Chapter 9

Undecidability

(part a)
(2015/12/17)

Island Castle, Lithuania 2002

Outline

9.0 Introduction
9.1 A Language That Is Not Recursively Enumerable
9.2 An Undecidable Problem That Is RE
9.3 Undecidable Problems about TM's
9.4 Post Correspondence Problem
9.5 Other Undecidable Problems

9.0 Introduction

■ Concepts to be taught ---

- We will prove the undecidability of several problems formally:
- Does a TM accept (the code for) itself as input?
- Does a TM accept a certain input?
- Actually all nontrivial problems about the language accepted by a TM are undecidable.

9.1 A Language That Is Not RE

■ Review of definition ---

- An algorithm is a procedure which always halts.
- A language L is recursive enumerable (RE) if $L=L(M)$ for some TM M.
- A language L is recursive if $L=L(M)$ for some TM M which always halts, regardless of whether or not it accepts (i.e., halts both when accepting and when rejecting).

■ Goal of this study ---

- Want to prove undecidable the language of pairs (M, w) where
- M is a TM (suitably coded in binary) with alphabet $\{0,1\}$;
- w is a string of 0 's and 1 's;
- M accepts input w.
- If this problem is undecidable, then those with general alphabets re also undecidable.

■ Steps to achieve the above goal in the $1^{\text {st }}$ stage (the $2^{\text {nd }}$ stage is in the next section) ---

- Coding the TM into a binary string.
- Treating any binary string as a TM.
- Regarding a non-well-formed string as a TM with no move.
- Setting up a language L_{d} (called diagonalization language) consisting of all strings w such that the TM represented by w does not accept the input w.

■ Language L_{d} (called diagonalization language) ---

- $L_{d}=\{w \mid w$ not accepted by the TM represented by $w\}$
- $w \in L_{d}$ means the illustration of Fig. 9.1.

Fig. 8.1 A
■ Properties of the diagonalization language L_{d}---

- It can be proved that there is no TM which can accept L_{d} (later in this chapter) !!!
- Showing that no TM can accept a language is stronger than showing that it is undecidable (i.e., it has no algorithm or has no TM that always halts).
- L_{d} plays the same role as the program H_{2} in Section 8.1.2 of the last chapter (with a
self-contradiction property).

9.1.1 Enumerating the Binary Numbers

We want to assign integers to binary strings in the following way:
if w is a binary string, then regard $1 w$ as an integer i, and call w the i th string, denoted as w_{i}.

- For example, $(1 w)_{2}=i_{10} \Rightarrow w=i$ th string $=w_{i}$.

9.1.2 Codes for the TM's

■ We want to define the i th TM M_{i} after encoding the 7 -tuple of the TM and assigning integers to the states, tape symbols, and directions L and R in the following way:

- States are numbered as $q_{1}, q_{2}, \ldots, q_{r}$, with q_{1} as the start state, and q_{2} the only accepting state.
- Tape symbols are numbered as $X_{1}, X_{2}, \ldots, X_{s}$, with $X_{1}=0, X_{2}=1, X_{3}=B$.
- L as D_{1}, and R as D_{2}.
- Each transition rule $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ is represented by integers i, j, k, l, and m, and is coded as $C=0^{i} 10^{j} 10^{k} 10^{l} 10^{m}$ with 1^{\prime} 's as separators (a unary number representation). (Note that i, j, k, l, and m are all at least 1 , so there will be no occurrence of two or more consecutive 1 's in the code.)

■ A complete code for a TM M consists of all the codes for the transitions, in a certain order, separated by pairs of 1's:

$$
\text { code of } \boldsymbol{M}=C_{1} 11 C_{2} 11 \ldots C_{n-1} 11 C_{n}
$$

where each $C i$ is the code for a transition.
■ Code for (M, w) is that of M, followed by 111 and then w, i.e.,

$$
\text { code of }(\boldsymbol{M}, \boldsymbol{w})=C_{1} 11 C_{2} 11 \ldots C_{n-1} 11 C_{n} 111 w
$$

■ Example 9.1 ---
■ Given a TM $M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0,1\},\{0,1, B\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right)$ where δ is such that

$$
\delta(q 1,1)=\left(q_{3}, 0, R\right), \delta\left(q_{3}, 0\right)=\left(q_{1}, 1, R\right), \delta\left(q_{3}, 1\right)=\left(q_{2}, 0, R\right), \delta\left(q_{3}, B\right)=\left(q_{3}, 1, L\right),
$$

then
the codes for the transition rules are

$$
0^{1} 10^{2} 10^{3} 10^{1} 10^{2}, 0^{3} 10^{1} 10^{1} 10^{2} 10^{2}, \ldots
$$

- and the code for M is

$$
0^{1} 10^{2} 10^{3} 10^{1} 10^{2} \underline{11} 0^{3} 10^{1} 10^{1} 10^{2} 10^{2} \underline{11} \ldots
$$

9.1.3 The Diagonalization Language

- The previous coding of TM's allows a concrete notion of M_{i}, the i th TM, which is TM M whose code is w_{i}, the i th binary string.
－If w_{i} is not a valid code of a TM，we take M_{i} to be the TM with one state and no transition． That is，a TM with an invalid code w_{i} will halt immediately on any input．
－Therefore，we have a list of TM＇s in a certain order and there is a 1－to－1 mapping between TM＇s M_{i} and w_{i} ．

■ Definition－－－

The diagonalization language L_{d} is the set of strings w_{i} such that w_{i} is not in $L(M i)$ ．
－That is，L_{d} consists of all strings w such that the TM M ，whose code is w ，does not accept w when w is given as input．
－By notations，we have $L_{d}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$ ．
■ Why L_{d} is called a＂diagonalization language＂？－－－
－See Fig． 9.1 at first．
－Meaning of the diagonal values：
－＂ 1 ＂means that M_{i} accepts w_{i} ；
－＂0＂means that M_{i} does not accept w_{i} ．
－The i th row is the characteristic vector for language $L\left(M_{i}\right)$ ：
－A＂ 1 ＂in the row indicates that the corresponding string is in the language．

Fig．9．1 Illustration of the diagonalization language．
－To construct L_{d} ，just complement the diagonal to collect the corresponding strings；all the resulting 1 ＇s in the diagonal means that the corresponding M_{i} does not accept w_{i} ．
－This is called the technique of diagonalization，useful for proving that＂$L d$ is not RE．＂
－Because the complement of the diagonal is $1000 \ldots$ in the previous figure，so L_{d} contains $w_{1}=\varepsilon$（from 18），but does not contain $w_{2}, w_{3}, w_{4}, \ldots$
－The complemented diagonal disagrees in some column with every row of the table of Fig．9．1；therefore it（any row）cannot be the characteristic vector of any TM！ （對每一列 row，至少在某一行 column 不會與原來的列一致！）

- A non－zero element at location (i, i) in the complemented diagonal means that M_{i} does not accept the corresponding w_{i} ．
（statement A）

9．1．4 Proof that L_{d} is not RE

■ Theorem 9.2 （＂Tragedy Theorem 悲劇定理＂）－－－
L_{d} is not an RE language．That is，no TM accepts L_{d} ．

Proof．Prove by contradiction．

－Let L_{d} be $L(M)$ for some TM M ．Then M is one of the TM＇s in the TM list mentioned previously，say M_{i} ．
－Now，check if the corresponding w_{i} is in L_{d} ．
－If $w_{i} \in L_{d}$ ，then M_{i} accepts w_{i}（because $L\left(M_{i}\right)=L_{d}$ ）．But this is impossible because by definition of L_{d}, w_{i} cannot be accepted by M_{i} ．Contradiction．
－If $w_{i} \notin L_{d}$ ，then w_{i} is not accepted by M_{i} because $L_{d}=L\left(M_{i}\right)$ ．This in turns means $w_{i} \in L_{d}$ by the definition of L_{d}（see statement（A）above）．Contradiction again．
－Neither case holds，so the assumption that $L_{d}=L(M)$ for some TM M must be false． That is，no TM accepts L_{d} ．Done．

9．2 An Undecidable Problem That Is RE

－Concepts to be taught：
－RE languages are accepted（recognized）by TM＇s．
－RE languages may be grouped into two classes：
－Class 1 （recursive language）－－－each language L in this class has a TM（thought as an algorithm）which not only accepts strings of L ，but also tells us what strings are not in L by halting．
－Class 2 （RE but not recursive）－－－each language L in this class has a TM（not thought as an algorithm）which accepts strings of L ，but may not halt when a given input string is not in L ．

9．2．1 Recursive Languages

－Definition－－－

A language L is recursive if $L=L(M)$ for some TM M such that：
（1）if $w \in L$ ，then M accepts（and therefore halts）；
（2）if $w \notin L$ ，then M eventually halts，although it never enters an accepting state（i．e．，it ＂rejects＂）．
－A TM of this type corresponds to the formal notion of algorithm．

■ Definition－－－

A given language L, regarded as a problem, is called decidable if L is a recursive language; and undecidable if not.

- The existence or nonexistence of an algorithm to solve a problem (i.e., the problem is decidable or undecidable) is more important than the existence or nonexistence of a TM to solve the problem.
- Conceptually, we have following equivalent statements:
decidable problem \Leftrightarrow recursive language $L \Leftrightarrow$ there is a TM M which halts with L as input.

- Relationships among three classes of languages ---

- See Fig. 9.2 for the relationships among the following three classes of languages:
- Recursive language
- Recursive enumerable language (RE language)
- Non-RE language
- In Fig. 9.2, only L_{d} is studied so far; others will be investigated in this chapter.
- All the relationships will be proved in this chapter, too.

Fig. 9.2 Relationships among three classes of languages.

- L_{u}, the universal language, will soon be defined and proved not to be recursive, though it is an RE language.

9.2.2 Complements of Recursive and RE Languages

- A powerful tool of proving is language complementation.
- We will show that the recursive language is closed under complementation.

■ Theorem 9.3 ---
If a language L is recursive, so is \bar{L}.

Proof.

- Prove by constructing a halting TM to accept \bar{L}.
- Let TM M accepts L, which always halts.
- Construct a new TM \bar{M} for M as illustrated by Fig. 9.3.

Fig. 9.3 A TM \bar{M} to accept \bar{L}.

- The accepting states of M are made non-accepting with no transitions, i.e., in these states M will halt without accepting.
- \bar{M} has a new accepting state r and no transition from r.
- For each combination of a non-accepting state of M and a tape symbol of M such that M has no transition (i.e., such that M halts without accepting), add a transition to the accepting state r.
- Then if M halts, so is \bar{M}, and \bar{M} accepts strings not accepted by M.

- Theorem 9.4 ---

If a language L and its complement are RE, then L is recursive, and so is \bar{L}.

Proof.

- Easy by Fig. 9.4 where $L=L\left(M_{1}\right)$ and $\bar{L}=L\left(M_{2}\right)$ and the new machine is M.

Fig. 9.4 A TM M to accept \bar{L}.

- If w is in L, then M_{1} will eventually accept. If so, M will accept and halt.
- If w is not in L, then it is in \bar{L}, so that M_{2} will eventually accept. If so, M will halt without accepting.
- Therefore, for all input w, M halts and $L(M)=L$, that is, L is recursive.
- By Theorem 9.3, \bar{L} is recursive. Done.

■ Discussions ---

- Of the 9 possibilities of placing L and \bar{L} in Fig. 9.2, only the following 4 are valid by Theorems 9.3 and 9.4:
- Both L and \bar{L} are recursive (both in the inner ring of Fig. 9.2).
- Neither L nor \bar{L} is RE. (both in the outer ring).
- L is RE but not recursive, and \bar{L} is not in RE (one in the middle ring, and the other in the outer ring), like L_{u} and \bar{L}_{u} in Fig. 9.2.
- \bar{L} is RE but not recursive, and L is not in RE (a swap of above), like \bar{L}_{d} and L_{d}, and $L_{n e}$ and L_{e} in Fig. 9.2.

■ Example 9.5 ---

- L_{d} is not RE as shown before.
- So, \bar{L}_{d} cannot be recursive (not in the four cases above). (Otherwise, L_{d} is recursive by Theorem 9.4 and so is RE too by definition, contradiction!)
- It can be shown that \bar{L}_{d} is RE (omitted), just like the way we show the universal language L_{u} to be RE (shown next).
- Note that \bar{L}_{d} is the set of strings w_{i} such that the corresponding M_{i} accepts w_{i}.
- In conclusion, \bar{L}_{d} is RE but not recursive and so undecidable
- That is, although there is a TM for \bar{L}_{d}, the problem defined by \bar{L}_{d} is undecidable (i.e., there is no algorithm for it).
- The universal language L_{u} has the same property, as proved later.

9.2.3 The Universal Language

■ Definition ---

The universal language L_{u} is the set of binary strings, each of which encodes, in the notation of 9.1.2, a pair (M, w), where M is a TM with the binary alphabet, and w is a string in $(0+1)^{*}$, such that w is in $L(M)$.

- It can be shown that there is a TM U, called universal Turing machine, which accepts L_{u}, i.e., $L(U)=L_{u}$.
- For the proof, see the textbook (pp. 387~389). Easy in concept.
- Essence of proof:
- Construct a multi-tape TM U to simulate M on w, so that U accepts (M, w) if and only M accepts w.
- So L_{u} is an RE language.
- U is in the TM list mentioned previously.

■ Theorem 9.6 ---

L_{u} is RE but not recursive.
Proof.

- To prove the second half("not recursive") by contradiction.
- We know L_{u} is RE. Now suppose L_{u} is recursive.
- By Theorem 9.3, \bar{L}_{u} is also recursive.
- So we can construct a TM M to accept \bar{L}_{w} and then we also can construct a TM M^{\prime} to accept L_{d} (shown next).
- But this is contradictory, because we have know L_{d} is not RE.
- Therefore, the assumption L_{u} is recursive is wrong. Done.
- What is left is to show the construction of TM M^{\prime} to accept $L_{d \underline{d}}$.
- The construction of M^{\prime} is illustrated in Fig. 9.5 (Fig. 9.6 in the textbook) and described in detail as follows, which is based on the concept of problem reduction mentioned in the last chapter --- reduction of L_{d} to \bar{L}_{u}.
- Let M be the TM such that $L(M)=\bar{L}_{u}$.
- As shown in Fig. 9.6, we modify M into M^{\prime} such that it accepts L_{d} as follows.
* Note that each input into M is a pair $\left(M_{i}, w_{i}\right)$ where M_{i} is the code of a TM M_{i} and w_{i} is a binary input string into M_{i}.
* Also, note that each input into M^{\prime} is the code of a TM because M^{\prime} accept L_{d}.
- Given input binary string w, M^{\prime} changes it to $w 111 w$ which means the pair $\left(M^{\prime \prime}, w\right)$, where $M^{\prime \prime}$ is the TM encoded by w. This can be done by a TM called "copy" as shown in Fig. 9.6.
- If w into M^{\prime} is w_{i} representing M_{i} in the TM list, then the input to the hypothetical algorithm M for \bar{L}_{u} is $\left(M_{i}, w_{i}\right)$. Also, since M accepts \bar{L}_{u}, this means that M accepts if and only if M_{i} does not accept w_{i}. This in turn means M^{\prime} accepts if and only if M_{i} does not accept w_{i}.
- In other words, M^{\prime} accepts w if and only if w is in L_{d}.
- That is, we have TM M^{\prime} which accepts L_{d}, but this is impossible because L_{d} is not an RE language. Contradiction!

Fig. 9.5 A TM M^{\prime} to accept L_{d} (Fig 9.6 in the textbook).

