Chapter 9

Undecidability (part a) (2015/12/17)

Island Castle, Lithuania 2002

Outline

- 9.0 Introduction
- 9.1 A Language That Is Not Recursively Enumerable
- 9.2 An Undecidable Problem That Is RE
- 9.3 Undecidable Problems about TM's
- 9.4 Post Correspondence Problem
- 9.5 Other Undecidable Problems

9.0 Introduction

Concepts to be taught ----

- We will prove the undecidability of several problems formally:
 - Does a TM accept (the code for) itself as input?
 - Does a TM accept a certain input?
- Actually all nontrivial problems about the language accepted by a TM are undecidable.

9.1 A Language That Is Not RE

- Review of definition ----
 - An algorithm is a procedure which always halts.
 - A language *L* is *recursive enumerable* (RE) if L = L(M) for some TM *M*.
 - A language L is *recursive* if L = L(M) for some TM M which always halts, regardless of whether or not it accepts (i.e., halts both when accepting and when rejecting).

■ Goal of this study ----

- Want to prove *undecidable* the language of pairs (M, w) where
 - *M* is a TM (suitably coded in binary) with alphabet {0, 1};
 - *w* is a string of 0's and 1's;
 - *M* accepts input *w*.
- If this problem is undecidable, then those with general alphabets re also undecidable.
- Steps to achieve the above goal in the 1st stage (the 2nd stage is in the next section) ----
 - Coding the TM into a binary string.
 - Treating *any* binary string as a TM.
 - Regarding a *non-well-formed* string as a TM with no move.
 - ◆ Setting up a language *L_d* (called *diagonalization language*) consisting of all strings *w* such that the TM represented by *w* does *not* accept the input *w*.

■ Language *L_d* (called diagonalization language) ---

- $L_d = \{w | w \text{ not accepted by the TM represented by } w\}$
- $w \in L_d$ means the illustration of Fig. 9.1.

Fig. 8.1 A

- Properties of the diagonalization language *L*_d ---
 - It can be proved that there is no TM which can accept L_d (later in this chapter) !!!
 - ♦ Showing that no TM can accept a language is *stronger* than showing that it is undecidable (i.e., it has no algorithm or has <u>no TM that always halts</u>).
 - L_d plays the same role as the program H_2 in Section 8.1.2 of the last chapter (with a

self-contradiction property).

9.1.1 <u>Enumerating the Binary Numbers</u>

• We want to assign integers to binary strings in the following way:

if w is a binary string, then regard 1w as an integer i, and call w the ith string, denoted as w_i .

• For example, $(1w)_2 = i_{10} \Rightarrow w = i$ th string $= w_i$.

9.1.2 Codes for the TM's

- We want to define the *i*th TM M_i after encoding the 7-tuple of the TM and assigning integers to the states, tape symbols, and directions L and R in the following way:
 - ♦ States are numbered as *q*₁, *q*₂, ..., *q_r*, with *q*₁ as the start state, and *q*₂ the only accepting state.
 - Tape symbols are numbered as $X_1, X_2, ..., X_s$, with $X_1 = 0, X_2 = 1, X_3 = B$.
 - L as D_1 , and R as D_2 .
 - Each transition rule $\delta(q_i, X_j) = (q_k, X_l, D_m)$ is represented by integers *i*, *j*, *k*, *l*, and *m*, and is coded as $C = 0^i 10^j 10^k 10^l 10^m$ with 1's as separators (a *unary number* representation). (Note that *i*, *j*, *k*, *l*, and *m* are all at least 1, so there will be no occurrence of two or more consecutive 1's in the code.)
- A complete code for a TM M consists of all the codes for the transitions, in a certain order, separated by pairs of 1's:

code of
$$M = C_1 1 1 C_2 1 1 \dots C_{n-1} 1 1 C_n$$

where each Ci is the code for a transition.

Code for (M, w) is that of M, followed by 111 and then w, i.e.,

code of
$$(M, w) = C_1 1 1 C_2 1 1 \dots C_{n-1} 1 1 C_n 1 1 1 w$$

Example 9.1 ---

Given a TM $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$ where δ is such that

$$\delta(q_1, 1) = (q_3, 0, R), \ \delta(q_3, 0) = (q_1, 1, R), \ \delta(q_3, 1) = (q_2, 0, R), \ \delta(q_3, B) = (q_3, 1, L),$$

then

• the codes for the transition rules are

$$0^{1}10^{2}10^{3}10^{1}10^{2}, 0^{3}10^{1}10^{1}10^{2}10^{2}, \dots$$

 \blacklozenge and the code for *M* is

```
0^{1}10^{2}10^{3}10^{1}10^{2}110^{3}10^{1}10^{1}10^{1}10^{2}10^{2}11...
```

9.1.3 <u>The Diagonalization Language</u>

The previous coding of TM's allows a concrete notion of M_i , the *i*th TM, which is TM M whose code is w_i , the *i*th binary string.

- If w_i is not a valid code of a TM, we take M_i to be the TM with one state and *no* transition. That is, a TM with an invalid code w_i will halt immediately on any input.
- Therefore, we have a list of TM's in a certain order and there is a 1-to-1 mapping between TM's M_i and w_i .

Definition ---

The diagonalization language L_d is the set of strings w_i such that w_i is not in L(Mi).

- ◆ That is, *L_d* consists of all strings *w* such that the TM *M*, whose code is *w*, does not accept *w* when *w* is given as input.
- By notations, we have $L_d = \{w_i | w_i \notin L(M_i)\}$.
- Why L_d is called a "diagonalization language"? -- ♦ See Fig. 9.1 at first.
 - Meaning of the diagonal values:
 - "1" means that M_i accepts w_i ;
 - "0" means that M_i does not accept w_i .
 - The *i*th row is the *characteristic vector* for language $L(M_i)$:
 - A "1" in the row indicates that the corresponding string is in the language.

		Wi 1 2 3 4 . . . 0 1 1 0 . . . 1 1 0 0 . . . 1 1 0 0 . . . 0 0 1 1 . . . 0 1 0 1 . . . 0 1 0 1 						
		1	2	3	4	•	•	•
	1	0	1	1	0	•	•	•
	2	1	1	0	0	•	•	•
M_i	3	0	0	1	1	•	•	•
	4	0	1	0	1	•	•	•
		•	•	•	•	•	•	
		•	•					
		•	•			•		•

Fig. 9.1 Illustration of the diagonalization language.

- To construct L_d , just complement the diagonal to collect the corresponding strings; all the resulting 1's in the diagonal means that the corresponding M_i does not accept w_i .
- ♦ This is called the technique of *diagonalization*, useful for proving that "Ld is not RE."
- ♦ Because the complement of the diagonal is 1000... in the previous figure, so L_d contains w₁ = ε (from 1ε), but does not contain w₂, w₃, w₄, ...
- ◆ The complemented diagonal disagrees in some column with every row of the table of Fig. 9.1; therefore it (any row) cannot be the characteristic vector of any TM!
 (對每一列 row,至少在某一行 column 不會與原來的列一致!)

♦ A non-zero element at location (i, i) in the complemented diagonal means that M_i does not accept the corresponding w_i. (statement A)

9.1.4 **Proof that** L_d is not RE

■ Theorem 9.2 ("Tragedy Theorem 悲劇定理") ---

 L_d is not an RE language. That is, no TM accepts L_d .

Proof. Prove by contradiction.

- Let L_d be L(M) for some TM M. Then M is one of the TM's in the TM list mentioned previously, say M_i .
- Now, check if the corresponding w_i is in L_d .
 - If $w_i \in L_d$, then M_i accepts w_i (because $L(M_i) = L_d$). But this is impossible because by definition of L_d , w_i cannot be accepted by M_i . Contradiction.
 - If $w_i \notin L_d$, then w_i is not accepted by M_i because $L_d = L(M_i)$. This in turns means $w_i \in L_d$ by the definition of L_d (see statement (A) above). Contradiction again.
- Neither case holds, so the assumption that $L_d = L(M)$ for some TM *M* must be false. That is, no TM accepts L_d . Done.

9.2 An Undecidable Problem That Is RE

- Concepts to be taught:
 - ♦ RE languages are accepted (recognized) by TM's.
 - RE languages may be grouped into two classes:
 - Class 1 (*recursive language*) --- each language L in this class has a TM (thought as an algorithm) which not only accepts strings of L, but also tells us what strings are not in L by halting.
 - Class 2 (*RE but not recursive*) --- each language *L* in this class has a TM (*not* thought as an algorithm) which accepts strings of *L*, but may not halt when a given input string is not in *L*.

9.2.1 <u>Recursive Languages</u>

Definition ---

- A language *L* is *recursive* if L = L(M) for some TM *M* such that:
- (1) if $w \in L$, then *M* accepts (and therefore halts);
- (2) if *w*∉*L*, then *M* eventually halts, although it *never* enters an accepting state (i.e., it "rejects").
- A TM of this type corresponds to the formal notion of *algorithm*.
- Definition ---

A given language *L*, *regarded as a problem*, is called *decidable* if *L* is a recursive language; and *undecidable* if not.

- The existence or nonexistence of an algorithm to solve a problem (i.e., the problem is decidable or undecidable) is *more important* than the existence or nonexistence of a TM to solve the problem.
- Conceptually, we have following equivalent statements:

decidable problem \Leftrightarrow recursive language $L \Leftrightarrow$ there is a TM *M* which halts with *L* as input.

Relationships among three classes of languages ----

- See Fig. 9.2 for the relationships among the following three classes of languages:
 - Recursive language
 - Recursive enumerable language (RE language)
 - Non-RE language
- In Fig. 9.2, only L_d is studied so far; others will be investigated in this chapter.
- All the relationships will be proved in this chapter, too.

Fig. 9.2 Relationships among three classes of languages.

• L_u , the *universal language*, will soon be defined and proved *not* to be recursive, though it is an RE language.

9.2.2 <u>Complements of Recursive and RE Languages</u>

- A powerful tool of proving is *language complementation*.
- We will show that the recursive language is *closed* under complementation.
- Theorem 9.3 ---

If a language L is recursive, so is \overline{L} .

Proof.

- Prove by constructing a halting TM to accept \overline{L} .
- Let TM *M* accepts *L*, which always halts.
- Construct a new TM \overline{M} for *M* as illustrated by Fig. 9.3.

- The accepting states of *M* are made non-accepting with no transitions, i.e., in these states *M* will halt without accepting.
- \overline{M} has a new accepting state r and no transition from r.
- For each combination of a non-accepting state of *M* and a tape symbol of *M* such that *M* has no transition (i.e., such that *M* halts without accepting), add a transition to the accepting state *r*.
- Then if *M* halts, so is \overline{M} , and \overline{M} accepts strings not accepted by *M*.

Theorem 9.4 ---

If a language L and its complement are RE, then L is recursive, and so is \overline{L} .

Proof.

• Easy by Fig. 9.4 where $L = L(M_1)$ and $\overline{L} = L(M_2)$ and the new machine is M.

Fig. 9.4 A TM *M* to accept \overline{L} .

- If w is in L, then M_1 will eventually accept. If so, M will accept and halt.
- If w is not in L, then it is in \overline{L} , so that M_2 will eventually accept. If so, M will halt without accepting.
- Therefore, for all input w, M halts and L(M) = L, that is, L is recursive.
- By Theorem 9.3, \overline{L} is recursive. Done.

- Discussions ----
 - Of the 9 possibilities of placing L and \overline{L} in Fig. 9.2, only the following 4 are valid by Theorems 9.3 and 9.4:
 - Both L and \overline{L} are recursive (both in the inner ring of Fig. 9.2).
 - Neither *L* nor \overline{L} is RE. (both in the outer ring).
 - *L* is RE but not recursive, and \overline{L} is not in RE (one in the middle ring, and the other in the outer ring), like L_u and \overline{L}_u in Fig. 9.2.
 - \overline{L} is RE but not recursive, and L is not in RE (a swap of above), like \overline{L}_d and L_d , and L_{ne} and L_e in Fig. 9.2.
- Example 9.5 ---
 - L_d is not RE as shown before.
 - So, \overline{L}_d cannot be recursive (not in the four cases above). (Otherwise, L_d is recursive by Theorem 9.4 and so is RE too by definition, contradiction!)
 - It can be shown that \overline{L}_d is RE (omitted), just like the way we show the universal language L_u to be RE (shown next).
 - Note that \overline{L}_d is the set of strings w_i such that the corresponding M_i accepts w_i .
 - In conclusion, \overline{L}_d is RE but not recursive and so undecidable
 - That is, although there is a TM for \overline{L}_{d} , the problem defined by \overline{L}_{d} is undecidable (i.e., there is no algorithm for it).
 - The universal language L_u has the *same* property, as proved later.

9.2.3 <u>The Universal Language</u>

Definition ---

The universal language L_u is the set of binary strings, each of which encodes, in the notation of 9.1.2, a pair (M, w), where M is a TM with the binary alphabet, and w is a string in $(0 + 1)^*$, such that w is in L(M).

- It can be shown that there is a TM U, called *universal Turing machine*, which accepts L_u , i.e., $L(U) = L_u$.
 - ♦ For the proof, see the textbook (pp. 387~389). Easy in concept.
 - Essence of proof:
 - Construct a multi-tape TM U to simulate M on w, so that U accepts (M, w) if and only M accepts w.
 - So L_u is an RE language.
 - U is in the TM list mentioned previously.
- Theorem 9.6 ----

 L_u is RE but not recursive.

Proof.

- ♦ To prove the second half ("not recursive") by contradiction.
- We know L_u is RE. Now suppose L_u is recursive.
- By Theorem 9.3, \overline{L}_u is also recursive.
- So we can construct a TM *M* to accept \overline{L}_{w} and then we also can construct a TM *M'* to accept L_{d} (shown next).

- But this is contradictory, because we have know L_d is not RE.
- Therefore, the assumption L_u is recursive is wrong. Done.
- What is left is to show the construction of TM M' to accept L_d.
- The construction of M' is illustrated in Fig. 9.5 (Fig. 9.6 in the textbook) and described in detail as follows, which is based on the concept of *problem reduction* mentioned in the last chapter --- *reduction* of L_d to \overline{L}_u .
- Let *M* be the TM such that $L(M) = \overline{L}_u$.
- As shown in Fig. 9.6, we modify M into M' such that it accepts L_d as follows.
 - * Note that each input into M is a pair (M_i, w_i) where M_i is the code of a TM M_i and w_i is a binary input string into M_i .
 - * Also, note that each input into M' is the code of a TM because M' accept L_d .
 - Given input binary string w, M' changes it to w111w which means the pair (M'', w), where M'' is the TM encoded by w. This can be done by a TM called "copy" as shown in Fig. 9.6.
 - If w into M' is w_i representing M_i in the TM list, then the input to the hypothetical algorithm M for \overline{L}_u is (M_i, w_i) . Also, since M accepts \overline{L}_u , this means that M accepts if and only if M_i does not accept w_i . This in turn means M' accepts if and only if M_i does not accept w_i .
 - In other words, M' accepts w if and only if w is in L_d .
 - That is, we have TM M' which accepts L_d , but this is impossible because L_d is not an *RE language*. Contradiction!

Fig. 9.5 A TM M' to accept L_d (Fig 9.6 in the textbook).