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8.0 Introduction 
 

 Concepts to be taught --- 

 Studying questions about what languages can be defined by any computational device. 

 There are specific problems that cannot be solved by computers! --- undecidable! 

 Studying the Turing machine which seems simple, but can be recognized as an accurate 

model for any physical computing device. 

 

 

8.1 Problems That Computers Cannot Solve 
 

 Purpose of this section --- 

To provide an informal proof (C-programming-based brief proof) of a specific 

problem that computers cannot solve. 

 

 The problem is: 

Whether the first thing that a C program prints is 

hello, world. 

 We will give the intuition behind the formal proof. 

 

8.1.1 Programs that print “Hello, World” 

 A C program that prints “Hello, World” is: 

 
main() 
{ 

print(“hello, world\n”); 
} 

 

 Define a “hello, world problem” to be: 

Determine whether a given C program, with a given input, prints hello, world as 

the first 12 characters in what it prints. 

 

 Describe the problem alternatively using symbols: 

Is there a program H that could examine any program P and any input I for P, and 

tell whether P, run with I as its input, would print hello, world?  

(A program H means an algorithm in concept here.) 

 The answer is: undecidable! 

 That is, there exists no such program H. 

 We can prove this by contradiction next. 

 

8.1.2 Hypothetical “Hello, World” Tester 

 We want to prove that no program H, called hypothetical “Hello, World” tester, as 

mentioned above exists by contradiction using the following steps. 
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 Step 1 --- assume H exists in a form as shown in Fig. 8.1 (Fig 8.3 in the textbook). 

 

 

Fig. 8.1 A hypothetical “Hello, World” tester. 

 

 Step 2 --- transform H into another form H2 in a simple way which can be done by C 

programs. 

 Step 3 --- prove that H2 does not exist and so that H does not exist, either. 

 

 Implementation of Step 2 above --- 

(1) Transform H to H1 in a way as illustrated by Fig. 8.2 (Fig. 8.4 in the textbook). 

 

 

 

Fig. 8.2 A transformed “hello-world tester” H1. 

 

 
(2) Transform H1 to H2 in a way as illustrated by Fig. 8.3 (Fig. 8.5 in the textbook). 

 

 

 

Fig. 8.2 A second transformed “hello-world tester” H2. 

 

 
 The function of H2 constructed in Step 2 is --- 

 

given any program P as input, 

 

if P prints hello, world as first output, then H2 makes output yes; 

if P does not prints hello, world as first output, then H2 prints hello, world. 

 

 Implementation of Step 3 above (proving H2 does not exist) --- 

 Let P for H2 in Fig. 8.2 (last figure) be H2 itself, as illustrated in Fig. 8.3 (Fig. 8.6 in 

the textbook). 

Hello-world  
tester  

H 

I 

P 

yes   if P, with input I, prints “hello world” 

 no   if not. 

 

Hello-world  
tester  

H1 

I 

P 

yes 

hello, world 
(print ‘hello, world’ instead of ‘no’) 

Figure 8.4 

 

Hello-world  
tester  

H2 

P 

yes 

hello, world 

Figure 8.5 

UUssee  PP  bbootthh  aass  iinnppuutt  aanndd  pprrooggrraamm!!  
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Fig. 8.3 A second transformed “hello-world tester” H2 taking itself as input. 

 

 

 Now, we have the following reasoning (assuming the term “box” means  

“Hello-world tester” --- 

(1) If  

the box H2, given itself as input, makes output yes, 

 

then according to the above-described function of H2, this means that  

 

the box H2, given itself as input, prints hello, world as the first output. 

 

But this is contradictory because we just suppose that  

 

the box H2, given itself as input, makes output yes. 
 

(2) The above contradiction means the other alternative must be true since there are 

only two choices, that is --- 

 

the box H2, given itself as input, prints hello, world as the first output. 

 

But according to the above-described function of H2, this means that 

 

such H2, when taken as input to the box H2 (itself), will make the box H2 to make 

output yes. 
 

This is a contradiction again because we just say that 

 

the box H2, given itself as input, prints hello, world as the first output. 

 

 Since both cases lead to contradiction, we conclude that the assumption that H2 exists 

is wrong by the principle of contradiction for proof. 

 

 H2 does not exist  H1 does not exist (otherwise, H2 must exist) 

 H does not exist (otherwise, H1 must exist), done! 

(“” means “imply” here) 

 

 The above self-contradiction technique, similar to the diagonalization technique (to be 

introduced later), was used by Alan Turing for proving undecidable problems. 

 

8.1.3 Reducing One Problem to Another 

 

Hello-world  
tester  

H2 

H2 

yes 

hello, world 

 

Figure 8.6 

(H2 Takes H2 as input to itself) 
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 Now we have an undecidable problem, which can be used to prove other undecidable 

problems by a technique of problem reduction. 

 

 That is, if we know P1 is undecidable, then we may reduce P1 to a new problem P2, so 

that we can prove P2 undecidable by contradiction in the following way 

 If P2 is decidable, then P1 is decidable. 

 But P1 is known undecidable. So, contradiction!  

 Consequently, P2 is undecidable. 

 

 An illustration of the above idea is illustrated in Fig. 8.4. 

 

 

 

Fig. 8.4 An illustration of reducing one problem to another. 

 

 

 Example 8.1 --- 

We want to prove a new problem P2 (called calls-foo problem):  

“does program Q, given input y, ever call function foo?” 

to be undecidable. 

 

Solution: 

 Reduce P1: the hello-world problem to P2: the calls-foo problem in the following way: 

 If Q has a function called foo, rename it and all calls to that function  a new 

program Q1 doing the same as Q. (“” means “leading to” here) 

 Add to Q1 a function foo doing nothing & not being called  a new program Q2. 

 Modify Q2 to remember the first 12 characters that it prints, storing them in a global 

array A  a new program Q3. 

 Modify Q3 in such a way that whenever it executes any output statement, it checks A 

to see if it has written 12 characters or more, and if so, whether hello, world are the 

first characters. In that case (i.e., if so), call the new function foo  a new program R 

with input y. 

 

 Now,  

 if Q with input y prints hello, world as its first output, then R will call foo; 

 if Q with input y does not print hello, world, then R will never call foo. 

 That is, program R, with input y, calls foo if and only if program Q, with input y, prints 

hello, world. 

 

 So, if we can decide whether R, with input y, calls foo, then we can decide whether Q, 

 
Construct 

 

P1 
instance 

  P2 
instance 

Decide yes 

no 

Old 
problem 

New 
problem 

iiff  aanndd  oonnllyy  

iiff  
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with input y, prints hello, world. 

 But the latter is impossible as has been proved before, so the former is impossible. 

 

 The above example illustrates how to reduce a problem to another as illustrated in Fig. 

8.4. 

 

 

 

8.2 The Turing Machine 
 

 Concepts to be taught --- 

 The study of decidability provides guidance to programmers about what they might or 

might not be able to accomplish through programming. 

 Previous problems are dealt with programs. But not all problems can be solved by 

programs. 

 We need a simple model to deal with other decision problems (like grammar ambiguity 

problems) 

 The Turing machine is one of such models, whose configuration is easy to describe, but 

whose function is the most versatile: 

all computations done by a modern computer can be done by a Turing machine. 

(a hypothesis which is not proved but believed so far!) 

 

8.2.1 The Quest to Decide All Mathematical Questions --- 

 History --- 

 At the turn of 20th century, D. Hilbert asked: 

 “whether it was possible to find an algorithm for determining the truth or falsehood 

of any mathematical proposition.” 

(in particular, he asked if there was a way to decide whether any formula in the 

1st-order predicate calculus, applied to integer, was true) 

 

 In 1931, K. Gödel published his incompleteness theorem: 

 “A certain formula in the predicate calculus applied to integers could not be neither 

proved nor disproved within the predicate calculus.” 

 The proof technique is diagonalization, resembling the self-contradiction technique 

used previously (invented by Turing). 

 

 Natures of computational model --- 

 Predicate calculus --- declarative 

 Partial-recursive functions --- computational (a programming-language-like notion) 

 Turing machine --- computational (computer-like) 

(invented by Alan Turing several years before true computers were invented) 

 

 Equivalence of maximal computational models --- 

All maximal computational models compute the same functions or recognize the same 

languages, having the same power of computation. 
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 Unprovable Church-Turing hypothesis (or thesis) --- 

 Any general way to compute will allow us to compute only the partial-recursive 

functions (or equivalently, only what the Turing machine or modern-day computers 

can compute). 

 

8.2.2 Notion for the Turing Machine 

 A model for Turing machine --- as shown in Fig. 8.5. 

 

 

Fig. 8.5 A model for the Turing machine. 

 

 

 A move of Turing machine includes --- 

 change state; 

 write a tape symbol in the cell scanned; 

 move the tape head left or right. 

 

 Formal definition --- 

A Turing machine (TM) is a 7-tuple M = (Q, , , , q0, B, F) where 

 Q: a finite set of states of the finite control; 

 : a finite set of input symbols; 

 : a set of tape symbols, with  being a subset of it; 

 : a transition function (q, X) = (p, Y, D) where 

 q: the current state, in Q; 

 X: a tape symbol being scanned; 

 p: the next state, in Q; 

 Y: the tape symbol written on the cell being scanned, used to replace X; 

 D: either L (left) or R (right) telling the move direction of the tape head; 

 q0: the start state, in Q; 

 B: the blank symbol in , not in  (should not be an input symbol); 

 F: the set of final (or accepting) states. 

 A TM is a deterministic automaton with a two- way infinite tape which can be read and 

written in either direction. 

 

 A nature of the Turing machine --- A TM is a deterministic automaton with a two-way 

infinite tape which can be read and written in either direction. 

 

 

8.2.3 Instantaneous Descriptions for Turing Machine 

B X2 

  

FFiinniittee  

ccoonnttrrooll  

B B X1 … Xi Xn B … … … 
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 The instantaneous description (ID) of a TM ---  

The ID of a TM is represented by X1X2…Xi1qXiXi+1…Xn in which 

 q is the current state; 

 the tape head is scanning the ith symbol Xi from the left; 

 X1X2…Xn is the portion of the tape between the leftmost and the rightmost nonblank 

symbols. 

 

 Moves of a TM ---  

 The moves of a TM M are denoted by 
_|
M  or 

_|M . 

 If (q, Xi) = (p, Y, L) (a leftward move), then we write the following to describe the left 

move: 

 

X1X2…Xi1qXiXi+1…Xn 
_|
M  X1X2…Xi2pXi1YXi+1…Xn. 

 

 Right moves are defined similarly. 

 

 

 Example 8.2 ---  

Design a TM to accept the language L = {0n1n | n  1}. 

 The machine may be designed by the following steps. 

 Starting at the left end of the input. 

 Change 0 to an X. 

 Move to the right over 0’s and Y’s until a 1. 

 Change 1 to Y. 

 Move left over Y’s and 0’s until an X. 

 Look for a 0 immediately to the right. 

 If a 0 is found, change it to X and repeat the above process. 

 

 An example illustrating the above steps is as follows (the blue character indicates the 

position of the reading head). 

 

0011  X011  X0Y1  XXY1  …  XXYY  XXYYB  

 

 The TM is defined formally as follows: 

M = ({q
0
~q

4
}, {0, 1}, {0, 1, X, Y, B}, , q

0
, B, {q

4
}) 

 Transition table for  is as shown in Table 8.1. 

 The moves to accept the input string w = 0011 are as follows (use  instead of 
_|M ): 

 

q
0
0011 1 Xq

1
011 2 X0q

1
11 4 Xq

2
0Y1 5 q

2
X0Y1 7 Xq

0
0Y1 1 XXq

1
Y1 3 XXYq

1
1 

4 XXq
2
YY 6 Xq

2
XYY 7 XXq

0
YY 8 XXYq

3
Y 9 XXYYq

3
B 10 XXYYBq

4
B. 

 

where the red numbers on the right sides of the arrows “” in the moves are used to 

specify the used transitions according to Table 8.1. 
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Table 8.1. The transition table for the TM of Example 8.2. 

 symbol 

state 0 1 X Y B 

q0 (q1, X, R)1 - - (q3, Y, R)8 - 

q1 (q1, 0, R)2 (q2, Y, L)4 - (q1, Y, R)3 - 

q2 (q2, 0, L)5 - (q0, X, R)7 (q2, Y, L)6 - 

q3 - - - (q3, Y, R)9 (q4, B, R)10 

q4 - - - - - 

(Note: red numbers are used to distinguish the transitions.) 

 

 

8.2.4 Transition Diagrams for TM’s 

 Notations --- 

 If (q, X) = (p, Y, L), we use label X/Y  on the arc. 

 If (q, X) = (p, Y, R), we use label X/Y  on the arc. 

 

 Example 8.3 ---  

The transition diagram for Example 8.2 is as shown in Fig. 8.6 (Fig. 8.10 in the 

textbook). 

 

 

 

 

 

 

 

 

q4 

q2 q3 

q1 q0 start 

0/0, R 

X/X, R 

0/X, R 

1/Y, L Y/Y, R 

Y/Y, R 

0/0, R 

Y/Y, L 

0/0, L 

Y/Y, R 

 
 

;Fig. 8.6 Transition diagram of Example 8.3. 

 

 

 Example 8.4 ---  

The TM may use as a function-computing machine. No final state is needed. For 

details, see the textbook (pp. 331-334) and later sections. 
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8.2.5 The Language of a TM 

 Definition --- 

Let M = (Q, , , , q0, B, F) be a TM. The language accepted by M is  

L(M) = {w | w
*
 and q0w *_|

M p with pF}. 

 A string w need not be processed to its end; as long as the machine enters a final state, 

w can be accepted. 

 The set of languages accepted by a TM is often called the recursively enumerable 

language or RE language. 

 The term “RE” came from computational formalism that predates the TM. 

 

8.2.6 TM’s and Halting 

 Another notion for accepting strings by TM’s --- acceptance by halting. 

 

 Definition ---  

We say a TM halts if it enters a state q scanning a tape symbol X, and there is no 

move in this situation, i.e., (q, X) is undefined. 

 Acceptance by halting may be used for a TM’s functions other than accepting 

languages like Example 8.4 and Example 8.5. 

 We assume that a TM always halts when it is in an accepting state. 

 It is not always possible to require that a TM halts even when it does not accept. 

 

 Properties of Halting ---  

 Languages with TM’s that do halt eventually, regardless whether or not they accept, are 

called recursive languages (considered in Sec. 9.2.1) 

 TM’s that always halt, regardless of whether or not they accept, are a good model of an 

“algorithm.” 

 So TM’s that always halt can be used for studies of decidability (see Chapter 9). 

 

 

 

8.3 Programming Techniques for TM’s 
 

 Concepts to be taught --- 

 Showing how a TM computes. 

 Indicating that TM’s are as powerful as conventional computers. 

 Even some extended TM’s can be simulated by the original TM. 

 

 Section 8.2 revisited --- 

 TM’s may be used as a computer as well, not just a language recognizer. 

 

 Example 8.4 (not taught in the last section) --- 

Design a TM to compute a function denoted by “ _ ” called monus, or proper 

subtraction defined by 
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m _  n = m  n   if m  n; 

= 0   if m < n. 

 

 Assume input integers m and n are put on the input tape separated by a 1 as 0m10n 

(two unary numbers using 0’s separated by a special symbol 1). 

 The TM is M = ({q0, q1, …, q6}, {0, 1}, {0, 1, B}, , q0, B). 

 No final state is needed. 

 M conducts the following computation steps: 

1. find its leftmost 0 and replaces it by a blank; 

2. move right, and look for a 1; 

3. after finding a 1, move right continuously 

4. after finding a 0, replace it by a 1; 

5. move left until finding a blank, & then move one cell to the right to get a 0; 

6. repeat the above process. 

 The transition table of M is as shown in Table 8.2. 

 

 
Table 8.1. The transition table for the TM of Example 8.4. 

 symbol 

state 0 1 B 

q0 (q1, B, R) (q5, B, R) - 

q1 (q1, 0, R) (q2, 1, R) - 

q2 (q3, 1, L) (q2, 1, R) (q4, B, L) 

q3 (q3, 0, L) (q3, 1, L) (q0, B, R) 

q4 (q4, 0, L) (q4, B, L) (q6, 0, R) 

q5 (q5, B, R) (q5, B, R) (q6, B, R) 

q6 - - - 

 

 

 Moves to compute 2 _ 1 = 1: 

q
0
0010 

1
 Bq

1
010 

3
 B0q

1
10 

4
 B01q

2
0 

5
 B0q

3
11 

9
 Bq

3
011 

8
 q

3
B011 

10
 

Bq
0
011 

1
 BBq

1
11 

4
 BB1q

2
1 

6
 BB11q

2
B 

7
 BB1q

4
1 

12
 BBq

4
1B 

12
 

Bq
4
BBB 

13
 B0q

6
BB  halt! (with one 0 left, correct) 

 

 Moves to compute 1 _ 2 = 0: 

q
0
0100  Bq

1
100  B1q

2
00  Bq

3
110  q

3
B110  Bq

0
110  BBq

5
10  

BBBq
5
0  BBBBq

5
B  BBBBBq

6
  halt! (with no 0 left, correct) 

 

  For details of the following three sections, see the textbook. 

8.3.1 Storage in the State 

8.3.2 Multiple Tracks 

8.3.3 Subroutines 
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8.4 Extensions to the Basic TM 
 

 Extended TM’s to be studied --- 

 Multitape Turing machine 

 Nondeterministic Turing machine 

 

 The above extensions make no increase of the original TM’s power, but make TM’s 

easier to use: 

 Multitape TM --- useful for simulating real computers 

 Nondeterministic TM --- making TM programming easier. 

 

8.4.1 Multitape TM’s 

 A graphic model of a multitape TM --- shown in Fig. 8. 

 

 
Fig. 8.7 A graphic model of a multitape TM. 

 

 

 Function of a multitape TM --- 

 Initially, 

 the input string is placed on the 1st tape; 

 the other tapes hold all blanks; 

 the finite control is in its initial state; 

 the head of the 1st tape is at the left end of the input; 

 the tape heads of all other tapes are at arbitrary positions. 

 

 A move consists of the following steps --- 

 the finite control enters a new state; 

 on each tape, a symbol is written; 

 each tape head moves left or right, or stationary. 

 

8.4.2 Equivalence of One–tape & Multitape TM’s 

 Theorem 8.9 --- 

Every language accepted by a multitape TM is recursive enumerable. 

Finite 

control 

Tape 1 

 

Tape 2 

 

Tape 3 
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(That is, the one-tape TM and the multitape one are equivalent) 

 

Proof: see the textbook. 

 

8.4.3 Running Time and the Many-Tapes-to-One Construction 

 Theorem 8.10 --- 

The time taken by the one-tape TM of Theorem 8.9 to simulate n moves of the 

k-tape TM is O(n2). 

Proof: see the textbook. 

 

 Meaning --- the equivalence of the two types of TM’s is good in the sense that their 

running times are roughly the same within polynomial complexity. 

 

8.4.4 Nondeterministic TM’s 

 Definition ---  

A nondeterministic TM (NTM) has multiple choices of next moves, i.e.,  

(q, X) = {(q1, Y1, D1), (q2, Y2, D2), …, (qk, Yk, Dk)}. 

 

 The NTM is not more ‘powerful’ than a deterministic TM (DTM), as said by the 

following theorem. 

 

 Theorem 8.11 --- 

If MN is NTM, then there is a DTM MD such that L(MN) = L(MD). 

Proof: see the textbook. 

 

 Some properties ---  

 The equivalent DTM constructed for an NTM in the last theorem may take 

exponentially more time than the DTM. 

 It is unknown whether or not this exponential slowdown is necessary! 

 More investigation will be done in Chapter 10. 

 

 

 

8.5 Restricted TM's 

 

 Restricted TM’s to be studied --- 

 The tape is infinite only to the right, and the blank cannot be used as a replacement 

symbol. 

 The tapes are only used as stacks (“stack machines”). 

 The stacks are used as counters only (“counter machines”). 

 

 The above restrictions make no decrease of the original TM’s power, but are useful for 

theorem proving. 

 Undecidability of the TM also applies to these restricted TM’s. 

 

8.5.1 TM’s with Semi-infinite Tapes 
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 Theorem 8.12 --- 

Every language accepted by a TM M2 is also accepted by a TM M1 with the 

following restrictions: 

 M1’s head never moves left of its initial position (so the tape is semi-infinite essential); 

 M1 never writes a blank. 

(i.e., M1 and M2 are equivalent) 

 

Proof. See the textbook. 

 

 

8.5.2 Multistack Machines 

 Concepts ---  

 Multistack machines, which are restricted versions of TM’s, may be regarded as 

extensions of pushdown automata (PDA’s). 

 Actually, a PDA with two stacks has the same computation power as the TM. 

 

 Definition --- 

A k-stack machine is a deterministic PDA with k stacks. 

 See Fig.8.20 for a figure of a multistack TM. 

 

 Theorem 8.13 --- 

If a language is accepted by a TM, then it is accepted by a two-stack machine. 

Proof. See the textbook. 

 

 

8.5.3 Counter Machines 

 There are two ways to think of a counter machine. 

 Way 1: as a multistack machine with each stack replaced by a counter regarded to be 

on a tape of a TM. 

 A counter holds any nonnegative integer. 

 The machine can only distinguish zero and nonzero counters. 

 A move conducts the following operations: 

 changing the state; 

 add or subtract 1 from a counter which cannot becomes negative. 

 

 Way 2: as a restricted multistack machine with each stack replaced by a counter 

implemented on a stack of a PDA. 

 There are only two stack symbols Z0 and X. 

 Z0 is the initial stack symbol, like that of a PDA. 

 Can replace Z0 only by X
i
Z0 for some i  0. 

 Can replace X only by X
i
 for some i  0. 

 

 For an example of a counter machine of the 2nd type, do the exercise (part a) of this 

chapter. 
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8.5.4 The Power of Counter Machines 

 Every language accepted by a one-counter machine is a CFL (see the textbook). 

 Every language accepted by a counter machine (of any number of counters) is recursive 

enumerable (see theorems below). 

 

 Theorem 8.14 --- 

Every recursive enumerable language is accepted by a three-counter machine. 

Proof. See the textbook. 

 
 Theorem 8.15 --- 

Every recursive enumerable language is accepted by a two-counter machine. 

Proof. See the textbook. 

 

 

 

8.6 Turing Machines and Computers 

 
 In this section, it is shown informally: 

 a computer can simulate a TM; 

 a TM can simulate a computer. 

 
 That means: 

  the real computer we use every day is nearly an implementation of the maximal 

computational model under the following assumptions 

 the memory space (including registers, RAM, hard disks, …) is infinite in size; 

 the address space is infinite (not only that defined by 32 bits used in most 

computers today). 

 
 For more details, see the textbook. 

 


