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7.0 Introduction 
 

 Main concepts to be taught in this chapter --- 

 CFG’s may be simplified to fit certain special forms, like Chomsky normal form and 

Greiback normal form. 

 Some, but not all, properties of RL’s are also possessed by the CFL’s. 

 Unlike the RL, many computational problems about the CFL cannot be answered. 

 That is, there are many undecidable problems about CFL’s. 

 

 

7.1 Normal Forms for CFG’s 
 

 Concept --- 

In this section, we want to prove that 

every CFG can be transformed into an equivalent grammar in Chomsky normal form, 

after simplifying the CFG in the following ways: 

 

 eliminating useless symbols (which do not appear in any derivation from the start 

symbol); 

 eliminating -productions (of the form A  ); 

 eliminating unit productions (of the form A  B); 

 

7.1.1 Eliminating Useless Symbols 

 Some definitions --- 

 We say symbol X is useful for a grammar G = (V, T, P, S) if there is some derivation of 

the form 

S 

  X 


  w 

with wT*. 

 A symbol is said to be useless if not useful. 

 Omitting useless symbols obviously will not change the language generated by the 

grammar. 

 There are two types of usefulness --- 

 X is generating if X 

  w; 

 X is reachable if S 

  X. 

 

 Example 7.1 --- 

Eliminate useless symbols in a grammar with the following productions: 

S  AB | a 

A  b. 

 B is not generating, and is so eliminated at first, resulting in S  a, A  b, in which A 

is not reachable and so eliminated too, with S  a as the only production left. 

 If we eliminate unreachable symbols at first and then non-generating ones, we get the 

final result S  a, A  b, which is not what we want! 

 So, the order of eliminations is essential: eliminate non-generating symbols at first. 
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 Theorem 7.2 --- 

Let G = (V, T, P, S) be a CFG, and assume that L(G)  , i.e., assume that G 

generates at least one string. Let G1 = (V1, T1, P1, S) be the grammar obtained by the 

following steps in order: 

 eliminate non-generating symbols and all related productions, resulting in grammar 

G2; 

 eliminate all symbols not reachable in G
2

. 

Then, G1 has no useless symbol and L(G1) = L(G). 

 

 For proof, see the textbook. 

 

 

7.1.2 Computing Generating and Reachable Symbols 

 How to compute generating symbols? 

 Basis: every terminal symbol is generating. 

 Induction: if every symbol in a in A   is generating, then A is generating. 

 

 How to compute reachable symbols? 

 Basis: the start symbol S is reachable. 

 Induction: if nonterminal A is reachable, then all the symbols in A   are reachable. 

 

(Both algorithms above are proved correct by Theorems 7.4 and 7.6) 

 

7.1.3 Eliminating -Productions 

 A definition --- a nonterminal A is said to be nullable if A * . 

 A Theorem --- We want to prove that 

if a language L has a CFG, then the language L  {} can be generated by a CFG 

without -production.  

 Two steps for the above proof: 

 find “nullable” symbols; 

 transform productions into ones which generate no empty string using the nullable 

symbols. 

 

 Example 7.8 --- 

Given a grammar with productions as follows: 

S  AB 

A  aAA |  

B  bBB |  

then, we can see the following facts: 

 A and B are nullable because they derive empty strings; 

 S is also nullable because A and B are nullable. 

 

 How to find nullable symbols systematically? 

 Algorithm 1 --- 
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 Basis: if    is a production, then A is nullable. 

 Induction: if all Ci in B  C1C2…Ck are nullable, then B is nullable, too. 

 

 How to transform productions into ones which generate no empty string?  

 Algorithm 2 --- 

 For each production A  X1X2…Xk, in which m of the k Xi’s are nullable, then 

generate accordingly 2
m
 versions of this production where 

(1) the nullable Xi’s in all possible combinations are present or absent; and 

(2) if A   is in the 2
m
 ones, eliminate it. 

 

 

 Example 7.8 (continued) --- 

 For S  AB, A  aAA | , B  bBB | : 

 We know S, A, B are nullable. 

 From S  AB, we get S  AB | A | B |  where S   should be eliminated. 

 From A  aAA, we get A  aAA | aA | aA | a where the repeated A  aA should be 

removed. 

 And from B  bBB, similarly we get B  bBB | bB | b. 

 Overall result: 

S  AB | A | B 

A  aAA | aA | a 

B  bBB | bB | b 

 

 Theorem 7.7 --- 

Algorithm 1 can be used to find all nullable symbols in a given grammar. 

 

 Theorem 7.9 --- 

If G1 is constructed from a given grammar G by Algorithm 2, then L(G1) = L(G)  

{}. 

 

(For proofs of the above two theorems, see the textbook.) 
 

 

7.1.4 Eliminating Unit Productions 

 Definition --- a unit production is of the form A  B. 

 Unit productions sometimes are useful. 

 For example, use of unit productions E  T and T  F removes ambiguity in 

the ‘expression grammar,’ resulting in the following unambiguous grammar: 

E  T | E + T 

T  F | T  F 

F  I | (E) 

I  a | b | Ia | Ib | I0 | I1 

 

 But unit productions complicate certain proofs. 

 

 A two-step technique to eliminate unit productions without changing the 
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generated language: 

 find all “unit pairs” 

 expand productions using unit pairs until all unit productions disappear. 

 

 Definition of unit pair ---  

 Basis: (A, A) is a unit pair for any nonterminal. 

 Induction: If (A, B) is a unit pair and B  C is a production, then (A, C) is a unit 

pair. 

 

 How to find unit pairs? 
 Algorithm 3 ---  

Follow the definition above. 

 

 Example 7.10 ---  

The unit pairs for the unambiguous arithmetic expression grammar mentioned before 

with the following productions 

E  T | E + T 

T  F | T  F 

F  I | (E) 

I  a | b | Ia | Ib | I0 | I1 

may be derived as follows: 

unit pair (E, E) & E  T    unit pair (E, T) 

unit pair (E, T) & T  F    unit pair (E, F) 

unit pair (E, F) & F  I    unit pair (E, I) 

unit pair (T, T) & T  F    unit pair (T, F) 

unit pair (T, F) & F  I    unit pair (T, I) 

unit pair (F, F) & F  I    unit pair (F, I) 

 

 Totally, there are 10 unit pairs --- the above six plus the four (E, E), (T, T), (F, F), (I, I). 

 

 How to expand productions using unit pairs until all unit productions disappear? 

Algorithm 4 ---  

Given a grammar G = (V, T, P, S), we construct another G1 = (V, T, P1, S) as follows: 

 find all the unit pairs of G; 

 for each unit pair (A, B), add to P1 all the productions A  , where B   is a 

non-unit production in P. 

 

 Example 7.12 (continuation of Example 7.10) --- 

 According to Algorithm 4, the unit-production elimination result is shown in Fig. 7.1. 
 The final production set is the union of all those on the right column. 

 

Unit pair Productions 
(E, E) E  E + T (from E E + T) 
(E, T) E  T * F (from T T * F) 
(E, F)  E  (E) 
(E, I)  E  a | b | Ia | Ib | I0 | I1 
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(T, T) T  T * F 
(T, F) T  (E) 
(T, I) T  a | b | Ia | Ib | I0 | I1 
(F, F) F  (E) 
(F, I) F  a | b | Ia | Ib | I0 | I1 
(I, I) I  a | b | Ia | Ib | I0 | I1 

Fig. 7.1 Unit production elimination result of Example 7.12. 

 

 

 Theorem 7.13 --- 

If grammar G1 is constructed from Algorithms 3 and 4 above for unit production 

elimination, then L(G1) = L(G). 

 For proof, see the textbook. 

 

 A summary ---  

Perform eliminations of the following order to a grammar G: 

 Elimination of e-productions; 

 Elimination of unit productions; 

 Elimination of useless symbols, 

then we can get an equivalent grammar generating the same language except the empty 

string . (See the related theorem described next.) 

 

 Theorem 7.14 --- 

If G is a CFG generating a language that contains at least one string other than , then 

there is another CFG G1 such that L(G1) = L(G)  {}, and G1 has no -productions, unit 

productions, or useless symbols. 

 Proof --- construct G1 in an order of three types of eliminations as above. For the rest of 

the proof, see the textbook. 

 

7.1.5 Chomsky Normal Form 

 Definition --- 

A grammar G is said to be in Chomsky Normal form (CNF), if the following two 

conditions hold: 

 all its productions are in one of the following two simple forms: 

 A  BC 

 A  a 

where A, B and C are nonterminals and a is a terminal; and 

 G has no useless symbol. 

 

 Two-step transformation of a grammar into CNF --- 

1. Put G into a form said by Theorem 7.14; 

2. transform it into the two production forms of the CNF. 
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 Steps to achieve the 2nd step above --- 

(a) Arrange all production bodies of length 2 or more to consist only of nonterminals; 

(b) break production bodies of length 3 or more into a cascade of productions, each with 

a body consisting of 2 nonterminals. 

 

 To perform Step (a) above --- 

 For every terminal a, create a new nonterminal, say A. 

(Now, every production has a body of a single terminal or at least two nonterminals & 

no terminal.)  

 To perform Step (b) above: 

 Break production A  B1B2…Bk, k  3, into a group of productions with two 

nonterminals in each body as follows: 

A  B1C1, C1  B2C2, …, Ck3  Bk2Ck2, Ck2  Bk1Bk. 

 

 Example 7.15 ---  

Convert the expression grammar described previously into CNF. 

 For productions in the left column of Fig. 7.1, conduct the following steps: 

(1) create new nonterminals for the terminals to produce the following productions: 

A  a          B  b         Z  0          O  1 

P  +          M  *        L  (           R  )  

(2) transformation of E  E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1 

 E  EPT | TMF | LER | a | b | IA | IB | IZ | IO 

T  ... 

F  ... 

I  ...  

  E  EC1, C1  PT, ... 

 

 Theorem 7.16 --- 

If G is a CFG whose language contains at least one string other than , then there is a 

grammar G1 in CNF such that L(G1) = L(G)  {}. 

 Proof. See the textbook. 

 

 Definition --- Greiback Normal Form (in the box of p. 277) --- 

A production is said to be of the Greiback normal form (GNF) if it is of the form 

A  a 

where a is a terminal and  is a string of zero or more nonterminals. 

 

 

7.2 Pumping Lemma for CFL’s 
 

7.2.1 The Size of Parse Trees 

 See the textbook for the detail by yourself (for use in proof of the lemma). 

 

7.2.2 Statement of the Pumping Lemma for CFL’s 
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 Theorem 7.18 (pumping lemma for CFL’s) --- 

Let L be a CFL. There exists an integer constant n such that if zL with |z|  n, then 

we can write z = uvwxy, subject to the following conditions: 

1. |vwx|  n; 

2. vx   (that is, v, x are not both ); 

3. for all i  0, uviwxiyL. 

 

 Proof. See the textbook. 

 

7.2.3 Applications of the Pumping Lemma 

 Example 7.19 ---  

Prove by contradiction the language L = {0n1n2n | n  1} is not a CFL by the pumping 

lemma. 

Proof. 

 Suppose L is a CFL. Then there exists an integer n as given by the lemma. 

 Pick z = 0n1n2n with |z| = 3nn, which so can be written as z = uvwxy where 

(1) |vwx|  n; 

(2) v, x are not both ; and  

(3) the pumping is true. 

 By (1), vwx cannot include both 0 and 2 because there are n 1’s in between. This can 

be elaborated by two cases: 

(a) vwx has no 2; 

(b) vwx has no 0. 

 The two cases are discussed as follows. 

(a) vwx has no 2 ---  

 Then v and x consists only 0’s and 1’s. Now ‘pump’ up z' = uv0wx0y = uwy 

which, as said by the lemma, is in L. 

 However, this is not possible because at least one 0 or 1 will be eliminated 

according to (2) and so z' cannot have n 0’s or n 1’s, resulting in a form 

different from that of the strings in L (because there are n 2’s). 

(b) vwx has no 0 ---  

 By symmetry, we can draw the same conclusion as in (a). 

 Since no other case exists, we conclude by contradiction that L is not a CFL. 

 

 Example 7.21 ---  

Prove L={ww | w{0, 1}
*
} is not a CFL.  

Proof (sketcch only). 

 Let z = 0
n
1

n
0

n
1

n
 with n as given by the lemma.  

 Pump z' = uv
0
wx

0
y = uwy. 

 Since |vwx|  n, we know |z'| = |uwy|  3n.  

 If z'L is true, then z' is of the form tt with t of length at least 3n/2. 

 There are 5 cases to deal with as follows. 

(1) w'  vwx is in the first n 0’s 

(2) w' straddles 1st block of 0’s & 1st block of 1’s 

(3) w' is in 1st block of 1’s 

(4) w' straddles 1st block of 1’s and 0’s 
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(5) w' is in 2nd half of z ---- similar to above 4 cases. 

We have to check each case to see contradiction: 

 For case (1) ---  

 We have z = uvwxy = 0n1n0n1n. 

 If w'  vwx is in the first n 0’s, then let vx consists of k 0’s with k > 0. 

 Then the pumping result uwy begins with 0n-k1n, i.e., it ends in 1. 

 Since |uwy| = 4n – k, we know if uwy = tt, then |t| = 2n – k/2. 

 So, the first t does not end until after the first block of 1’s (because uwy begins with 

0n-k1n), i.e., t ends in 0. 

 So is the second t, which means tt = uwy ends in 0. 

 But the above says that uwy ends in 1. Contradiction!  

 The details of (2)~(5) are omitted and can be found in the textbook. 
 

 

7.3 Closure Properties of CFL’s 

 
 Some differences between CFL’s and RL’s --- 

 CFL’s are not closed under intersection, difference, or complementation 

 But the intersection or difference of a CFL and an RL is still a CFL. 

 We will introduce a new operation --- substitution. 

 
7.3.1 Substitution 

 Definitions --- 

 A substitution s on an alphabet  is a function such that for each a, s(a) is a 

language La over any alphabet (not necessarily ). 

 For a string w  a1a2…an  *, s(w) = s(a1)s(a2)…s(an) = La1La2…Lan, i.e., s(w) is a 

language which is the concatenation of all Lai’s. 

 Given a language L, s(L) = ∪wL s(w). 

 

 Example 7.22 --- 

 A substitution s on an alphabet  = {0, 1} is defined as S(0) = {a
n
b

n
 | n  1}, s(1) = 

{aa, bb}. 

 Let w = 01, then s(w)  s(0)s(1)  {a
n
b

n
 | n  1}{aa, bb} = {a

n
b

n
aa | n 1}∪{a

n
b

n+2
 | n 

1}. 

 Let L = L(0
*
), then  

s(L) = ∪
k=0, 1, …

s(0
k
) = (s(0))

*
 (provable)  ({a

n
b

n
 | n  1})

*
  

= { ∪{a
n
b

n
 | n  1}∪{a

n
b

n
 | n  1}

2
∪… 

 S(L) includes strings like aabbaaabbb, abaabbabab,… 

 

 Theorem 7.23 --- 

If L is a CFL over alphabet , and s is a substitution on  such that s(a) is a CFL for 

each a in , then s(L) is a CFL. 

 Proof. See the textbook. 

 

7.3.2 Applications of the Substitution Theorem 

 Theorem 7.24 --- 

The CFL’s are closed under the following operations: 
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1. Union; 

2. Concatenation; 

3. Closure (*), and positive closure (+). 

4. Homomorphism. 

 Proof. Use the last theorem in the proofs; see the textbook for the detail. 

 
7.3.3 Reversal 

 Theorem 7.25 --- 

If L is a CFL, so is LR. 

 Proof. See the textbook. 

 

7.3.4 Intersection with an RL 

 The CFL is not closed under intersection. 

 See an example of this fact in the next page. 
 

 Example 7.26 --- 

 L = {0n1n2n | n  1} is not CFL as shown in Example 7.19. 

 L1 = {0n1n2i | n  1, i  1} and L2 = {0i1n2n | n  1, i  1} are CFL’s. 

 A grammar for L1 is: S  AB,  A  0A1 | 01,  B  2B | 2. 

 A grammar for L2 is: S  AB,  A  0A | 0,  B  1B2 | 12. 

 It is easy to see that L1∩L2  L because both #0 = #1 in L1 and #1 = # 2 in L2 means #0 

= #1 = #2 as in L. 

 This shows that intersection of two CFL’s L1 and L2 yields a non-CFL L. 

 So CFL’s are not closed under intersection. 

 

 Theorem 7.27 --- 

If L is a CFL and R is an RL, then L∩R is a CFL. 

 Proof. See the textbook. 

 

 For an example, see Example 7.28. 

 

 

 Theorem 7.29 --- 

The following are true about CFL’s L, L1, and L2, and an RL R: 

1. L  R is a CFL; 

2. L  is not necessarily a CFL; 

3. L1  L2 is not necessarily a CFL. 

 Proof. The proofs are easy to understand. Read by yourself. 

 

7.3.5 Inverse Homomorphism 

 Theorem 7.30 --- 

Let L be a CFL and h a homomorphism. Then h1(L) is a CFL. 

 Proof. See the textbook. 
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7.4 Decision Properties of CFL’s 
 

 Facts --- 

 Unlike RLs’ decision problems which are all solvable, very little can be said about 

CFL’s. 

 Only two problems can be decided for CFL’s: 

 whether the language is empty; 

 whether a given string is in the language. 

 Computational complexity for conversions between CFG’s and PDF’s will be 

investigated. 

 

7.4.1 Complexity of Converting among CFG’s and PDA’s 

 An assumption --- n = the length of representation of a PDA or a CFG. 

 

 The following are conversions requiring time of order O(n) (linear time) --- 

 CFG  PDA (by the algorithm of Theorem 6.13) 

 PDA by final state  PDA by empty stack (by the construction of Theorem 6.11) 

 PDA by empty stack  PDA by final state (by the construction of Theorem 6.9) 

 

 Conversion from PDA’s to CFG’s need nonlinear time, as shown by the following 

theorem. 

 

 Theorem 7.31 --- 

There is an O(n3) algorithm that takes a PDA of length n and produces an equivalent 

CFG of length at most O(n3). 

 Proof. See the textbook. 

 

7.4.2 Running Time of Conversion to Chomsky Normal Form 

 Theorem 7.32 --- 

Given a grammar G of length n, we can find an equivalent CNF grammar for G in 

time of order O(n2); and the resulting grammar has length of order O(n2). 

 Proof. See the textbook. 

 

7.4.3 Testing Emptiness of CFL’s 

 The problem of testing emptiness of a CFL L is decidable. 

 The algorithm is described in Section 7.1.2 whose main step is: 

decide if the start symbol of the grammar G for L is “generating”; if not, then L 

is empty. 

 A refined algorithm of that in Section 7.1.2 takes time of O(n) (see the textbook for 

details). 

 

7.4.4 Testing Membership in a CFL 

 A way for solving the membership problem for a CFL L is to use the CNF of the CFG G 

for L in the following way: 

 The parse tree of an input string w of length n using the CNF grammar G has 2n  1 
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nodes. 

 We can generate all possible parse trees and check if a yield of them is w. 

 The number of such trees is exponential in n. 

 

 A refined way is to use the CYK algorithm which takes time O(n3).  

 That is, we use the CYK algorithm to check if a given string wL in O(n3) time, 

assuming the size of the grammar is constant. (See the next page for details) 

 See Theorem 7.33 which describes the above facts. 

 CYK (Cocke, Younger, Kasami) Algorithm --- 

 This is a table-filling algorithm (“tabulation”) based on the principle of dynamic 

programming 

 Input: grammar G in CNF & string w = a1a2…an. 

 The table entry Xij is the set of nonterminals A such that A 

  aiai+1….aj. 

 If start symbol S is in X1n, then S 

  a1a2….an which means that w is generated by 

the start symbol S and so has answered the problem. 

 To fill the table like the one as follows (for n = 5), we start from the bottom row 

and work upward row-by-row according to the following algorithm: 

 
 X15       

 X14 X25      

 X13 X24 X35     

 X12 X23 X34 X45    

 X11 X22 X33 X44 X55  

 a1 a2 a3 a4 a5   

 

 CYK (Cocke, Younger, Kasami) Algorithm --- 

 Basis: for the lowest row, set Xii = {A | A  ai is a production of G} 

 Induction: for a nonterminal A to be in Xij, try to find nonterminals B and C, and 

integer k such that 

1. i  k < j. 

2. B is in Xik. 

3. C is in Xk+1, j. 

4. A  BC is a production of G. 

 That is, to find A, we have to compute at most n pairs of previously computed 

sets: (Xii, Xi+1, j), (Xi, i+1, Xi+2, j), …, (Xi, j1, Xjj). 

 For example, to compute Xij = X25, we have to check the pairs of (X22, X35), (X23, 

X45), (X24, X55) (see the following table for a reference). 

 

  X15             

  X14 XX2255           

  X13 X24 X35         

  X12 X23 X34 X45       

  X11 X22 X33 X44 X55   

  a1 a2 a3 a4 a5     
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 Example 7.34 --- 

Given a grammar G with productions: 

S  AB | BC A  BA | a 

B  CC | b C  AB | a 

We want to test if w  baaba is generated by G. 

 A CYK table for the input string is shown in the following. 

 

  
{S, A, C}             

  
- {S, A, C}           

  
- {B} {B}         

  
{S, A}  {B} {S, C}  {S, A}        

  
{B} {A, C} {A, C} {B} {A, C}   

  b a a b a     

 

 Since S is in X
15

, so we decide that w is generated by G. 

 

7.4.5 Preview of Undecidable CFL Problems 

 The following are undecidable CFL problems --- 

 Is a given CFG G ambiguous? 

 Is a given CFL inherently ambiguous? 

 Is the intersection of two CFL’s empty? 

 Are two CFL’s the same? 

 Is a given CFL equal to S*, where S is the alphabet of this language? 

 

 These problems will be proved to be undecidable in the next chapters. 


