Chapter 7

Properties of Context-free Languages

(2015/12/02)

Peng Bay Bridge, Pingtung, Taiwan

Outline

7.0 Introduction
7.1 Normal Forms for CFG's
7.2 The Pumping Lemma for CFL's
7.3 Closure Properties of CFL's
7.4 Decision Properties of CFL's

7.0 Introduction

■ Main concepts to be taught in this chapter ---

- CFG's may be simplified to fit certain special forms, like Chomsky normal form and Greiback normal form.
- Some, but not all, properties of RL's are also possessed by the CFL's.
- Unlike the RL, many computational problems about the CFL cannot be answered.
- That is, there are many undecidable problems about CFL's.

7.1 Normal Forms for CFG's

■ Concept ---

In this section, we want to prove that
every CFG can be transformed into an equivalent grammar in Chomsky normal form, after simplifying the CFG in the following ways:

- eliminating useless symbols (which do not appear in any derivation from the start symbol);
- eliminating ε-productions (of the form $A \rightarrow \varepsilon$);
- eliminating unit productions (of the form $A \rightarrow B$);

7.1.1 Eliminating Useless Symbols

■ Some definitions ---

- We say symbol X is useful for a grammar $G=(V, T, P, S)$ if there is some derivation of the form

$$
S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w
$$

with $w \in T^{*}$.

- A symbol is said to be useless if not useful.
- Omitting useless symbols obviously will not change the language generated by the grammar.
- There are two types of usefulness ---
- X is generating if $X \stackrel{*}{\Rightarrow} w$;
- X is reachable if $S \stackrel{*}{\Rightarrow} \alpha X \beta$.

■ Example 7.1 ---

Eliminate useless symbols in a grammar with the following productions:

$$
\begin{gathered}
S \rightarrow A B \mid a \\
A \rightarrow b .
\end{gathered}
$$

- B is not generating, and is so eliminated at first, resulting in $S \rightarrow a, A \rightarrow b$, in which A is not reachable and so eliminated too, with $S \rightarrow a$ as the only production left.
- If we eliminate unreachable symbols at first and then non-generating ones, we get the final result $S \rightarrow a, A \rightarrow b$, which is not what we want!
- So, the order of eliminations is essential: eliminate non-generating symbols at first.

■ Theorem 7.2 ---

Let $G=(V, T, P, S)$ be a CFG, and assume that $L(G) \neq$, i.e., assume that G generates at least one string. Let $G_{1}=\left(V_{1}, T_{1}, P_{1}, S\right)$ be the grammar obtained by the following steps in order:

- eliminate non-generating symbols and all related productions, resulting in grammar G_{2};
- eliminate all symbols not reachable in G_{2}.

Then, G_{1} has no useless symbol and $L\left(G_{1}\right)=L(G)$.

- For proof, see the textbook.

7.1.2 Computing Generating and Reachable Symbols

$■$ How to compute generating symbols?

Basis: every terminal symbol is generating.

- Induction: if every symbol in a in $A \rightarrow \alpha$ is generating, then A is generating.

■ How to compute reachable symbols?

- Basis: the start symbol S is reachable.
- Induction: if nonterminal A is reachable, then all the symbols in $A \rightarrow \alpha$ are reachable.
(Both algorithms above are proved correct by Theorems 7.4 and 7.6)

7.1.3 Eliminating ε-Productions

- A definition --- a nonterminal A is said to be nullable if $\mathrm{A} \Rightarrow^{*} \varepsilon$.
- A Theorem --- We want to prove that
if a language L has a CFG, then the language $L-\{\varepsilon\}$ can be generated by a CFG without ε-production.
- Two steps for the above proof:
- find "nullable" symbols;
- transform productions into ones which generate no empty string using the nullable symbols.

■ Example 7.8 ---

Given a grammar with productions as follows:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A A \mid \varepsilon \\
& B \rightarrow b B B \mid \varepsilon
\end{aligned}
$$

then, we can see the following facts:

- A and B are nullable because they derive empty strings;
- S is also nullable because A and B are nullable.

■ How to find nullable symbols systematically?

- Algorithm 1 ---

- Basis: if $A \rightarrow \varepsilon$ is a production, then A is nullable.
- Induction: if all C_{i} in $B \rightarrow C_{1} C_{2} \ldots C_{k}$ are nullable, then B is nullable, too.
- How to transform productions into ones which generate no empty string?
- Algorithm 2 ---
- For each production $A \rightarrow X_{1} X_{2} \ldots X_{k}$, in which m of the $k X_{i}$'s are nullable, then generate accordingly 2^{m} versions of this production where
(1) the nullable X_{i}^{\prime} 's in all possible combinations are present or absent; and (2) if $A \rightarrow \varepsilon$ is in the 2^{m} ones, eliminate it.

■ Example 7.8 (continued) ---

- For $S \rightarrow A B, A \rightarrow a A A|\varepsilon, B \rightarrow b B B| \varepsilon$:
- We know S, A, B are nullable.
- From $S \rightarrow A B$, we get $S \rightarrow A B|A| B \mid \varepsilon$ where $S \rightarrow \varepsilon$ should be eliminated.
- From $A \rightarrow a A A$, we get $A \rightarrow a A A|a A| a A \mid a$ where the repeated $A \rightarrow a A$ should be removed.
- And from $B \rightarrow b B B$, similarly we get $B \rightarrow b B B|b B| b$.
- Overall result:

$$
\begin{aligned}
& S \rightarrow A B|A| B \\
& A \rightarrow a A A|a A| a \\
& B \rightarrow b B B|b B| b
\end{aligned}
$$

■ Theorem 7.7 ---

Algorithm 1 can be used to find all nullable symbols in a given grammar.
■ Theorem 7.9 ---
If G_{1} is constructed from a given grammar G by Algorithm 2, then $L\left(G_{1}\right)=L(G)-$ $\{\varepsilon\}$.
(For proofs of the above two theorems, see the textbook.)

7.1.4 Eliminating Unit Productions

■ Definition --- a unit production is of the form $A \rightarrow B$.

- Unit productions sometimes are useful.
- For example, use of unit productions $E \rightarrow T$ and $T \rightarrow F$ removes ambiguity in the 'expression grammar,' resulting in the following unambiguous grammar:

$$
\begin{aligned}
& E \rightarrow T \mid E+T \\
& T \rightarrow F \mid T * F \\
& F \rightarrow I \mid(E) \\
& I \rightarrow a|b| I a|I b| I 0 \mid I 1
\end{aligned}
$$

■ But unit productions complicate certain proofs.
■ A two-step technique to eliminate unit productions without changing the
generated language:

- find all "unit pairs"
- expand productions using unit pairs until all unit productions disappear.

■ Definition of unit pair ---

- Basis: (A, A) is a unit pair for any nonterminal.
- Induction: If (A, B) is a unit pair and $B \rightarrow C$ is a production, then (A, C) is a unit pair.

■ How to find unit pairs?

- Algorithm 3 ---

Follow the definition above.

■ Example 7.10 ---

The unit pairs for the unambiguous arithmetic expression grammar mentioned before with the following productions

$$
\begin{gathered}
E \rightarrow T \mid E+T \\
T \rightarrow F \mid T * F \\
F \rightarrow I \mid(E) \\
I \rightarrow a|b| I a|I b| I 0 \mid I 1
\end{gathered}
$$

may be derived as follows:
unit pair $(E, E) \& E \rightarrow T \quad \Rightarrow \quad$ unit pair (E, T)
unit pair $(E, T) \& T \rightarrow F \quad \Rightarrow \quad$ unit pair (E, F)
unit pair $(E, F) \& F \rightarrow I \quad \Rightarrow \quad$ unit pair (E, I)
unit pair $(T, T) \& T \rightarrow F \quad \Rightarrow \quad$ unit pair (T, F)
unit pair $(T, F) \& F \rightarrow I \quad \Rightarrow \quad$ unit pair (T, I)
unit pair $(F, F) \& F \rightarrow I \quad \Rightarrow \quad$ unit pair (F, I)

- Totally, there are 10 unit pairs --- the above six plus the four $(E, E),(T, T),(F, F),(I, I)$.
- How to expand productions using unit pairs until all unit productions disappear?

Algorithm 4 ---
Given a grammar $G=(V, T, P, S)$, we construct another $G 1=\left(V, T, P_{1}, S\right)$ as follows:

- find all the unit pairs of G;
- for each unit pair (A, B), add to P_{1} all the productions $A \rightarrow \alpha$, where $B \rightarrow \alpha$ is a non-unit production in P.

■ Example 7.12 (continuation of Example 7.10) ---

- According to Algorithm 4, the unit-production elimination result is shown in Fig. 7.1.
- The final production set is the union of all those on the right column.

Unit pair	Productions
(E, E)	$E \rightarrow E+T$ (from $E \rightarrow E+T)$
(E, T)	$E \rightarrow T^{*} F$ (from $\left.T \rightarrow T^{*} F\right)$
(E, F)	$E \rightarrow(E)$
(E, I)	$E \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$

(T, T)	$T \rightarrow T^{*} F$
(T, F)	$T \rightarrow(E)$
(T, I)	$T \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$
(F, F)	$F \rightarrow(E)$
(F, I)	$F \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$
(I, I)	$I \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$

Fig. 7.1 Unit production elimination result of Example 7.12.

■ Theorem 7.13 ---

If grammar G_{1} is constructed from Algorithms 3 and 4 above for unit production elimination, then $L\left(G_{1}\right)=L(G)$.

- For proof, see the textbook.

A summary ---

Perform eliminations of the following order to a grammar G :

- Elimination of e-productions;
- Elimination of unit productions;
- Elimination of useless symbols,
then we can get an equivalent grammar generating the same language except the empty string ε. (See the related theorem described next.)

■ Theorem 7.14 ---

If G is a CFG generating a language that contains at least one string other than ε, then there is another CFG G_{1} such that $L\left(G_{1}\right)=L(G)-\{\varepsilon\}$, and G_{1} has no ε-productions, unit productions, or useless symbols.

- Proof --- construct G_{1} in an order of three types of eliminations as above. For the rest of the proof, see the textbook.

7.1.5 Chomsky Normal Form

Definition ---

A grammar G is said to be in Chomsky Normal form (CNF), if the following two conditions hold:

- all its productions are in one of the following two simple forms:
- $A \rightarrow B C$
- $A \rightarrow a$
where A, B and C are nonterminals and a is a terminal; and
- G has no useless symbol.

- Two-step transformation of a grammar into CNF ---

1. Put G into a form said by Theorem 7.14;
2. transform it into the two production forms of the CNF.

■ Steps to achieve the 2nd step above ---
(a) Arrange all production bodies of length 2 or more to consist only of nonterminals;
(b) break production bodies of length 3 or more into a cascade of productions, each with a body consisting of 2 nonterminals.

■ To perform Step (a) above ---

- For every terminal a, create a new nonterminal, say A.
(Now, every production has a body of a single terminal or at least two nonterminals \& no terminal.)
■ To perform Step (b) above:
- Break production $A \rightarrow B_{1} B_{2} \ldots B_{k}, k \geq 3$, into a group of productions with two nonterminals in each body as follows:

$$
A \rightarrow B_{1} C_{1}, C_{1} \rightarrow B_{2} C_{2}, \ldots, C_{k-3} \rightarrow B_{k-2} C_{k-2}, C_{k-2} \rightarrow B_{k-1} B_{k} .
$$

Example 7.15 ---

Convert the expression grammar described previously into CNF.

- For productions in the left column of Fig. 7.1, conduct the following steps:
(1) create new nonterminals for the terminals to produce the following productions:

$$
\begin{array}{llll}
A \rightarrow a & B \rightarrow b & Z \rightarrow 0 & O \rightarrow 1 \\
P \rightarrow+ & M \rightarrow * & L \rightarrow(& R \rightarrow)
\end{array}
$$

(2) transformation of $E \rightarrow E+T\left|T^{*} F\right|(E)|a| b|I a| I b|I 0| I 1$

$$
\begin{aligned}
\Rightarrow & E \rightarrow E P T|T M F| L E R|a| b|I A| I B|I Z| I O \\
& T \rightarrow \ldots \\
& F \rightarrow \ldots \\
& I \rightarrow \ldots \\
\Rightarrow & E \rightarrow E C_{1}, C_{1} \rightarrow P T, \ldots
\end{aligned}
$$

Theorem 7.16 ---

If G is a CFG whose language contains at least one string other than ε, then there is a grammar G_{1} in CNF such that $L\left(G_{1}\right)=L(G)-\{\varepsilon\}$.

- Proof. See the textbook.

■ Definition --- Greiback Normal Form (in the box of p. 277) ---
A production is said to be of the Greiback normal form (GNF) if it is of the form

$$
A \rightarrow a \alpha
$$

where a is a terminal and α is a string of zero or more nonterminals.

7.2 Pumping Lemma for CFL's

7.2.1 The Size of Parse Trees

See the textbook for the detail by yourself (for use in proof of the lemma).

7.2.2 Statement of the Pumping Lemma for CFL's

Theorem 7.18 (pumping lemma for CFL's) ---
Let L be a CFL. There exists an integer constant n such that if $z \in L$ with $|z| \geq n$, then we can write $z=u v w x y$, subject to the following conditions:

1. $|v w x| \leq n$;
2. $v x \neq \varepsilon$ (that is, v, x are not both ε);
3. for all $i \geq 0, u v^{i} w x^{i} y \in L$.

- Proof. See the textbook.

7.2.3 Applications of the Pumping Lemma

■ Example 7.19 ---

Prove by contradiction the language $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 1\right\}$ is not a CFL by the pumping lemma.

Proof.

- Suppose L is a CFL. Then there exists an integer n as given by the lemma.
- Pick $z=0^{n} 1^{n} 2^{n}$ with $|z|=3 n \geq n$, which so can be written as $z=u v w x y$ where
(1) $|v w x| \leq n$;
(2) v, x are not both ε; and
(3) the pumping is true.
- By (1), vwx cannot include both 0 and 2 because there are $n 1$'s in between. This can be elaborated by two cases:
(a) $v w x$ has no 2 ;
(b) $v w x$ has no 0 .
- The two cases are discussed as follows.
(a) $v w x$ has no 2 ---
- Then v and x consists only 0 's and 1 's. Now 'pump' up $z^{\prime}=u v^{0} w x^{0} y=u w y$ which, as said by the lemma, is in L.
- However, this is not possible because at least one 0 or 1 will be eliminated according to (2) and so z^{\prime} cannot have $n 0$'s or $n 1$'s, resulting in a form different from that of the strings in L (because there are $n 2$'s).
(b) $v w x$ has no $0---$
- By symmetry, we can draw the same conclusion as in (a).
- Since no other case exists, we conclude by contradiction that L is not a CFL.

■ Example 7.21 ---

Prove $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not a CFL.
Proof (sketcch only).

- Let $z=0^{n} 1^{n} 0^{n} 1^{n}$ with n as given by the lemma.
- Pump $z^{\prime}=u v^{0} w x^{0} y=u w y$.
- Since $|v w x| \leq n$, we know $\left|z^{\prime}\right|=|u w y| \geq 3 n$.
- If $z^{\prime} \in L$ is true, then z^{\prime} is of the form $t t$ with t of length at least $3 n / 2$.
- There are 5 cases to deal with as follows.
(1) $w^{\prime}=v w x$ is in the first $n 0$'s
(2) w^{\prime} straddles 1st block of 0 's \& 1st block of 1's
(3) w^{\prime} is in 1st block of 1 's
(4) w^{\prime} straddles 1 st block of 1 's and 0 's
(5) w^{\prime} is in 2 nd half of z---- similar to above 4 cases.

We have to check each case to see contradiction:

- For case (1) ---
- We have $z=u v w x y=0^{n} 1^{n} 0^{n} 1^{n}$.
- If $w^{\prime}=v w x$ is in the first $n 0$'s, then let $v x$ consists of $k 0$'s with $k>0$.
- Then the pumping result $u w y$ begins with $0^{n-k} 1^{n}$, i.e., it ends in 1 .
- Since $|u w y|=4 n-k$, we know if $u w y=t t$, then $|t|=2 n-k / 2$.
- So, the first t does not end until after the first block of 1's (because $u w y$ begins with $0^{n-k} 1^{n}$), i.e., t ends in 0 .
- So is the second t, which means $t t=u w y$ ends in 0 .
- But the above says that uwy ends in 1 . Contradiction!
- The details of (2)~(5) are omitted and can be found in the textbook.

7.3 Closure Properties of CFL's

- Some differences between CFL's and RL's ---

- CFL's are not closed under intersection, difference, or complementation
- But the intersection or difference of a CFL and an RL is still a CFL.
- We will introduce a new operation --- substitution.

7.3.1 Substitution

■ Definitions ---

- A substitution s on an alphabet Σ is a function such that for each $a \in \Sigma, s(a)$ is a language L_{a} over any alphabet (not necessarily Σ).
- For a string $w=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}, s(w)=s\left(a_{1}\right) s\left(a_{2}\right) \ldots s\left(a_{n}\right)=L_{a 1} L_{a 2} \ldots L_{a n}$, i.e., $s(w)$ is a language which is the concatenation of all $L_{a i}$'s.
- Given a language $L, s(L)=\cup_{w \in L} s(w)$.

■ Example 7.22 ---

- A substitution s on an alphabet $=\{0,1\}$ is defined as $S(0)=\left\{a^{n} b^{n} \mid n \geq 1\right\}, s(1)=$ $\{a a, b b\}$.
- Let $w=01$, then $s(w)=s(0) s(1)=\left\{a^{n} b^{n} \mid n \geq 1\right\}\{a a, b b\}=\left\{a^{n} b^{n} a a \mid n \geq 1\right\} \cup\left\{a^{n} b^{n+2} \mid n\right.$ $\geq 1\}$.
- Let $L=L\left(\mathbf{0}^{*}\right)$, then

$$
\begin{aligned}
s(L) & =\cup_{k=0,1, \ldots} s\left(0^{k}\right)=(s(0))^{*}(\text { provable })=\left(\left\{a^{n} b^{n} \mid n \geq 1\right\}\right)^{*} \\
& =\left\{\quad \cup\left\{a^{n} b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} b^{n} \mid n \geq 1\right\}^{2} \cup \ldots\right.
\end{aligned}
$$

- $S(L)$ includes strings like $a a b b a a a b b b, a b a a b b a b a b, \ldots$

■ Theorem 7.23 ---

If L is a CFL over alphabet, and s is a substitution on such that $s(a)$ is a CFL for each a in , then $s(L)$ is a CFL.

- Proof. See the textbook.

7.3.2 Applications of the Substitution Theorem

■ Theorem 7.24 ---
The CFL's are closed under the following operations:

1. Union;
2. Concatenation;
3. Closure (*), and positive closure (+).
4. Homomorphism.

- Proof. Use the last theorem in the proofs; see the textbook for the detail.

7.3.3 Reversal

■ Theorem 7.25 ---
If L is a CFL, so is L^{R}.

- Proof. See the textbook.

7.3.4 Intersection with an RL

- The CFL is not closed under intersection.
- See an example of this fact in the next page.

■ Example 7.26 ---

- $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 1\right\}$ is not CFL as shown in Example 7.19.
- $L_{1}=\left\{0^{n} 1^{n} 2^{i} \mid n \geq 1, i \geq 1\right\}$ and $L_{2}=\left\{0^{i} 1^{n} 2^{n} \mid n \geq 1, i \geq 1\right\}$ are CFL's.
- A grammar for L_{1} is: $S \rightarrow A B, \quad A \rightarrow 0 A 1|01, \quad B \rightarrow 2 B| 2$.
- A grammar for L_{2} is: $S \rightarrow A B, \quad A \rightarrow 0 A|0, \quad B \rightarrow 1 B 2| 12$.
- It is easy to see that $L_{1} \cap L_{2}=L$ because both $\# 0=\# 1$ in L_{1} and $\# 1=\# 2$ in L_{2} means \#0 = \#1 = \#2 as in L.
- This shows that intersection of two CFL's L_{1} and L_{2} yields a non-CFL L.
- So CFL's are not closed under intersection.

■ Theorem 7.27 ---
If L is a CFL and R is an RL, then $L \cap R$ is a CFL.

- Proof. See the textbook.

For an example, see Example 7.28.

Theorem 7.29 ---

The following are true about CFL's L, L_{1}, and L_{2}, and an RL R :

1. $L-R$ is a CFL;
2. \bar{L} is not necessarily a CFL;
3. $L_{1}-L_{2}$ is not necessarily a CFL.

- Proof. The proofs are easy to understand. Read by yourself.

7.3.5 Inverse Homomorphism

Theorem 7.30 ---
Let L be a CFL and h a homomorphism. Then $h^{-1}(L)$ is a CFL.

- Proof. See the textbook.

7.4 Decision Properties of CFL's

■ Facts ---

- Unlike RLs' decision problems which are all solvable, very little can be said about CFL's.
- Only two problems can be decided for CFL's:
- whether the language is empty;
- whether a given string is in the language.
- Computational complexity for conversions between CFG's and PDF's will be investigated.

7.4.1 Complexity of Converting among CFG's and PDA's

- An assumption $--n=$ the length of representation of a PDA or a CFG.
- The following are conversions requiring time of order $O(n)$ (linear time) ---
$-\mathrm{CFG} \Rightarrow \mathrm{PDA}$ (by the algorithm of Theorem 6.13)
\checkmark PDA by final state \Rightarrow PDA by empty stack (by the construction of Theorem 6.11)
PDA by empty stack \Rightarrow PDA by final state (by the construction of Theorem 6.9)
- Conversion from PDA's to CFG's need nonlinear time, as shown by the following theorem.

■ Theorem 7.31 ---
There is an $O\left(n^{3}\right)$ algorithm that takes a PDA of length n and produces an equivalent CFG of length at most $O\left(n^{3}\right)$.

- Proof. See the textbook.

7.4.2 Running Time of Conversion to Chomsky Normal Form

Theorem 7.32 ---

Given a grammar G of length n, we can find an equivalent CNF grammar for G in time of order $O\left(n^{2}\right)$; and the resulting grammar has length of order $O\left(n^{2}\right)$.

- Proof. See the textbook.

7.4.3 Testing Emptiness of CFL's

- The problem of testing emptiness of a CFL L is decidable.
- The algorithm is described in Section 7.1.2 whose main step is:
decide if the start symbol of the grammar G for L is "generating"; if not, then L is empty.
- A refined algorithm of that in Section 7.1.2 takes time of $O(n)$ (see the textbook for details).

7.4.4 Testing Membership in a CFL

- A way for solving the membership problem for a CFL L is to use the CNF of the CFG G for L in the following way:
- The parse tree of an input string w of length n using the CNF grammar G has $2 n-1$
nodes.
We can generate all possible parse trees and check if a yield of them is w.
- The number of such trees is exponential in n.
- A refined way is to use the CYK algorithm which takes time $O\left(n^{3}\right)$.
- That is, we use the CYK algorithm to check if a given string $w \in L$ in $O\left(n^{3}\right)$ time, assuming the size of the grammar is constant. (See the next page for details)
See Theorem 7.33 which describes the above facts.
\checkmark CYK (Cocke, Younger, Kasami) Algorithm ---
- This is a table-filling algorithm ("tabulation") based on the principle of dynamic programming
- Input: grammar G in CNF \& string $w=a_{1} a_{2} \ldots a_{n}$.
- The table entry $X_{i j}$ is the set of nonterminals A such that $A \stackrel{*}{\Rightarrow} a_{i} a_{i+1} \ldots . a_{j}$.
- If start symbol S is in $X_{1 n}$, then $S \stackrel{*}{\Rightarrow} a_{1} a_{2} \ldots a_{n}$ which means that w is generated by the start symbol S and so has answered the problem.
- To fill the table like the one as follows (for $n=5$), we start from the bottom row and work upward row-by-row according to the following algorithm:

- CYK (Cocke, Younger, Kasami) Algorithm ---
* Basis: for the lowest row, set Xii $=\{A \mid A \rightarrow a i$ is a production of $G\}$
* Induction: for a nonterminal A to be in $X_{i j}$, try to find nonterminals B and C, and integer k such that

1. $i \leq k<j$.
2. B is in $X_{i k}$.
3. C is in $X_{k+1, j}$.
4. $A \rightarrow B C$ is a production of G.

* That is, to find A, we have to compute at most n pairs of previously computed sets: $\left(X_{i i}, X_{i+1, j}\right),\left(X_{i, i+1}, X_{i+2, j}\right), \ldots,\left(X_{i, j-1}, X_{j j}\right)$.
- For example, to compute $X_{i j}=X_{25}$, we have to check the pairs of $\left(X_{22}, X_{35}\right)$, (X_{23}, $\left.X_{45}\right),\left(X_{24}, X_{55}\right)$ (see the following table for a reference).

■ Example 7.34 ---
Given a grammar G with productions:

$$
\begin{array}{ll}
S \rightarrow A B \mid B C & A \rightarrow B A \mid a \\
B \rightarrow C C \mid b & C \rightarrow A B \mid a
\end{array}
$$

We want to test if $w=b a a b a$ is generated by G.

- A CYK table for the input string is shown in the following.

Since S is in X_{15}, so we decide that w is generated by G.

7.4.5 Preview of Undecidable CFL Problems

- The following are undecidable CFL problems ---
\bullet Is a given CFG G ambiguous?
- Is a given CFL inherently ambiguous?
- Is the intersection of two CFL's empty?
- Are two CFL's the same?
- Is a given CFL equal to S^{*}, where S is the alphabet of this language?
- These problems will be proved to be undecidable in the next chapters.

