

Chapter 7

Properties of Context-free Languages
(2015/12/02)

Peng Bay Bridge, Pingtung, Taiwan

 2

Outline

7.0 Introduction

7.1 Normal Forms for CFG’s

7.2 The Pumping Lemma for CFL’s

7.3 Closure Properties of CFL’s

7.4 Decision Properties of CFL’s

 3

7.0 Introduction

 Main concepts to be taught in this chapter ---

 CFG’s may be simplified to fit certain special forms, like Chomsky normal form and

Greiback normal form.

 Some, but not all, properties of RL’s are also possessed by the CFL’s.

 Unlike the RL, many computational problems about the CFL cannot be answered.

 That is, there are many undecidable problems about CFL’s.

7.1 Normal Forms for CFG’s

 Concept ---

In this section, we want to prove that

every CFG can be transformed into an equivalent grammar in Chomsky normal form,

after simplifying the CFG in the following ways:

 eliminating useless symbols (which do not appear in any derivation from the start

symbol);

 eliminating -productions (of the form A  );

 eliminating unit productions (of the form A  B);

7.1.1 Eliminating Useless Symbols

 Some definitions ---

 We say symbol X is useful for a grammar G = (V, T, P, S) if there is some derivation of

the form

S

 X


 w

with wT*.

 A symbol is said to be useless if not useful.

 Omitting useless symbols obviously will not change the language generated by the

grammar.

 There are two types of usefulness ---

 X is generating if X

 w;

 X is reachable if S

 X.

 Example 7.1 ---

Eliminate useless symbols in a grammar with the following productions:

S  AB | a

A  b.

 B is not generating, and is so eliminated at first, resulting in S  a, A  b, in which A

is not reachable and so eliminated too, with S  a as the only production left.

 If we eliminate unreachable symbols at first and then non-generating ones, we get the

final result S  a, A  b, which is not what we want!

 So, the order of eliminations is essential: eliminate non-generating symbols at first.

 4

 Theorem 7.2 ---

Let G = (V, T, P, S) be a CFG, and assume that L(G)  , i.e., assume that G

generates at least one string. Let G1 = (V1, T1, P1, S) be the grammar obtained by the

following steps in order:

 eliminate non-generating symbols and all related productions, resulting in grammar

G2;

 eliminate all symbols not reachable in G
2

.

Then, G1 has no useless symbol and L(G1) = L(G).

 For proof, see the textbook.

7.1.2 Computing Generating and Reachable Symbols

 How to compute generating symbols?

 Basis: every terminal symbol is generating.

 Induction: if every symbol in a in A   is generating, then A is generating.

 How to compute reachable symbols?

 Basis: the start symbol S is reachable.

 Induction: if nonterminal A is reachable, then all the symbols in A   are reachable.

(Both algorithms above are proved correct by Theorems 7.4 and 7.6)

7.1.3 Eliminating -Productions

 A definition --- a nonterminal A is said to be nullable if A * .

 A Theorem --- We want to prove that

if a language L has a CFG, then the language L  {} can be generated by a CFG

without -production.

 Two steps for the above proof:

 find “nullable” symbols;

 transform productions into ones which generate no empty string using the nullable

symbols.

 Example 7.8 ---

Given a grammar with productions as follows:

S  AB

A  aAA | 

B  bBB | 

then, we can see the following facts:

 A and B are nullable because they derive empty strings;

 S is also nullable because A and B are nullable.

 How to find nullable symbols systematically?

 Algorithm 1 ---

 5

 Basis: if    is a production, then A is nullable.

 Induction: if all Ci in B  C1C2…Ck are nullable, then B is nullable, too.

 How to transform productions into ones which generate no empty string?

 Algorithm 2 ---

 For each production A  X1X2…Xk, in which m of the k Xi’s are nullable, then

generate accordingly 2
m
 versions of this production where

(1) the nullable Xi’s in all possible combinations are present or absent; and

(2) if A   is in the 2
m
 ones, eliminate it.

 Example 7.8 (continued) ---

 For S  AB, A  aAA | , B  bBB | :

 We know S, A, B are nullable.

 From S  AB, we get S  AB | A | B |  where S   should be eliminated.

 From A  aAA, we get A  aAA | aA | aA | a where the repeated A  aA should be

removed.

 And from B  bBB, similarly we get B  bBB | bB | b.

 Overall result:

S  AB | A | B

A  aAA | aA | a

B  bBB | bB | b

 Theorem 7.7 ---

Algorithm 1 can be used to find all nullable symbols in a given grammar.

 Theorem 7.9 ---

If G1 is constructed from a given grammar G by Algorithm 2, then L(G1) = L(G) 

{}.

(For proofs of the above two theorems, see the textbook.)

7.1.4 Eliminating Unit Productions

 Definition --- a unit production is of the form A  B.

 Unit productions sometimes are useful.

 For example, use of unit productions E  T and T  F removes ambiguity in

the ‘expression grammar,’ resulting in the following unambiguous grammar:

E  T | E + T

T  F | T  F

F  I | (E)

I  a | b | Ia | Ib | I0 | I1

 But unit productions complicate certain proofs.

 A two-step technique to eliminate unit productions without changing the

 6

generated language:

 find all “unit pairs”

 expand productions using unit pairs until all unit productions disappear.

 Definition of unit pair ---

 Basis: (A, A) is a unit pair for any nonterminal.

 Induction: If (A, B) is a unit pair and B  C is a production, then (A, C) is a unit

pair.

 How to find unit pairs?
 Algorithm 3 ---

Follow the definition above.

 Example 7.10 ---

The unit pairs for the unambiguous arithmetic expression grammar mentioned before

with the following productions

E  T | E + T

T  F | T  F

F  I | (E)

I  a | b | Ia | Ib | I0 | I1

may be derived as follows:

unit pair (E, E) & E  T  unit pair (E, T)

unit pair (E, T) & T  F  unit pair (E, F)

unit pair (E, F) & F  I  unit pair (E, I)

unit pair (T, T) & T  F  unit pair (T, F)

unit pair (T, F) & F  I  unit pair (T, I)

unit pair (F, F) & F  I  unit pair (F, I)

 Totally, there are 10 unit pairs --- the above six plus the four (E, E), (T, T), (F, F), (I, I).

 How to expand productions using unit pairs until all unit productions disappear?

Algorithm 4 ---

Given a grammar G = (V, T, P, S), we construct another G1 = (V, T, P1, S) as follows:

 find all the unit pairs of G;

 for each unit pair (A, B), add to P1 all the productions A  , where B   is a

non-unit production in P.

 Example 7.12 (continuation of Example 7.10) ---

 According to Algorithm 4, the unit-production elimination result is shown in Fig. 7.1.
 The final production set is the union of all those on the right column.

Unit pair Productions
(E, E) E  E + T (from E E + T)
(E, T) E  T * F (from T T * F)
(E, F) E  (E)
(E, I) E  a | b | Ia | Ib | I0 | I1

 7

(T, T) T  T * F
(T, F) T  (E)
(T, I) T  a | b | Ia | Ib | I0 | I1
(F, F) F  (E)
(F, I) F  a | b | Ia | Ib | I0 | I1
(I, I) I  a | b | Ia | Ib | I0 | I1

Fig. 7.1 Unit production elimination result of Example 7.12.

 Theorem 7.13 ---

If grammar G1 is constructed from Algorithms 3 and 4 above for unit production

elimination, then L(G1) = L(G).

 For proof, see the textbook.

 A summary ---

Perform eliminations of the following order to a grammar G:

 Elimination of e-productions;

 Elimination of unit productions;

 Elimination of useless symbols,

then we can get an equivalent grammar generating the same language except the empty

string . (See the related theorem described next.)

 Theorem 7.14 ---

If G is a CFG generating a language that contains at least one string other than , then

there is another CFG G1 such that L(G1) = L(G)  {}, and G1 has no -productions, unit

productions, or useless symbols.

 Proof --- construct G1 in an order of three types of eliminations as above. For the rest of

the proof, see the textbook.

7.1.5 Chomsky Normal Form

 Definition ---

A grammar G is said to be in Chomsky Normal form (CNF), if the following two

conditions hold:

 all its productions are in one of the following two simple forms:

 A  BC

 A  a

where A, B and C are nonterminals and a is a terminal; and

 G has no useless symbol.

 Two-step transformation of a grammar into CNF ---

1. Put G into a form said by Theorem 7.14;

2. transform it into the two production forms of the CNF.

 8

 Steps to achieve the 2nd step above ---

(a) Arrange all production bodies of length 2 or more to consist only of nonterminals;

(b) break production bodies of length 3 or more into a cascade of productions, each with

a body consisting of 2 nonterminals.

 To perform Step (a) above ---

 For every terminal a, create a new nonterminal, say A.

(Now, every production has a body of a single terminal or at least two nonterminals &

no terminal.)

 To perform Step (b) above:

 Break production A  B1B2…Bk, k  3, into a group of productions with two

nonterminals in each body as follows:

A  B1C1, C1  B2C2, …, Ck3  Bk2Ck2, Ck2  Bk1Bk.

 Example 7.15 ---

Convert the expression grammar described previously into CNF.

 For productions in the left column of Fig. 7.1, conduct the following steps:

(1) create new nonterminals for the terminals to produce the following productions:

A  a B  b Z  0 O  1

P  + M  * L  (R )

(2) transformation of E  E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1

 E  EPT | TMF | LER | a | b | IA | IB | IZ | IO

T  ...

F  ...

I  ...

  E  EC1, C1  PT, ...

 Theorem 7.16 ---

If G is a CFG whose language contains at least one string other than , then there is a

grammar G1 in CNF such that L(G1) = L(G)  {}.

 Proof. See the textbook.

 Definition --- Greiback Normal Form (in the box of p. 277) ---

A production is said to be of the Greiback normal form (GNF) if it is of the form

A  a

where a is a terminal and  is a string of zero or more nonterminals.

7.2 Pumping Lemma for CFL’s

7.2.1 The Size of Parse Trees

 See the textbook for the detail by yourself (for use in proof of the lemma).

7.2.2 Statement of the Pumping Lemma for CFL’s

 9

 Theorem 7.18 (pumping lemma for CFL’s) ---

Let L be a CFL. There exists an integer constant n such that if zL with |z|  n, then

we can write z = uvwxy, subject to the following conditions:

1. |vwx|  n;

2. vx   (that is, v, x are not both );

3. for all i  0, uviwxiyL.

 Proof. See the textbook.

7.2.3 Applications of the Pumping Lemma

 Example 7.19 ---

Prove by contradiction the language L = {0n1n2n | n  1} is not a CFL by the pumping

lemma.

Proof.

 Suppose L is a CFL. Then there exists an integer n as given by the lemma.

 Pick z = 0n1n2n with |z| = 3nn, which so can be written as z = uvwxy where

(1) |vwx|  n;

(2) v, x are not both ; and

(3) the pumping is true.

 By (1), vwx cannot include both 0 and 2 because there are n 1’s in between. This can

be elaborated by two cases:

(a) vwx has no 2;

(b) vwx has no 0.

 The two cases are discussed as follows.

(a) vwx has no 2 ---

 Then v and x consists only 0’s and 1’s. Now ‘pump’ up z' = uv0wx0y = uwy

which, as said by the lemma, is in L.

 However, this is not possible because at least one 0 or 1 will be eliminated

according to (2) and so z' cannot have n 0’s or n 1’s, resulting in a form

different from that of the strings in L (because there are n 2’s).

(b) vwx has no 0 ---

 By symmetry, we can draw the same conclusion as in (a).

 Since no other case exists, we conclude by contradiction that L is not a CFL.

 Example 7.21 ---

Prove L={ww | w{0, 1}
*
} is not a CFL.

Proof (sketcch only).

 Let z = 0
n
1

n
0

n
1

n
 with n as given by the lemma.

 Pump z' = uv
0
wx

0
y = uwy.

 Since |vwx|  n, we know |z'| = |uwy|  3n.

 If z'L is true, then z' is of the form tt with t of length at least 3n/2.

 There are 5 cases to deal with as follows.

(1) w'  vwx is in the first n 0’s

(2) w' straddles 1st block of 0’s & 1st block of 1’s

(3) w' is in 1st block of 1’s

(4) w' straddles 1st block of 1’s and 0’s

 10

(5) w' is in 2nd half of z ---- similar to above 4 cases.

We have to check each case to see contradiction:

 For case (1) ---

 We have z = uvwxy = 0n1n0n1n.

 If w'  vwx is in the first n 0’s, then let vx consists of k 0’s with k > 0.

 Then the pumping result uwy begins with 0n-k1n, i.e., it ends in 1.

 Since |uwy| = 4n – k, we know if uwy = tt, then |t| = 2n – k/2.

 So, the first t does not end until after the first block of 1’s (because uwy begins with

0n-k1n), i.e., t ends in 0.

 So is the second t, which means tt = uwy ends in 0.

 But the above says that uwy ends in 1. Contradiction!

 The details of (2)~(5) are omitted and can be found in the textbook.

7.3 Closure Properties of CFL’s

 Some differences between CFL’s and RL’s ---

 CFL’s are not closed under intersection, difference, or complementation

 But the intersection or difference of a CFL and an RL is still a CFL.

 We will introduce a new operation --- substitution.

7.3.1 Substitution

 Definitions ---

 A substitution s on an alphabet  is a function such that for each a, s(a) is a

language La over any alphabet (not necessarily ).

 For a string w  a1a2…an  *, s(w) = s(a1)s(a2)…s(an) = La1La2…Lan, i.e., s(w) is a

language which is the concatenation of all Lai’s.

 Given a language L, s(L) = ∪wL s(w).

 Example 7.22 ---

 A substitution s on an alphabet = {0, 1} is defined as S(0) = {a
n
b

n
 | n  1}, s(1) =

{aa, bb}.

 Let w = 01, then s(w)  s(0)s(1)  {a
n
b

n
 | n  1}{aa, bb} = {a

n
b

n
aa | n 1}∪{a

n
b

n+2
 | n

1}.

 Let L = L(0
*
), then

s(L) = ∪
k=0, 1, …

s(0
k
) = (s(0))

*
 (provable)  ({a

n
b

n
 | n  1})

*

= { ∪{a
n
b

n
 | n  1}∪{a

n
b

n
 | n  1}

2
∪…

 S(L) includes strings like aabbaaabbb, abaabbabab,…

 Theorem 7.23 ---

If L is a CFL over alphabet , and s is a substitution on such that s(a) is a CFL for

each a in , then s(L) is a CFL.

 Proof. See the textbook.

7.3.2 Applications of the Substitution Theorem

 Theorem 7.24 ---

The CFL’s are closed under the following operations:

 11

1. Union;

2. Concatenation;

3. Closure (*), and positive closure (+).

4. Homomorphism.

 Proof. Use the last theorem in the proofs; see the textbook for the detail.

7.3.3 Reversal

 Theorem 7.25 ---

If L is a CFL, so is LR.

 Proof. See the textbook.

7.3.4 Intersection with an RL

 The CFL is not closed under intersection.

 See an example of this fact in the next page.

 Example 7.26 ---

 L = {0n1n2n | n  1} is not CFL as shown in Example 7.19.

 L1 = {0n1n2i | n  1, i  1} and L2 = {0i1n2n | n  1, i  1} are CFL’s.

 A grammar for L1 is: S  AB, A  0A1 | 01, B  2B | 2.

 A grammar for L2 is: S  AB, A  0A | 0, B  1B2 | 12.

 It is easy to see that L1∩L2  L because both #0 = #1 in L1 and #1 = # 2 in L2 means #0

= #1 = #2 as in L.

 This shows that intersection of two CFL’s L1 and L2 yields a non-CFL L.

 So CFL’s are not closed under intersection.

 Theorem 7.27 ---

If L is a CFL and R is an RL, then L∩R is a CFL.

 Proof. See the textbook.

 For an example, see Example 7.28.

 Theorem 7.29 ---

The following are true about CFL’s L, L1, and L2, and an RL R:

1. L  R is a CFL;

2. L is not necessarily a CFL;

3. L1  L2 is not necessarily a CFL.

 Proof. The proofs are easy to understand. Read by yourself.

7.3.5 Inverse Homomorphism

 Theorem 7.30 ---

Let L be a CFL and h a homomorphism. Then h1(L) is a CFL.

 Proof. See the textbook.

 12

7.4 Decision Properties of CFL’s

 Facts ---

 Unlike RLs’ decision problems which are all solvable, very little can be said about

CFL’s.

 Only two problems can be decided for CFL’s:

 whether the language is empty;

 whether a given string is in the language.

 Computational complexity for conversions between CFG’s and PDF’s will be

investigated.

7.4.1 Complexity of Converting among CFG’s and PDA’s

 An assumption --- n = the length of representation of a PDA or a CFG.

 The following are conversions requiring time of order O(n) (linear time) ---

 CFG  PDA (by the algorithm of Theorem 6.13)

 PDA by final state  PDA by empty stack (by the construction of Theorem 6.11)

 PDA by empty stack  PDA by final state (by the construction of Theorem 6.9)

 Conversion from PDA’s to CFG’s need nonlinear time, as shown by the following

theorem.

 Theorem 7.31 ---

There is an O(n3) algorithm that takes a PDA of length n and produces an equivalent

CFG of length at most O(n3).

 Proof. See the textbook.

7.4.2 Running Time of Conversion to Chomsky Normal Form

 Theorem 7.32 ---

Given a grammar G of length n, we can find an equivalent CNF grammar for G in

time of order O(n2); and the resulting grammar has length of order O(n2).

 Proof. See the textbook.

7.4.3 Testing Emptiness of CFL’s

 The problem of testing emptiness of a CFL L is decidable.

 The algorithm is described in Section 7.1.2 whose main step is:

decide if the start symbol of the grammar G for L is “generating”; if not, then L

is empty.

 A refined algorithm of that in Section 7.1.2 takes time of O(n) (see the textbook for

details).

7.4.4 Testing Membership in a CFL

 A way for solving the membership problem for a CFL L is to use the CNF of the CFG G

for L in the following way:

 The parse tree of an input string w of length n using the CNF grammar G has 2n  1

 13

nodes.

 We can generate all possible parse trees and check if a yield of them is w.

 The number of such trees is exponential in n.

 A refined way is to use the CYK algorithm which takes time O(n3).

 That is, we use the CYK algorithm to check if a given string wL in O(n3) time,

assuming the size of the grammar is constant. (See the next page for details)

 See Theorem 7.33 which describes the above facts.

 CYK (Cocke, Younger, Kasami) Algorithm ---

 This is a table-filling algorithm (“tabulation”) based on the principle of dynamic

programming

 Input: grammar G in CNF & string w = a1a2…an.

 The table entry Xij is the set of nonterminals A such that A

 aiai+1….aj.

 If start symbol S is in X1n, then S

 a1a2….an which means that w is generated by

the start symbol S and so has answered the problem.

 To fill the table like the one as follows (for n = 5), we start from the bottom row

and work upward row-by-row according to the following algorithm:

 X15

 X14 X25

 X13 X24 X35

 X12 X23 X34 X45

 X11 X22 X33 X44 X55

 a1 a2 a3 a4 a5

 CYK (Cocke, Younger, Kasami) Algorithm ---

 Basis: for the lowest row, set Xii = {A | A  ai is a production of G}

 Induction: for a nonterminal A to be in Xij, try to find nonterminals B and C, and

integer k such that

1. i  k < j.

2. B is in Xik.

3. C is in Xk+1, j.

4. A  BC is a production of G.

 That is, to find A, we have to compute at most n pairs of previously computed

sets: (Xii, Xi+1, j), (Xi, i+1, Xi+2, j), …, (Xi, j1, Xjj).

 For example, to compute Xij = X25, we have to check the pairs of (X22, X35), (X23,

X45), (X24, X55) (see the following table for a reference).

 X15

 X14 XX2255

 X13 X24 X35

 X12 X23 X34 X45

 X11 X22 X33 X44 X55

 a1 a2 a3 a4 a5

 14

 Example 7.34 ---

Given a grammar G with productions:

S  AB | BC A  BA | a

B  CC | b C  AB | a

We want to test if w  baaba is generated by G.

 A CYK table for the input string is shown in the following.

{S, A, C}

- {S, A, C}

- {B} {B}

{S, A} {B} {S, C} {S, A}

{B} {A, C} {A, C} {B} {A, C}

 b a a b a

 Since S is in X
15

, so we decide that w is generated by G.

7.4.5 Preview of Undecidable CFL Problems

 The following are undecidable CFL problems ---

 Is a given CFG G ambiguous?

 Is a given CFL inherently ambiguous?

 Is the intersection of two CFL’s empty?

 Are two CFL’s the same?

 Is a given CFL equal to S*, where S is the alphabet of this language?

 These problems will be proved to be undecidable in the next chapters.

