy to see that a given string cannot have two derivations in GA, nor in GB. 

 Therefore, the only way that a string could have two leftmost derivations in GAB is if 

one of the two derivations begins S  A and continues with a derivation in GA and the 

other begins with S  B and continues with a derivation of the same string in GB. 

 The string with two derivations has a tail of indexes aim…ai2ai1 for some m  1.  

 This tail must be a solution to the PCP instance, because what precedes the tail in the 

string with two derivations is both wi1wi2…wim and xi1xi2… xim which are equal. Done. 

 

9.5.3 The Complement of a List Language 
 Theorem 9.21 --- 

If LA is the language for list A, thenLA is CFL.  

 For the proof, see the textbook. 

 Note that LA is also a CFL because its grammar is a CFG, as mentioned previously. 

 

 Usefulness of the list languages --- We can use LA, LB, and their complements in various 

ways to show the undecidability about CFL’s. 

 

 

 Theorem 9.22 --- 

Let G1 and G2 be CFG’s, and let R be a regular expression. The following are 

undecidable: 

 Is L(G1)∩L(G2) = ? 

 Is L(G1) = L(G2)? 

 Is L(G1) = L(R)? 

 Is L(G1) = T* for some alphabet T? 

 Is L(G1)  L(G2)? 

 Is L(R)  L(G1)?  

 

Proof: 

 We conduct the proofs by problem reduction from PCP to each case. 

 That is, we show how to take an instance (A, B) of PCP and convert it to a question 

about CFG’s and/or regular expressions that has answer “yes” if and only if the 

instance of PCP has a solution.  

 Let the alphabet of the PCP instance be  and that of the index symbols be I. 

 

Proof for “Is L(G1)∩L(G2) = ?” 

 Let L(G1) = LA and L(G2) = LB. 

 Then L(G1)∩L(G2) = LA∩LB is the set of solutions to this instance of PCP. 

 Why? See grammars for lists A and B before and in the proof of the last theorem. 

 So we have reduced PCP to the problem “Is L(G1)∩L(G2)  ?” 

 So this problem is undecidable. 

 And by Theorem 9.3 (“the recursive language is closed under complementation”), the 

complemented problem is also undecidable. 

 That is , the problem “Is L(G1)∩L(G2) = ?” is undecidable. 
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Proof for “Is L(G1) = L(G2)?” 

 Since CFL’s are closed under union, we may construct a CFG G1 forLA∪LB. 

 Since (∪I)* is a regular language, we may construct a grammar G2 for it. 

 From the set theory, we have 
A B

L L  = 
A B

L L . 

 This means that L(G1) does not contain those strings which are solutions to the instance 

of PCP. 

 On the other hand, L(G2) contains all the strings. 

 So L(G1) = L(G2) if and only if the PCP instance has no solution. 

 Or inversely, L(G1)  L(G2) if and only if the PCP instance has a solution. 

 That is, we have reduce the PCP to the complement of the current problem. 

 So, the problem “is L(G1)  L(G2)?” is undecidable.  

 So, the problem “is L(G1) = L(G2)?” is undecidable (by Theorem 9.3). 

 

For proofs of other cases, see the textbook. 

 


