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6.0 Introduction 
 

 Basic concepts: 

 CFL’s may be accepted by pushdown automata (PDA’s). 

 A PDA is an -NFA with a stack. 

 The stack can be read, pushed, and popped only on the top. 

 

 Two different versions of PDA’s --- 

 Accepting strings by “entering an accepting state”; 

 Accepting strings by “emptying the stack.” 

 

 The original PDA is nondeterministic. 

 There is also a subclass of PDA’s which are deterministic in nature. 

 Deterministic PDA’s (DPDA’s) resembles parsers for CFL’s in compilers. 

 

 It is interesting to know what “language constructs” which a DPDA can accept. 

 The stack is infinite in size, so can be used as a “memory” to eliminate the weakness of 

“finite states” of NFA’s, which cannot accept languages like L = {anbn | n  1}. 

 

 

6.1 Definition of PDA 
 

6.1.1 Informal Definition 

 Advantage and weakness --- 

 Advantage of the stack --- the stack can “remember” an infinite amount of information. 

 Weakness of the stack --- the stack can only be read in a first-in-last-out manner. 

 Therefore, it can accept languages like Lww
R = {wwR | w is in (0 + 1)*}, but not 

languages like L = {anbncn | n  1}. 

 

 A graphic model of a PDA --- as shown in Fig. 6.1. 

 

 Some comments ---  

 The input string on the “tape” can only be read. 

 But operations applied to the stack is complicated; we may replace the top symbol by 

any string --- 

 by a single symbol 

 by a string of symbols 

Fig. 6.1 A graphic model of the PDA. 
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 by the empty string  which means the top stack symbol is “popped up (eliminated).” 

 

 Example 6.1 --- 

Design a PDA to accept the language Lww
R = {wwR | w is in {0, 1}*}.  

 In start state q0, copy input symbols onto the stack. 

 At any time, nondeterministically guess whether the middle of wwR is reached and enter 

q1, or continue copying input symbols. 

 In q1, compare the remaining input symbols with those on the stack one by one. 

 If the stack can be so emptied, then the matching of w with wR succeeds. 

 

6.1.2 Formal Definition 

 A PDA is a 7-tuple P = (Q, , , , q0, Z0, F) where 

 Q: a finite set of states; 

 : a finite set of input symbols; 

 : a finite stack alphabet; 

 : a transition function such that (q, a, X) is a set of pairs (p, ) where 

 qQ (the current state); 

 a or a =  (an input symbol or an empty string); 

 X; 

 pQ (the next state) 

 * which replaces X on the top of the stack in the following way: 

(1) when  = , the top stack symbol is popped up; 

(2) when  = X, the stack is unchanged; 

(3) when  = YZ, X is replaced by Z, and Y is pushed to the top; 

(4) when  = Z, X is replaced by Z and string  is pushed to the top. 

 q0: the start state; 

 Z0: the start symbol of the stack; 

 F: the set of accepting or final states. 

 

 Example 6.2 (Example 6.1 continued) --- 

Designing a PDA to accept the language Lww
R. 

 Need a start symbol Z of the stack and a 3rd state q2 as the accepting state. 

 A PDA is P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, , q0, Z0, {q2}) such that 

 

 (q0, 0, Z0) = {(q0, 0Z0)}, (q0, 1, Z0) = {(q0, 1Z0)} 

(conduct initial pushing steps with Z0 to mark stack bottom) 

 

 (q0, 0, 0) = {(q0, 00)}, (q0, 0, 1) = {(q0, 01)}, (q0, 1, 0) = {(q0, 10)}, (q0, 1, 1) = 

{(q0, 11)} (continue pushing) 

 

 (q0, , Z0) = {(q1, Z0)} (check if input is  which is in Lww
R) 

 

 (q0,, 0) = {(q1, 0)}, (q0, , 1) = {(q1, 1)} (check the string’s middle) 

 

 (q1, 0, 0) = {(q1, )}, (q1, 1, 1) = {(q1, )}  (matching pairs) 

 

 (q1,, Z0) = {(q2, Z0)} (enter final state) 
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6.1.3 A Graphic Notation for PDA’s 

 The transition diagram of a PDA is easier to follow. 

 We use “a, X/” on an arc from state p to q to represent that “transition (q, a, X) contains 

(p, )” as shown in Fig. 6.2. 

 

 
Fig. 6.2 A graphic notation for transitions of a PDA. 

 

 

 Example 6.3 --- 

The transition diagram of the PDA of Example 6.2 is as shown in Fig. 6.3 (Fig. 6.2 in 

p. 230 of the textbook). 

 A question --- where is the nondeterminism? 

Fig. 6.3 The PDA of Example 6.3. 

 

6.1.4 Instantaneous Descriptions of a PDA 

 The configuration of a PDA is represented by a 3-tuple (q, w, ) where 

 q is the state; 

 w is the remaining input; and 

  is the stack content. 

 

 Such a 3-tuple is called an instantaneous description (ID) of the PDA. 

 The change of an ID into another is called a move, denoted by the symbol _|
P

, or _|  

when P is understood. 

 So, if (q, a, X) contains (p, ), then the following is a corresponding move: 

 (q, aw, X) _|  (p, w, ) 

 We use *_|
P

 or *_|  to indicate zero or more moves. 

 

 Example 6.4 (continued from Example 6.2) --- 

q  p 
a, X/ 

q0 q1 

q1 , Z0/Z0

, 0/0

,, 1/1

q2

q2 
, Z0/Z0

start 

, Z0/0Z0
, Z0/1Z0

, 0/00 
, 1/01 
, 0/10 
, 1/11 

, 0/ 
, 1/

(push 0 on top of Z0) 
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The moves for the input w = 1111 is as follows. 

(q0, 1111, Z0) 
_|  (q0, 111, 1Z0) 

_|  (q0, 11, 11Z0) 
_|  (q1, 11, 11Z0) 

_|  (q1, 1, 1Z0) 
_|  (q1, , Z0) 

_|  (q2, , Z0) 

 There are other paths entering dead ends which are not shown in the above derivations. 

 

 

 Theorem 6.5 --- 

If P = (Q, , , , q0, Z0, F) is a PDA, and  

(q, x, ) *_|
P

 (p, y, ),  

then for any string w in 
*

 and  in 
*

, it is also true that 

(q, xw, ) *_|
P

 (p, yw, ). 

 The reverse is not true; but if  is taken away, the reverse is true, as shown by the next 

theorem. 

 

 

 Theorem 6.6 --- 

If P = (Q, , , , q0, Z0, F) is a PDA, and 

(q, xw, ) *_|
P

 (p, yw, ), 

then it is also true that 

(q, x, ) *_|
P

 (p, y, ). 

 

 

6.2 The Language of a PDA 
 

 Some important facts --- 

 There are two ways to define languages of PDA’s as mentioned before: 

 by final state; 

 by empty stack. 

 

 It can be proved that a language L has a PDA that accepts it by final state if and only if 

L has a PDA that accepts it by empty stack (a theorem to be proved later). 

 

 For a given PDA P, the language that P accepts by final state and by empty stack are 

usually different. 

 

 In this section, we show conversions between the two ways of language acceptances. 

 

 

6.2.1 Acceptance by Final State 

  Definition --- 
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If P = (Q, , , , q0, Z0, F) is a PDA. Then L(P), the language accepted by P by 

final state, is 

{w | (q0, w, Z0) *_|
P

 (q, , ), qF} 

for any . 

 

 The PDA shown in Example 6.2 indeed accepts the language Lww
R (see Example 6.7 for 

the detail in the textbook). 

 

6.2.2 Acceptance by Empty Stack 

 Definition --- 

If P = (Q, , , , q0, Z0, F) is a PDA. Then N(P), the language accepted by P by 

empty stack, is 

{w | (q0, w, Z0) *_|
P

 (q, , ), qF} 

for any q. 

 

 The set of final states, F, may be dropped to form a 6-tuple, instead of a 7-tuple, for a 

PDA. 

 

 Example 6.8 --- 

The PDA of Example 6.2 may be modified in the following way to accept Lww
R by 

empty stack: 

simply change the original transition (q1, , Z0) = {(q2, Z0)} to be (q1, , Z0) = {(q
2

, 

)}. That is, just eliminate Z0. 

 

6.2.3 From Empty Stack to Final State 

 Theorem 6.9 --- 

If L = N(PN) for some PDA PN = (Q, , , N, q0, Z0), then there is a PDA PF such 

that L = L(PF). 

Proof. The idea for the proof is to use Fig. 6.4 below. 

 

 

 
Fig. 6.4 PF simulates PN and accepts the input string if PN empties its stack. 

 

 

pf q0 

PN 

, X0/

, X0/

, X0/

p0 
, X0/Z0X0 

PF 
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 Define PF = (Q∪{p0, pf}, , ∪{X0}, F, p0, X0, {pf}) where F is such that 

 F(p0, , X0) = {(q0, Z0X0)} (with X0 as the bottom of the stack); 

 For all qQ, a or a = , and Y, F(q, a, Y) contains all the pairs in N(q, a, Y). 

 F(q, , X0) contains (pf, ) for every state q in Q. 
 

 It can be proved that W is in L(PF) if and only if w is in N(PN) (see the textbook for that 

detail). 

 

 Example 6.10 --- 

Design a PDA which accepts the if/else errors by empty stack. 

 Let i represents if; e represents else. 

 The PDA is designed in such a way that 

if the number of else (#else) > the number of if (#if), then the stack will be emptied. 

 A PDA by empty stack for this is as follows and shown in Fig. 6.5: 

PN = ({q}, {i, e}, {Z}, N, q, Z) 

where 

 when an “if” is seen, push a “Z”; 

 when an “else” is seen, pop a “Z”; 

 when (#else) > (#if + 1), the stack is emptied and the input sting is accepted. 

 

 

Fig. 6.5 A PDA by empty stack for Example 6.10. 

 

 For example, for input string w = iee, the moves are: 

(q, iee, Z) _|  (q, ee, ZZ) _|  (q, e, Z) _|  (q, , ) accept！ 

 How about w = eei? 

 

 A PDA by final state is as follows and shown in Fig. 6.6:  

PF = ({p, q, r}, {i, e}, {Z, X0}, F, p, X0, {r}). 

 

Fig. 6.6 A PDA by final state for Example 6.10. 

 

 

i, Z/ZZ 

e, Z/ 

q start 

 

e, Z/

i, Z/ZZ 

q p r 

, X0/, X0/ZX0 

start 
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 For input w = iee, the moves are: 

(p, iee, X0) 
_|  (q, iee, ZX0) 

_|  (q, ee, ZZX0) 
_|  (q, e, ZX0) 

_|  (q, , X0) 
_|  (r, , )  accept！ 

 

 Theorem 6.11 --- 

Let L be L(PF) for some PDA PF = (Q, , , F, q0, Z0, F). Then there is a PDA PN 

such that L = N(PN).  

Proof. The idea is to use Fig. 6.7 below (in final states of PF, pop up the remaining 

symbols in the stack). 
 

 

 
 

Fig. 6.7 PN simulating PF and empties its stack when and only when PN enters an accepting state. 
 

 

6.3 The Language of a PDA 
 

 Equivalences to be proved --- 

 CFL’s defined by CFG’s; 

 Languages accepted by final state by some PDA; 

 Languages accepted by empty stack by some PDA. 

 

 Equivalence of the last two above have been proved. 

 

6.3.1 From Grammars to PDA’s 

 Given a CFG G = (V, T, Q, S), we may construct a PDA P that accepts L(G) by empty 

stack in the following way: 

 P = ({q}, T, V∪T, , q, S) where the transition function  is defined by: 

 for each nonterminal A, (q, , A) = {(q, ) |    is a production of G}; 

 for each terminal a, (q, a, a) = {(q, )}. 

 

 Theorem 6.13 --- 

If PDA P is constructed from CFG G by the construction above, then N(P) = L(G). 

 Proof. See the textbook. 
 

 

 Example 6.12 ---  

, any/p0

0 

p q0

0 

PF , any/

, X0/Z0X0 start 

PN 

, any/
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Construct a PDA from the expression grammar of Fig. 5.2: 

I  a | b | Ia | Ib | I0 | I1; 

E  I | E*E | E+E | (E). 

The transition function for the PDA is as follows: 

a) (q, , I) = {(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)} 

b) (q, , E) = {(q, I), (q, E+E), (q, EE), (q, (E))} 

c) (q, d, d) = {(q, )} where d may any of the terminals a, b, 0, 1, (, ), +, *. 

 

6.3.2 From PDA’s to Grammars 

 Theorem 6.14 --- 

Let P = (Q, , , , q
0
, Z

0
) be a PDA. Then there is a context-free grammar G such 

that L(G) = N(P). 

Proof. Construct G = (V, T, P, S) where the set of nonterminals consists of: 

 the special symbol S as the start symbol; 

 all symbols of the form [pXq] where p and q are states in Q and X is a stack symbol 

in . 

 The productions of G are as follows. 

(a) For all states p, G has the production S  [q
0
Z

0
p]. 

(b) Let (q, a, X) contain the pair (r, Y
1
Y

2
 … Y

k
), where 

 a is either a symbol in  or a =  

 k can be any number, including 0, in which case the pair is (r, ). 

Then for all lists of states r
1
, r

2
, …, r

k
, G has the production 

[qXr
k
]  a[rY

1
r

1
][r

1
Y

2
r

2
]…[r

k1
Y

k
r

k
]. 

 

 Example 6.15 --- 

Convert the PDA of Example 6.10 (shown in Fig. 6.5) to a grammar. 

 Nonterminals include only two symbols, S and [qZq]. 

 Productions: 

1. S  [qZq]     (for the start symbol S); 

2. [qZq]  i[qZq][qZq]   (from (q, ZZ)
N
(q, i, Z)) 

3. [qZq]  e     (from (q, )
N
(q, e, Z)) 

 If we replace [qZq] by a simple symbol A, then the productions become 

1. S  A 
2. A  iAA 

3. A  e 

 Obviously, these productions can be simplified to be 

1. S  iSS 

2. S  e 

 And the grammar may be written simply as G = ({S}, {i, e}, {S  iSS | e}, S). 
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6.4 Deterministic PDA’s 

 

6.4.1 Definition of a Deterministic PDA 

 Intuitively, a PDA is deterministic if there is never a choice of moves (including -moves) 

in any situation. 

 

 Definition --- 

A PDA P = (Q, , , , q0, Z0, F) is said to be deterministic (a DPDA) if and only if 

the following two conditions are met:

 (q, a, X) has at most one element for any qQ, a or a = , and X. (“There must 

exist one.”) 

 If (q, a, X) is nonempty for some aS, then (q, , X) must be empty. (“There cannot 

be more than one.”) 

 

 Example 6.16 –  

 There is no DPDA for Lww
R of Example 6.2. 

 But there is a DPDA for a modified version of Lww
R as follows, which is not an RL 

(proved later): 

LwcwR = {wcwR | w  L((0 + 1)*)}. 

 To recognize wcwR, just store 0’s and 1’s in stack until center marker c is seen. Then, 

match the remaining input wR with the stack content which is w. 

 The PDA can so be designed to be deterministic by searching the center marker without 

trying matching all the time nondeterministically. 

 A desired DPDA is shown in Fig. 6.8, which is difference from Fig. 6.3 in the blue c).  

 

 

Fig. 6.8 The PDA of Example 6.16. 

 

6.4.2 Regular Languages and DPDA’s 

 The DPDA accepts a class of languages that is between the RL’s and the CFL’s, 

as proved in the following. 

 

 Theorem 6.17 --- 

If L is an RL, then L = L(P) for some DPDA P (accepting by final state). 

Proof.  

 Easy. Just use a DPDA to simulate a DFA as follows.  

q0 q1 

q1 c, Z0/Z0

c, 0/0

,c, 1/1

q2

q2 
, Z0/Z0

start 

, Z0/0Z0
, Z0/1Z0

, 0/00 
, 1/01 
, 0/10 
, 1/11 

, 0/ 
, 1/

(push 0 on top of Z0) 
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 If DFA A = (Q, , A, q0, F) accepts L, then construct DPDA P = (Q, , {Z0}, P, q0, Z0, 

F) where P is such that P(q, a, Z0) = {(p, Z0)} for all states p and q in Q such that A(q, 

a) = p. 

 

 
 The DPDA accepts a class of languages that is between the RL’s and the CFL’s, as 

proved in the following. 

 

 The language-recognizing capability of the DPDA by empty stack is rather 

limited. 
 A language L is said to have the prefix property if there are no two different strings x and 

y in L such that x is a prefix of y.  

 For examples of such languages, see Example 6.18 

 

 Theorem 6.19 --- 

A language L is N(P) for some DPDA P if and only if L has the prefix property and 

L is L(P') for some DPDA P'. 

 For the proof, do exercise 6.4.3. 

 

 

6.4.3 DPDA’s and CFL’s 

 DPDA’s can be used to accept non-RL’s, for example, Lww
R mentioned before. 

 It can be proved by the pumping lemma that Lww
R is not an RL (see the textbook, pp. 

254~255). 

 
 On the other hand, DPDA’s by final state cannot accept certain CFL’s, for example, Lww

R. 
 It can be proved that Lww

R cannot be accepted by a DPDA by final state (see an informal 

proof in the textbook, p. 255). 

 

 Conclusion --- 

The languages accepted by DPDA’s by final state properly include RL’s, but are 

properly included in CFL’s. 

 

6.4.4 DPDA’s and Ambiguous Grammars 

 Theorem 6.20 --- 

If L = N(P) (accepting by empty stack) for some DPDA P, then L has an 

unambiguous CFG.  

 Proof. See the textbook. 

 

 

 Theorem 6.21 --- 

If L = L(P) for some DPDA P (accepting by final state), then L has an 

unambiguous CFG.  

 Proof. See the textbook. 

 


