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7.0

Introduction

B Main concepts to be taught in this chapter ---

4 CFG’s may be simplified to fit certain special forms, like Chomsky normal form and
Greiback normal form.

4 Some, but not all, properties of RL’s are also possessed by the CFL’s.

4 Unlike the RL, many computational problems about the CFL cannot be answered.

4 That is, there are many undecidable problems about CFL’s.

7.1 Normal Forms for CFG’s

B Concept ---
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In this section, we want to prove that
every CFG can be transformed into an equivalent grammar in Chomsky normal form,
after simplifying the CFG in the following ways:
4 eliminating useless symbols (which do not appear in any derivation from the start
symbol);

4 eliminating e-productions (of the form A — g);
4 eliminating unit productions (of the form A — B);

Eliminating Useless Symbols

Some definitions ---
¢ We say symbol X is useful for a grammar G = (V, T, P, S) if there is some derivation of
the form

S = aXB = w
with weT".

4 A symbol is said to be useless if not useful.
* Omitting useless symbols obviously will not change the language generated by the
grammar.
4 There are two types of usefulness ---
* Xis generating if X = w;

« X is reachable if S = aXp.

Example 7.1 ---
Eliminate useless symbols in a grammar with the following productions:
S—>AB|a
A-b.

4 B is not generating, and is so eliminated at first, resulting in S — a, A — b, in which A
is not reachable and so eliminated too, with S — a as the only production left.
4 If we eliminate unreachable symbols at first and then non-generating ones, we get the

final result S — a, A — b, which is not what we want!
4 So, the order of eliminations is essential: eliminate non-generating symbols at first.



B Theorem 7.2 ---

7.1.2

7.1.3

Let G=(V,T,P,S)beaCFG, and assume that L(G) # , i.e., assume that G
generates at least one string. Let G; = (V4, Ty, P1, S) be the grammar obtained by the
following steps in order:

4 eliminate non-generating symbols and all related productions, resulting in grammar
Ga;
4 eliminate all symbols not reachable in GZ'

Then, G has no useless symbol and L(G,) = L(G).

4 For proof, see the textbook.

Computing Generating and Reachable Symbols

How to compute generating symbols?
4 Basis: every terminal symbol is generating.
4 Induction: if every symbol in a in A — « is generating, then A is generating.

How to compute reachable symbols?
4 Basis: the start symbol S is reachable.
4 Induction: if nonterminal A is reachable, then all the symbols in A — « are reachable.

(Both algorithms above are proved correct by Theorems 7.4 and 7.6)

Eliminating e-Productions

A definition --- a nonterminal A is said to be nullable if A =* ¢.
A Theorem --- We want to prove that

if a language L has a CFG, then the language L — {&} can be generated by a CFG
without e-production.

4 Two steps for the above proof:
* find “nullable” symbols;
* transform productions into ones which generate no empty string using the nullable

symbols.
Example 7.8 ---
Given a grammar with productions as follows:
S —>AB
A —>ahAA e
B >bBB|¢

then, we can see the following facts:
4 A and B are nullable because they derive empty strings;
4 Sis also nullable because A and B are nullable.

How to find nullable symbols systematically?
4 Algorithm 1 ---



* Basis: if A — ¢ is a production, then A is nullable.
¢ Induction: if all C; in B — C,C,...Cy are nullable, then B is nullable, too.

B How to transform productions into ones which generate no empty string?
4 Algorithm 2 ---
* For each production A — X;X,... X, in which m of the k X;’s are nullable, then
generate accordingly 2™ versions of this production where
(1) the nullable X;’s in all possible combinations are present or absent; and

(2) if A - g is in the 2" ones, eliminate it.

B Example 7.8 (continued) ---
¢ ForS - AB,A »aAA |, B ->bBB|e:
* We know S, A, B are nullable.
* FromS — AB, we getS — AB | A| B | e where S — ¢ should be eliminated.
* From A — aAA, we get A —> aAA | aA | aA | a where the repeated A — aA should be
removed.
* And from B — bBB, similarly we get B —bBB | bB | b.
* Overall result:
S—>AB|A|B
A —aAA|aA|a
B —>hBB|bB|b

B Theorem 7.7 ---
Algorithm 1 can be used to find all nullable symbols in a given grammar.

B Theorem 7.9 ---

If G, is constructed from a given grammar G by Algorithm 2, then L(G;) = L(G) —
{e}-

(For proofs of the above two theorems, see the textbook.)

7.1.4 Eliminating Unit Productions

m Definition --- a unit production is of the form A — B.
4 Unit productions sometimes are useful.
¢ For example, use of unit productions E — T and T — F removes ambiguity in
the ‘expression grammar,’ resulting in the following unambiguous grammar:

E>T|E+T
T>F|T=F
Fo1]|(E)
l>alb|lalb]I0]I1

m But unit productions complicate certain proofs.

B A two-step technique to eliminate unit productions without changing the



generated language:
¢ find all “unit pairs”
4 expand productions using unit pairs until all unit productions disappear.

Definition of unit pair ---

¢ Basis: (A, A) is a unit pair for any nonterminal.

¢ Induction: If (A, B) is a unit pair and B — C is a production, then (A, C) is a unit
pair.

How to find unit pairs?
4 Algorithm 3 ---
Follow the definition above.

Example 7.10 ---

The unit pairs for the unambiguous arithmetic expression grammar mentioned before
with the following productions

E->T|E+T
T>F|T=*F
F—1]|(E)
l>al|b|lajib]lO]I1
may be derived as follows:

unitpair (E,E) &E—>T = unitpair (E, T)
unitpair (E, ) &T—>F = unit pair (E, F)
unit pair (E,F) & F —> 1 = unitpair (E, I)
unitpair (T, &T—> F = unitpair (T, F)
unit pair (T, F) & F —> | = unit pair (T, I)
unit pair (F,F) & F —> 1 = unitpair (F, 1)

4 Totally, there are 10 unit pairs --- the above six plus the four (E, E), (T, T), (F, F), (I, I).

How to expand productions using unit pairs until all unit productions disappear?
Algorithm 4 ---

Given a grammar G = (V, T, P, S), we construct another G1 = (V, T, Py, S) as follows:

4 find all the unit pairs of G;
4 for each unit pair (A, B), add to P, all the productions A — «, where B — «is a
non-unit production in P.

Example 7.12 (continuation of Example 7.10) ---
4 According to Algorithm 4, the unit-production elimination result is shown in Fig. 7.1.
¢ The final production set is the union of all those on the right column.

Unit pair Productions
(E, E) E>E+T(fromE>E+T)
(E, T) ES>T*F{fromT—>T*F)
(E, F) E— (E)

(E, 1) E—alb|laJlb]I0]I1




(T, T) TH>T*F
(T, F) T (E)
(T, 1) T—alb|la|lb[10]11
(F, F) F - (E)
(F, 1 F—al|b|la]lb]l0]I1
D) I >alb|lalIb]I0]I1

Fig. 7.1 Unit production elimination result of Example 7.12.

B Theorem 7.13 ---

If grammar G; is constructed from Algorithms 3 and 4 above for unit production
elimination, then L(G;) = L(G).

4 For proof, see the textbook.

B Asummary ---
Perform eliminations of the following order to a grammar G:

4 Elimination of e-productions;
4 Elimination of unit productions;
4 Elimination of useless symbols,

then we can get an equivalent grammar generating the same language except the empty
string €. (See the related theorem described next.)

B Theorem 7.14 ---

If G is a CFG generating a language that contains at least one string other than ¢, then
there is another CFG G; such that L(G;) = L(G) — {&}, and G, has no e-productions, unit
productions, or useless symbols.

4 Proof --- construct G, in an order of three types of eliminations as above. For the rest of
the proof, see the textbook.
7.1.5 Chomsky Normal Form

B Definition ---

A grammar G is said to be in Chomsky Normal form (CNF), if the following two
conditions hold:

4 all its productions are in one of the following two simple forms:

* A—>BC
*A—>a

where A, B and C are nonterminals and a is a terminal; and
4 G has no useless symbol.
W Two-step transformation of a grammar into CNF ---

1. Put G into a form said by Theorem 7.14;
2. transform it into the two production forms of the CNF.



W Steps to achieve the 2nd step above ---
(a) Arrange all production bodies of length 2 or more to consist only of nonterminals;
(b) break production bodies of length 3 or more into a cascade of productions, each with
a body consisting of 2 nonterminals.

B To perform Step (a) above ---
4 For every terminal a, create a new nonterminal, say A.
(Now, every production has a body of a single terminal or at least two nonterminals &
no terminal.)
B To perform Step (b) above:

4 Break production A — BB,...By, k > 3, into a group of productions with two
nonterminals in each body as follows:

A — B;Cy, C1 — ByCy, ..., Cyz = By 2Cyz, Cyz = BBy

B Example 7.15 ---
Convert the expression grammar described previously into CNF.

4 For productions in the left column of Fig. 7.1, conduct the following steps:
(1) create new nonterminals for the terminals to produce the following productions:

A—>a B—ob Z—->0 01
P—+ M—* L—( R—)

(2) transformationof E>E+T|T*F|(E)|a|b]|la|lb|I10]I1
= E—>EPT|TMF|LER |a]|b|IA|IB|IZ|IO
T—> ..
F—..
- ..
=E—>EC,C;—> PT, ..
B Theorem 7.16 ---

If G is a CFG whose language contains at least one string other than g, then there is a
grammar G, in CNF such that L(G;) = L(G) — {&}.

¢ Proof. See the textbook.

B Definition --- Greiback Normal Form (in the box of p. 277) ---
A production is said to be of the Greiback normal form (GNF) if it is of the form
A—>aa

where a is a terminal and « is a string of zero or more nonterminals.

7.2 Pumping Lemma for CFL’s

7.2.1 The Size of Parse Trees

B See the textbook for the detail by yourself (for use in proof of the lemma).

7.2.2 Statement of the Pumping Lemma for CFL’s




B Theorem 7.18 (pumping lemma for CFL’s) ---
Let L be a CFL. There exists an integer constant n such that if zeL with |z| > n, then
we can write z = uvwxy, subject to the following conditions:

1. lvwx| < n;
2. vx # ¢ (that is, v, x are not both ¢);
3.foralli>0, uv'wx'yeL.

¢ Proof. See the textbook.

7.2.3 Applications of the Pumping Lemma

B Example 7.19 ---
Prove by contradiction the language L = {0"1"2" | n > 1} is not a CFL by the pumping
lemma.

Proof.
4 Suppose L is a CFL. Then there exists an integer n as given by the lemma.

4 Pick z =0"1"2" with |z| = 3n>n, which so can be written as z = uvwxy where
(1) vwx| < n;
(2) v, x are not both ¢; and
(3) the pumping is true.
4 By (1), vwx cannot include both 0 and 2 because there are n 1’s in between. This can
be elaborated by two cases:
(a) vwx has no 2;
(b) vwx has no 0.
4 The two cases are discussed as follows.
(a) vwx has no 2 ---
* Then v and x consists only 0’s and 1’s. Now ‘pump’ up z' = uv/®wx’y = uwy
which, as said by the lemma, isin L.
* However, this is not possible because at least one 0 or 1 will be eliminated
according to (2) and so z' cannot have n 0’s or n 1’s, resulting in a form
different from that of the strings in L (because there are n 2’s).
(b) vwx has no 0 ---
* By symmetry, we can draw the same conclusion as in (a).
* Since no other case exists, we conclude by contradiction that L is not a CFL.

B Example 7.21 ---
Prove L={ww | we{0, 1} } is not a CFL.

Proof (sketcch only).
¢ Letz=0"1"0"1" with n as given by the lemma.
¢ Pump z' = w’wx’y = uwy.
4 Since [vwx| < n, we know |z'| = |uwy| > 3n.
¢ If Z'L is true, then z' is of the form tt with t of length at least 3n/2.
4 There are 5 cases to deal with as follows.
(1) w' =vwx is in the firstn 0’s
(2) w' straddles 1st block of 0’s & 1st block of 1’s
(3) w'is in Ist block of 1°s
(4) w' straddles 1st block of 1’s and 0’s



(5) w'is in 2nd half of z ---- similar to above 4 cases.
We have to check each case to see contradiction:

4 For case (1) ---
» We have z = uvwxy = 0"1"0"1".
e |fw'=vwx is in the first n 0’s, then let vx consists of k 0’s with k > 0.
* Then the pumping result uwy begins with 0"*1", i.e., it ends in 1.
* Since |uwy| = 4n — k, we know if uwy = tt, then |t| = 2n — k/2.
* So, the first t does not end until after the first block of 1’s (because uwy begins with

0™1"), i.e., tends in 0.

* So is the second t, which means tt = uwy ends in 0.
* But the above says that uwy ends in 1. Contradiction!

4 The details of (2)~(5) are omitted and can be found in the textbook.

7.3 Closure Properties of CFL’s

B Some differences between CFL’s and RL’s ---

7.3.1

4 CFL’s are not closed under intersection, difference, or complementation
4 But the intersection or difference of a CFL and an RL is still a CFL.
4 We will introduce a new operation --- substitution.

Substitution

Definitions ---

4 A substitution s on an alphabet X is a function such that for each acZX, s(a) is a
language L, over any alphabet (not necessarily X).

¢ Forastring w = a;a,...a, € Z*, s(w) = s(ay)s(az)...s(an) = Lailaz...Lan, i.€., S(W) is a
language which is the concatenation of all Ly’s.

¢ Givenalanguage L, s(L) = U yeL S(W).

Example 7.22 ---

¢ A substitution s on an alphabet = {0, 1} is defined as S(0) = {a"b" | n > 1}, s(1) =
{aa, bb}.

¢ Let w = 01, then s(w) = s(0)s(1) = {a"b" | n > 1}{aa, bb} = {a"b"aa | n >1}U{a"b™? | n

>1}.
¢ LetL=L(0), then
(L) = U,,, s09=(s(0)" (provable) = {a'" | n > 1})°

={ u{a®"|n=13u{a"|n>1}U...
4 S(L) includes strings like aabbaaabbb, abaabbabab,...

B Theorem 7.23 ---

7.3.2

If L is a CFL over alphabet , and s is a substitutionon  such that s(a) is a CFL for
eachain ,thens(L)isa CFL.

¢ Proof. See the textbook.

Applications of the Substitution Theorem

B Theorem 7.24 ---

The CFL’s are closed under the following operations:
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1. Union;

2. Concatenation;

3. Closure (*), and positive closure (+).
4. Homomorphism.

4 Proof. Use the last theorem in the proofs; see the textbook for the detail.

7.3.3 Reversal
B Theorem 7.25 ---
If Lisa CFL, sois L®.
4 Proof. See the textbook.

7.3.4 Intersection with an RL

The CFL is not closed under intersection.
See an example of this fact in the next page.

B Example 7.26 ---
¢ L={0"1"2"| n>1} is not CFL as shown in Example 7.19.
¢ L, ={0""2'|n>1,i>1}and L, ={0'1"2"|n>1,i> 1} are CFL’s.
¢ Agrammar for L, is:S— AB, A—0A1|01, B—>2B|2.
¢ A grammar for L, is:S—AB, A—O0A|0, B—1B2|12.
4 Itis easy to see that L; N L, = L because both #0 = #1 in Ly and #1 = # 2 in L, means #0
=#l=#2asinL.
4 This shows that intersection of two CFL’s L; and L, yields a non-CFL L.
4 So CFL’s are not closed under intersection.
B Theorem 7.27 ---
IfLisaCFLandRisanRL, then LNRisa CFL.

¢ Proof. See the textbook.

W For an example, see Example 7.28.

B Theorem 7.29 ---
The following are true about CFL’s L, Ly, and L,, and an RL R:

1.L-RisaCFL;
2. L isnot necessarily a CFL;
3. Ly — Ly is not necessarily a CFL.

4 Proof. The proofs are easy to understand. Read by yourself.

7.3.5 Inverse Homomorphism
B Theorem 7.30 ---
Let L be a CFL and h a homomorphism. Then h™*(L) is a CFL.
4 Proof. See the textbook.
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7.4 Decision Properties of CFL’s

m Facts ---

74.1

7.4.2

7.4.3

74.4

4 Unlike RLs’ decision problems which are all solvable, very little can be said about
CFL’s.
4 Only two problems can be decided for CFL’s:
 whether the language is empty;
» whether a given string is in the language.
4 Computational complexity for conversions between CFG’s and PDF’s will be
investigated.

Complexity of Converting among CFG’s and PDA’s

An assumption --- n = the length of representation of a PDA or a CFG.

The following are conversions requiring time of order O(n) (linear time) ---

¢ CFG = PDA (by the algorithm of Theorem 6.13)

4 PDA by final state = PDA by empty stack (by the construction of Theorem 6.11)
4 PDA by empty stack = PDA by final state (by the construction of Theorem 6.9)

Conversion from PDA’s to CFG’s need nonlinear time, as shown by the following
theorem.
Theorem 7.31 ---

There is an O(n®) algorithm that takes a PDA of length n and produces an equivalent
CFG of length at most O(n®).

¢ Proof. See the textbook.

Running Time of Conversion to Chomsky Normal Form
Theorem 7.32 ---

Given a grammar G of length n, we can find an equivalent CNF grammar for G in
time of order O(n?); and the resulting grammar has length of order O(n?).

¢ Proof. See the textbook.

Testing Emptiness of CFL’s

The problem of testing emptiness of a CFL L is decidable.
4 The algorithm is described in Section 7.1.2 whose main step is:

decide if the start symbol of the grammar G for L is “generating”; if not, then L
is empty.

A refined algorithm of that in Section 7.1.2 takes time of O(n) (see the textbook for
details).

Testing Membership in a CFL

A way for solving the membership problem for a CFL L is to use the CNF of the CFG G
for L in the following way:
4 The parse tree of an input string w of length n using the CNF grammar G has 2n - 1

12



nodes.
4 We can generate all possible parse trees and check if a yield of them is w.
4 The number of such trees is exponential in n.

B A refined way is to use the CYK algorithm which takes time O(n®).
¢ That is, we use the CYK algorithm to check if a given string weL in O(n®) time,
assuming the size of the grammar is constant. (See the next page for details)

4 See Theorem 7.33 which describes the above facts.

¢ CYK (Cocke, Younger, Kasami) Algorithm ---
* This is a table-filling algorithm (“tabulation”) based on the principle of dynamic

programming

* Input: grammar G in CNF & string w = a;a;...an.
* The table entry Xj; is the set of nonterminals A such that A = Aidis1....q;.

* If start symbol S is in Xy, then S = a;ay....a, Which means that w is generated by
the start symbol S and so has answered the problem.

* To fill the table like the one as follows (for n = 5), we start from the bottom row
and work upward row-by-row according to the following algorithm:

* CYK (Cocke, Younger, Kasami) Algorithm ---
« Basis: for the lowest row, set Xii = {A | A — ai is a production of G}
» Induction: for a nonterminal A to be in X, try to find nonterminals B and C, and
integer k such that
Li<k<j.
2.Bisin Kik.
3.Cisin Xk+1,j.
4. A - BC is a production of G.
« That is, to find A, we have to compute at most n pairs of previously computed
sets: (Xii, Xisa, ), (Xi, iv1, Xivz, )y -+ -5 (Ki, j-1, Xjj)-
* For example, to compute X;j; = X5, we have to check the pairs of (X5, X3s),
, (Xa4, Xss5) (see the following table for a reference).

X12 X34

X111 %221 %33 | %44 | X5

ay az as ag ag
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B Example 7.34 ---
Given a grammar G with productions:

S— AB|BC - ]a
B—>CC|b C—AB|a

We want to test if w = baaba is generated by G.
¢ A CYK table for the input string is shown in the following.

{S, A, C}

- {B} {B}
AL {} | 8C {65 )

{8y | {ACH{ACH] {B} | {AC}

4 Since Sis in X, ., so we decide that w is generated by G.

15’

7.45 Preview of Undecidable CFL Problems

B The following are undecidable CFL problems ---
4 Is a given CFG G ambiguous?
4 Is a given CFL inherently ambiguous?
4 Is the intersection of two CFL’s empty?
4 Are two CFL’s the same?
4 Is a given CFL equal to S*, where S is the alphabet of this language?

B These problems will be proved to be undecidable in the next chapters.
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