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9.0 Introduction (in part a) 

9.1 A Language That Is Not Recursively Enumerable (in part a) 

9.2 An Undecidable Problem That Is RE (in part a) 

9.3 Undecidable Problems about TM’s (in this part) 

9.4 Post Correspondence Problem (in part c) 

9.5 Other Undecidable Problems (in part c)
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9.3 Undecidable Problems about Turing Machines 
 

 Concepts to be taught --- 

 In this part, we will prove Rice’s Theorem: any nontrivial property of TM’s, which 

depends only on the language the TM accepts, is undecidable. 

 Also, we will investigate undecidable problems not involving TM’s or their languages. 

 

9.3.0 Reviews 

 A review of proof of undecidability of the language L u --- 

 L u is the complement of the universal language Lu 

 The proof is based on a reduction from Ld to L u as shown in Fig. 9.5 in Section 

9.2.3, which is repeated here. 

 

 

 

Fig. 9.5 A TM M' to accept Ld (repeated). 

 

 

 A review of the technique of problem reduction --- 

 The basic idea of this technique is illustrated in Fig. 8.4 in Section 8.1.3, which 

is repeated here. 

 

 

 
Fig. 8.4 An illustration of reducing one problem to another (repeated). 

 

 

9.3.1 Reductions 

 Definition --- 

If we have an algorithm to convert instances of a problem P1 to instances of P2 that 

have the same answer, then we say that P1 reduces to P2. 

 This technique of reduction may be used to prove that P2 is at least as hard as P1, like 
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the following cases (proved later): 

 if P1 is not recursive, then P2 cannot be recursive; 

 if P1 is non-RE, then P2 cannot be RE. 

 
 The reduction technique may be visualized as Fig. 9.6. 

 It is allowed that only a small fraction of P2 is a target of the reduction (see the smaller 

circles in the right larger circle in Fig. 9.6). 

 

 

 
Fig. 9.6 Visualization of problem reduction (Fig. 9.7 in the textbook). 

 

 

 Alternative concepts of problem reduction --- 

A reduction may be regarded as: 

 a TM that takes an instance of P1 on its tape and halts with an instance of P2 on 

its tape; or 

 a computer program that takes an instance of P1 as input and produces an 

instance of P2 as output; or 

 an algorithm that takes an instance of P1 as input and produces an instance of P2 

as output. 

 

 

 Theorem 9.7 --- 

If there is a reduction from P1 to P2, then  

(a) if P1 is undecidable (not recursive), then so is P2; 

(b) if P1 is non-RE, then so is P2. 

 

Proof. Proof by contradiction. 

 Proof of Part (a) --- 

 Suppose P1 is undecidable. 

 If P2 is decidable, say, by the use of an algorithm A2, then we combine the reduction R 

with A2 to form an algorithm A1 to decide P1 in the following way (see Fig. 9.7). 

(1) Given an instance w of P1, apply the reduction algorithm R to w to get an instance 

of P2, say x. 

(2) Since P2 is decidable, we apply A2 to x. 

(a) If A2 says “yes” (i.e., x is in P2), then the answer to w for P1 is also “yes” (i.e., w 

is in P1) because x is derived from w by R which is an algorithm. 

(b) Similarly, if x is not in P2, then w is not in P1. 
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 In the above way, we have an algorithm A1 to decide P1 (A1 is illustrated in Fig. 9.7) 

 But this is impossible because we know that P1 is undecidable. Contradiction! 

 So, the assumption that P2 is decidable is not correct. Done. 

 

 

 
Fig. 9.7 An algorithm A1 to implement P1. 

 

 

 Proof of Part (b) --- 
 Assume P1 is non-RE, but P2 is RE. 

 So there exists a TM M2 which will halt and says “yes” if its input is in P2 (a language); 

and “no” if not. 

 Now we combine the reduction algorithm R with M2 to construct another TM M1 in the 

following way (see Fig. 9.8). 

(1) Given a string w in P1, apply R to transform w to be a string x in P2. 

(2) If x is accepted by M2, then let M1 accept w (there is no need to check the case of “not 

accept”) 

 Now, if w is in P1, then the corresponding x is in P2 and accepted by M2, and so w is 

accepted by M1.  

 That is, M1 is the TM for P1, or equivalently, P1 is RE. Contradiction! 

 So P2 cannot be RE. 

 

 

 
Fig. 9.8 A TM M1 to implement P1. 

 

 

 A comment --- 

The diagram of Fig. 9.7 may be re-drawn as Fig. 9.9 for the case of proving Theorem 

9.6 from the viewpoint of Fig. 8.4 to make it clear that Fig. 9.7 is indeed an example of 

problem reduction. 
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Fig. 9.9 An implementation of the algorithm of Fig. 9.7 from the viewpoint of problem reduction. 

 

 

 Another comment --- 

Theorem 9.7 may be illustrated by Fig. 9.10 where each arrow  in the figure means 

“implies.” By logic reasoning, in addition to the truth stated in the theorem, it is easy to 

see the validity of the reverse statement that if P1 can be reduced to P2 which is 

decidable, then P1 is also decidable. 

 

 

 
Fig. 9.10 An implementation of then. 

 

 

9.3.2 Turing Machines That Accepts the Empty Language 

 Definitions --- 

Regard the label M of a TM as its binary code. Define: 

Le = {M | L(M) = } 

which is the language of the codes of TM’s which do not accept strings; and 

Lne = {M | L(M)  } 

which is the language of the codes of TM’s, each accepting at least one string. 

 

 

 A review of results obtained so far --- 

 Ld is not an RE language (Theorem 9.2). 

 It can be shown that L d is RE (omitted; can be proved in the same way as we 
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show the universal language Lu to be RE). 
 Lu is RE but not recursive (Theorem 9.6). 

 L u is not RE (by Theorem 9.4). (Reason: if L u is RE, then by Theorem 9.4, Lu should 

be recursive; but this is not true according to Theorem 9.6.) 

 These results are marked as yellow in Fig. 11. 

 Now, we want to prove by reduction that Le is non-RE, and Lne is RE but not recursive 

(as Theorems 9.8, 9.9, 9.10). 

 

 

 

Fig. 9.11 Relationships among three classes of languages (Fig. 9.2 repeated). 

 

 

 Theorem 9.8 --- 

Lne is RE, but not recursive. 

Proof. 

 Proof of Part 1: proving “Lne is RE” --- 
 We construct a nondeterministic TM M as shown in Fig. 12 (Fig. 9.8 in the textbook) 

which is described in detail as follows. 

 M takes as input a TM code, Mi. 

 Using its nondeterministic capability, M guesses an input w that Mi might accept. 

 M tests whether Mi accepts w by simulating the universal machine U that accepts Lu. 

 If Mi accepts w, then M accepts its own input Mi, too. 

 

 

 

Fig. 9.12 A TM which accepts Lne (Fig. 9.8 in the textbook). 
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string, M will guess eventually that string (among others) and accepts Mi (using U). 

 Conversely, if Mi does not accept any string (i.e., L(Mi) = ), then no guess of w will 

lead to acceptance by Mi and so M does not accept Mi (because of the property of U). 

(Note: U is the universal TM which accepts the universal language Lu, and each string 

in Lu is a pair (Mi, w) where Mi is a TM with the binary alphabet, and w is a binary 

string such that w is accepted by Mi.) 

 The overall function of M with (the code of ) Mi as input is: if Mi accepts w so that L(Mi) 

 , then M accepts Mi. 

 This means M is a TM for accepting the codes of TM’s Mi with L(Mi)  . That is, M is 

the TM for accepting Lne. So, Lne is RE. 

 

 Proof of Part 2: proving “Lne is not recursive” --- 
 Next, we want to prove Lne is not recursive by reducing Lu to Lne. 

 We know 

 Lu = {(M, w) | w{0, 1}* and w  L(M)}; 

 Lne = {M | L(M)  }. 

 Reducing Lu to Lne means transforming a code y = (M, w)  Lu to a code z = M'  Lne 

such that (M, w)  Lu if and only if M'  Lne, which means: M accepts w if and only if 

L(M')   (i.e., M' accepts at least one string.) 

 We want to prove this by reducing Lu to Lne discussed previously. For this, we prove 

the reducibility at first: construct M' as shown in Fig. 9.13, which operates in the 

following way. 

(1) M' ignores its own input x and simulates M on input w (for details of this simulation 

using a universal TM U, see p. 396 in the textbook).  

(2) If M accepts w, then M' accepts any input x so that L(M')  .  

(3) If M does not accept w, then M' will not accept any input x.  

 Therefore, M accepts w if and only if L(M')   which means (M, w)  Lu if and only if 

M'  Lne. 

 Accordingly, we can design a reduction algorithm R using a TM to transform the code 

(M, w) for M and the string w into the code for M' (the details not shown in the 

textbook, but the simulation mentioned above can convince you that you can do so). 

 Therefore, by Theorem 9.7, since Lu is undecidable (i.e., not recursive), we conclude 

Lne is not recursive, either. Done. 

 

 

 

Fig. 9.13 A TM which accepts Lne (Fig. 9.8 in the textbook). 

 

 

 Proof of Part 3: another way to prove “Lne is not recursive” --- 
 As a preliminary of proving Rice’s Theorem later, we prove (by contradiction) below 

alternatively without using Theorem 9.7. 

 Assume that Lne is recursive. Then, there exists an algorithm B to decide if a given 
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input code M' can be accepted or not: if L(M')  , then B accepts and halts; otherwise, 

“rejects” (does not accept but halts as well). 

 Now, we develop an algorithm C using algorithms R mentioned above and B as 

illustrated in Fig. 9.14 which operates in the following way. (Note: R is a reduction 

algorithm using a TM to transform the code (M, w) for M and the string w into the code 

for M'.) 

(1) Algorithm C at first uses R to convert its input code (M, w) into code M' where M 

accepts w if and only if L(M')  . 

(2) Then, B accepts the code M' if L(M')   and rejects it, otherwise. 

(3) Finally, we let C accepts if B accepts and vise versa. 

(4) The overall function of C is: with the code (M, w) as input, if M accepts w, then C 

accepts, and if not, then C rejects. 

 That is, C is an algorithm for Lu, meaning that Lu is recursive. Contradiction. 

 So, the assumption that Lne is recursive is not true. Done. 
 

 

 

Fig. 9.14 Construction of an algorithm for Lu. 
 

 

 Theorem 9.10 --- 

Le is not RE. 

Proof. 

 Assume that Le is RE. (Note that Le = Lne). 

 Then, since Lne =Le is RE, by Theorem 9.4 Lne should be recursive. Contradiction!  

 So Le is not RE. 
 

 

9.3.3 Rice’s Theorem & Properties of RE Languages 

 Concepts --- 

 We will prove that all nontrivial “properties” of the RE languages are undecidable. 

 A property of the RE languages is “the language is context-free.” 

 

 Definition ---  

A property of the RE languages is a set of RE languages. 

 So the property of being context-free is the set of CFL’s. 

 A property is trivial if it is either empty or is the set of all RE languages; otherwise, 

nontrivial. 

 Examples --- the empty property, , is different from the property of being an empty 

language, {}. 

 

AAllggoorriitthhmm  CC  

 
Algorithm B 

for Lne 

 

 
AAllggoorriitthhmm  RR  

  
MM'' (M, w) 

accept 

reject 

accept 

reject 



 10 

 

 More concepts --- 

 We cannot recognize a set of languages with languages themselves as the input to the 

recognizer (a TM usually) because a language, usually being infinite, cannot be written 

down as a finite-length string. 

 Instead, we recognize the codes of the TM’s which accept these languages because the 

TM code itself is finite in length. 

 So, for a property P of the RE languages, we use LP to denote the set of codes for the 

TM’s Mi such that L(Mi) is a language in P.  

 When talking about the decidability of a property P, we mean the decidability of the 

language LP. 

 

 
 Theorem 9.11 (Rice’s Theorem) --- 

Every nontrivial property P of the RE languages is undecidable. 

Proof. 

 Case I: the empty language  is not in P --- 

 Assume at first that the empty language  is not in P. 

 Since P is nontrivial, there must be some nonempty language L in P. 

 Let ML be the TM accepting L. 

 We will reduce Lu to LP, thus proving that LP is undecidable (according to Theorem 

9.7). 

 Reduction of Lu to LP means transforming a code y = (M, w)  Lu into a TM code M'  

LP with the language of M' being L  P as mentioned previously, such that (M, w)  Lu 

if and only if M' accepts L. 

 The algorithm A for this reduction may be designed to take a pair (M, w) and produce a 

TM M'. 

 The design of M' is shown in Fig. 9.15, which has the function: 

L(M') is  if M does not accept w, and L(M') = L if M accepts w. 

(M' as shown in Fig. 9.15 is quite similar to M' shown in Fig. 9.13 except that an 

additional TM ML is included). 

 This function is achieved in the following way. 

(1) M' simulates M on input w (for details of this simulation using a universal TM U, 

see p. 398 in the textbook). 

(2) If M accepts w, then M' begins simulating ML on its own input x to accept the 

language L. (Since L is in P, the code for M' is in LP.) 

(3) If M does not accept w, then M' does nothing, and never accepts its own input x, so 

L(M') = . (Since we assume  is not in property P, that means the code for M' is 

not in LP.) 

 The overall function of M' is: M accepts w if and only if M' accepts L. 

 It is observed that the reduction of constructing M' from M and w can be carried out by 

an algorithm (named previously as A) (as said in the textbook). 

 By the “theorem of reduction” (Theorem 9.7), since Lu is undecidable, we conclude that 

LP is undecidable, or equivalently, P is undecidable. 

 

 Case II: the empty language  is in P --- 



 11 

 Now, we have to deal with the other case where  is in P. 

 If so, we consider P  which does not contain . 

 A similar proof to that above may be applied to show that P  (or equivalently L
P

) is 

undecidable. 

 Since every TM accepts an RE language, L
P

, the set of (the codes for) TM’s that do 

not accept a language in P is the same as L
P

, the set of (the codes for) TM’s that 

accept a language in P . 

 That is, L
P

 = L
P

 so that L
P

 is undecidable. 

 Now, suppose LP is decidable in this case (i.e.,   P). 

 Then, by Theorem 9.3, L
P

 is decidable, too. Contradictory to the just-proved fact that 

L
P

 is undecidable. 

 

 Therefore, for either case, LP is undecidable. Done. 

 

 

 
Figure 9.15: Construction of M’ for proving Rice’s Theorem (Fig. 9.10 in the textbook). 

 

 

 

9.3.4 Problems about TM Specifications 

 All problems about TM’s that involve only the language that the TM accepts are 

undecidable according to Rice’s theorem. 

 The following are undecidable accordingly (except the first which is based on other 

theorems): 

 whether the language accepted by a TM is empty (from Theorems 9.9 and 9.3); 

 whether the language accepted by a TM is finite; 

 whether the language accepted by a TM is a regular language; 

 whether the language accepted by a TM is a context-free language. 

 Problems about TM’s other than their languages are not related to Rice’s Theorem. 

 

 Example 9.12 --- 

This example shows some problems which can be decided. 

 It is decidable whether a TM has five states. 

 It is also decidable whether there exists some input such that the TM makes at least five 

moves. 

 See the textbook for the details of the proofs. 
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