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9.0 Introduction 
 

 Concepts to be taught --- 

 We will prove the undecidability of several problems formally: 

 Does a TM accept (the code for) itself as input? 

 Does a TM accept a certain input? 

 Actually all nontrivial problems about the language accepted by a TM are undecidable. 

 

 

9.1 A Language That Is Not RE 
 

 Review of definition --- 

 An algorithm is a procedure which always halts. 

 A language L is recursive enumerable (RE) if L = L(M) for some TM M. 

 A language L is recursive if L = L(M) for some TM M which always halts, regardless of 

whether or not it accepts (i.e., halts both when accepting and when rejecting). 

 

 Goal of this study --- 

 Want to prove undecidable the language of pairs (M, w) where 

 M is a TM (suitably coded in binary) with alphabet {0, 1}; 

 w is a string of 0’s and 1’s; 

 M accepts input w. 

 

 If this problem is undecidable, then those with general alphabets re also undecidable. 

 

 Steps to achieve the above goal in the 1
st
 stage (the 2

nd
 stage is in the next section) --- 

 Coding the TM into a binary string. 

 Treating any binary string as a TM. 

 Regarding a non-well-formed string as a TM with no move. 

 Setting up a language Ld (called diagonalization language) consisting of all strings w 

such that the TM represented by w does not accept the input w. 

 

 Language Ld (called diagonalization language) --- 

 Ld = {w|w not accepted by the TM represented by w} 

 w  Ld means the illustration of Fig. 9.1. 

 

 

 
Fig. 8.1 A 

 

 Properties of the diagonalization language Ld --- 

 It can be proved that there is no TM which can accept Ld (later in this chapter) !!! 

 Showing that no TM can accept a language is stronger than showing that it is 

undecidable (i.e., it has no algorithm or has no TM that always halts). 

 Ld plays the same role as the program H2 in Section 8.1.2 of the last chapter (with a 

TM M 

represented 

by w 

w No! (not accepted) 
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self-contradiction property). 

 

9.1.1 Enumerating the Binary Numbers 

 We want to assign integers to binary strings in the following way: 

if w is a binary string, then regard 1w as an integer i, and call w the ith string, denoted 

as wi. 

 For example, (1w)2 = i10  w = ith string = wi. 

 

9.1.2 Codes for the TM’s 

 We want to define the ith TM Mi after encoding the 7-tuple of the TM and assigning 

integers to the states, tape symbols, and directions L and R in the following way: 

 States are numbered as q1, q2, …, qr, with q1 as the start state, and q2 the only accepting 

state. 

 Tape symbols are numbered as X1, X2, …, Xs, with X1 = 0, X2 = 1, X3 = B. 

 L as D1, and R as D2. 

 Each transition rule (qi, Xj) = (qk, Xl, Dm) is represented by integers i, j, k, l, and m, and 

is coded as C = 0i10j10k10l10m with 1’s as separators (a unary number representation). 

(Note that i, j, k, l, and m are all at least 1, so there will be no occurrence of two or more 

consecutive 1’s in the code.) 

 

 A complete code for a TM M consists of all the codes for the transitions, in a certain order, 

separated by pairs of 1’s: 

 

code of M = C111C211…Cn-111Cn 

 

where each Ci is the code for a transition. 

 

 Code for (M, w) is that of M, followed by 111 and then w, i.e., 

 

code of (M, w) = C111C211…Cn-111Cn111w 

 

 Example 9.1 --- 

 Given a TM M = ({q1, q2, q3}, {0, 1}, {0, 1, B}, , q1, B, {q2}) where  is such that 



(q1, 1) = (q3, 0, R), (q3, 0) = (q1, 1, R), (q3, 1) = (q2, 0, R), (q3, B) = (q3, 1, L), 

 

then 

 the codes for the transition rules are 

 

0
1
10

2
10

3
10

1
10

2
, 0

3
10

1
10

1
10

2
10

2
, … 

 

 and the code for M is  

01102103101102110310110110210211… 

 

9.1.3 The Diagonalization Language 

 The previous coding of TM’s allows a concrete notion of Mi, the ith TM, which is TM M 

whose code is wi, the ith binary string. 
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 If wi is not a valid code of a TM, we take Mi to be the TM with one state and no transition. 

That is, a TM with an invalid code wi will halt immediately on any input. 

 

 Therefore, we have a list of TM’s in a certain order and there is a 1-to-1 mapping between 

TM’s Mi and wi. 

 

 Definition --- 

The diagonalization language Ld is the set of strings wi such that wi is not in L(Mi). 

 That is, Ld consists of all strings w such that the TM M, whose code is w, does not 

accept w when w is given as input. 

 By notations, we have Ld = {wi | wi L(Mi)}. 

 

 Why Ld is called a “diagonalization language”? ---  

 See Fig. 9.1 at first. 

 

 Meaning of the diagonal values: 

 “1” means that Mi accepts wi; 

 “0” means that Mi does not accept wi. 

 

 The ith row is the characteristic vector for language L(Mi): 

 A “1” in the row indicates that the corresponding string is in the language. 

 

 

wi 
 

 

 

 

 

Mi 
 

 

 

 

 

 

 

Fig. 9.1 Illustration of the diagonalization language. 

 

 

 To construct Ld, just complement the diagonal to collect the corresponding strings; all 

the resulting 1’s in the diagonal means that the corresponding Mi does not accept wi. 

 This is called the technique of diagonalization, useful for proving that “Ld is not RE.”  

 Because the complement of the diagonal is 1000… in the previous figure, so Ld 

contains w1 =  (from 1), but does not contain w2, w3, w4, … 

 

 The complemented diagonal disagrees in some column with every row of the table of 

Fig. 9.1; therefore it (any row) cannot be the characteristic vector of any TM! 

(對每一列 row，至少在某一行 column 不會與原來的列一致！) 

 11 22 33 44 .. .. .. 

11 00 11 11 00 .. .. .. 

22 11 11 00 00 .. .. .. 

33 00 00 11 11 .. .. .. 

44 00 11 00 11 .. .. .. 

.. .. .. .. .. .. .. .. 

.. .. .. .. .. .. ..   

.. .. .. .. .. .. .. .. 
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 A non-zero element at location (i, i) in the complemented diagonal means that Mi does 

not accept the corresponding wi.  (statement A) 

 

 

9.1.4 Proof that Ld is not RE 

 Theorem 9.2 (“Tragedy Theorem 悲劇定理”) --- 

Ld is not an RE language. That is, no TM accepts Ld. 

Proof. Prove by contradiction. 

 Let Ld be L(M) for some TM M. Then M is one of the TM’s in the TM list mentioned 

previously, say Mi. 

 

 Now, check if the corresponding wi is in Ld. 

 If wiLd, then Mi accepts wi (because L(Mi) = Ld). But this is impossible because by 

definition of Ld, wi cannot be accepted by Mi. Contradiction. 

 

 If wiLd, then wi is not accepted by Mi because Ld = L(Mi). This in turns means wiLd 

by the definition of Ld (see statement (A) above). Contradiction again. 

 

 Neither case holds, so the assumption that Ld = L(M) for some TM M must be false. 

That is, no TM accepts Ld. Done. 

 

 

 

9.2 An Undecidable Problem That Is RE 
 

 Concepts to be taught: 

 RE languages are accepted (recognized) by TM’s. 

 RE languages may be grouped into two classes: 

 Class 1 (recursive language) --- each language L in this class has a TM (thought as 

an algorithm) which not only accepts strings of L, but also tells us what strings are 

not in L by halting. 

 Class 2 (RE but not recursive) --- each language L in this class has a TM (not thought 

as an algorithm) which accepts strings of L, but may not halt when a given input 

string is not in L. 

 

9.2.1 Recursive Languages 

 Definition --- 

A language L is recursive if L = L(M) for some TM M such that: 

(1) if wL, then M accepts (and therefore halts); 

(2) if wL, then M eventually halts, although it never enters an accepting state (i.e., it 

“rejects”). 

 

 A TM of this type corresponds to the formal notion of algorithm. 

 

 

 Definition --- 
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A given language L, regarded as a problem, is called decidable if L is a recursive 

language; and undecidable if not. 

 The existence or nonexistence of an algorithm to solve a problem (i.e., the problem is 

decidable or undecidable) is more important than the existence or nonexistence of a 

TM to solve the problem. 

 Conceptually, we have following equivalent statements: 

decidable problem  recursive language L  there is a TM M which halts with L as 

input. 

 

 

 Relationships among three classes of languages ---  

 See Fig. 9.2 for the relationships among the following three classes of languages: 

 Recursive language 

 Recursive enumerable language (RE language) 

 Non-RE language 

 

 In Fig. 9.2, only Ld is studied so far; others will be investigated in this chapter. 

 All the relationships will be proved in this chapter, too. 
 

 

 
Fig. 9.2 Relationships among three classes of languages. 

 

 

 Lu, the universal language, will soon be defined and proved not to be recursive, though 

it is an RE language. 
 

 

9.2.2 Complements of Recursive and RE Languages 

 A powerful tool of proving is language complementation. 

 We will show that the recursive language is closed under complementation. 

 

 Theorem 9.3 --- 

If a language L is recursive, so isL. 

 

 

Recursive 

RE but not 
Recursive Not RE 

Ld 

LuLd Lne Le 

Lu 
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Proof. 

 Prove by constructing a halting TM to acceptL. 

 Let TM M accepts L, which always halts. 

 Construct a new TM M  for M as illustrated by Fig. 9.3. 

 

 

 

Fig. 9.3 A TM M  to acceptL. 

 

 

 The accepting states of M are made non-accepting with no transitions, i.e., in these 

states M will halt without accepting. 

 M  has a new accepting state r and no transition from r. 

 For each combination of a non-accepting state of M and a tape symbol of M such that 

M has no transition (i.e., such that M halts without accepting), add a transition to the 

accepting state r. 

 

 Then if M halts, so is M , and M  accepts strings not accepted by M. 

 

 

 Theorem 9.4 --- 

If a language L and its complement are RE, then L is recursive, and so isL. 

Proof.  

 Easy by Fig. 9.4 where L = L(M1) and L  = L(M2) and the new machine is M. 

 

 

 
Fig. 9.4 A TM M to acceptL. 

 

 If w is in L, then M1 will eventually accept. If so, M will accept and halt. 

 If w is not in L, then it is in L , so that M2 will eventually accept. If so, M will halt 

without accepting. 

 Therefore, for all input w, M halts and L(M) = L, that is, L is recursive. 

 By Theorem 9.3, L  is recursive. Done. 

 

 

M 
w  

Accept 

Reject 

Accept 

Reject 

 
M   

M1 

w 

Accept Accept 

Reject M2 
Accept 

M   
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 Discussions ---  

 Of the 9 possibilities of placing L and L  in Fig. 9.2, only the following 4 are valid by 

Theorems 9.3 and 9.4: 

 Both L and L  are recursive (both in the inner ring of Fig. 9.2). 

 Neither L nor L  is RE. (both in the outer ring). 

 L is RE but not recursive, and L  is not in RE (one in the middle ring, and the other 

in the outer ring), like Lu and L u in Fig. 9.2. 

 L  is RE but not recursive, and L is not in RE (a swap of above), like L d and Ld, and 

Lne and Le in Fig. 9.2. 

 

 Example 9.5 --- 

 Ld is not RE as shown before. 

 So, L d cannot be recursive (not in the four cases above). (Otherwise, Ld is 

recursive by Theorem 9.4 and so is RE too by definition, contradiction!) 

 It can be shown that L d is RE (omitted), just like the way we show the 

universal language Lu to be RE (shown next). 

 Note that L d is the set of strings wi such that the corresponding Mi accepts wi. 

 In conclusion, L d is RE but not recursive and so undecidable  

 That is, although there is a TM for L d, the problem defined by L d is undecidable (i.e., 

there is no algorithm for it). 

 The universal language Lu has the same property, as proved later. 

 

 
9.2.3 The Universal Language 

 Definition --- 

The universal language Lu is the set of binary strings, each of which encodes, in the 

notation of 9.1.2, a pair (M, w), where M is a TM with the binary alphabet, and w is a 

string in (0 + 1)*, such that w is in L(M). 

 It can be shown that there is a TM U, called universal Turing machine, which accepts Lu, 

i.e., L(U) = Lu. 

 For the proof, see the textbook (pp. 387~389). Easy in concept. 

 Essence of proof: 

 Construct a multi-tape TM U to simulate M on w, so that U accepts (M, w) if and 

only M accepts w. 

 So Lu is an RE language. 

 U is in the TM list mentioned previously. 

 

 Theorem 9.6 --- 

Lu is RE but not recursive. 

Proof. 

 To prove the second half (“not recursive”) by contradiction. 

 We know Lu is RE. Now suppose Lu is recursive.  

 By Theorem 9.3, L u is also recursive. 

 So we can construct a TM M to accept L u, and then we also can construct a TM M' to 

accept Ld (shown next). 
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 But this is contradictory, because we have know Ld is not RE. 

 Therefore, the assumption Lu is recursive is wrong. Done. 

 What is left is to show the construction of TM M' to accept Ld. 

 

 The construction of M' is illustrated in Fig. 9.5 (Fig. 9.6 in the textbook) and described 

in detail as follows, which is based on the concept of problem reduction mentioned in 

the last chapter --- reduction of Ld to L u. 

 Let M be the TM such that L(M) = L u. 

 As shown in Fig. 9.6, we modify M into M' such that it accepts Ld as follows. 

 Note that each input into M is a pair (Mi, wi) where Mi is the code of a TM Mi and 

wi is a binary input string into Mi. 

 Also, note that each input into M' is the code of a TM because M' accept Ld. 

 

 Given input binary string w, M' changes it to w111w which means the pair (M'', w), 

where M'' is the TM encoded by w. This can be done by a TM called “copy” as 

shown in Fig. 9.6. 

 If w into M' is wi representing Mi in the TM list, then the input to the hypothetical 

algorithm M for L u is (Mi, wi). Also, since M accepts L u, this means that M accepts 

if and only if Mi does not accept wi. This in turn means M' accepts if and only if Mi 

does not accept wi. 

 In other words, M' accepts w if and only if w is in Ld. 

 That is, we have TM M' which accepts Ld, but this is impossible because Ld is not an 

RE language. Contradiction! 

 

 

 
Fig. 9.5 A TM M' to accept Ld (Fig 9.6 in the textbook). 

 

 

Hypothetical 

algorithm M 

forLu 

Accept 

Reject 

Accept 

Reject 

Copy w111w 

M’ for Ld 

w 


