Chapter 6

Pushdown Automata
(2015/11/23)

Sagrada Familia, Barcelona, Spain

Outline

6.0 Introduction

6.1 Definition of PDA

6.2 The Language of a PDA

6.3 Equivalence of PDA’s and CFG’s
6.4 Deterministic PDA’s

6.0

Introduction

W Basic concepts:

4 CFL’s may be accepted by pushdown automata (PDA’s).
¢ A PDA is an e-NFA with a stack.
4 The stack can be read, pushed, and popped only on the top.

4 Two different versions of PDA’s ---
* Accepting strings by “entering an accepting state”;
» Accepting strings by “emptying the stack.”

4 The original PDA is nondeterministic.
4 There is also a subclass of PDA’s which are deterministic in nature.
4 Deterministic PDA’s (DPDA’s) resembles parsers for CFL’s in compilers.

4 It is interesting to know what “language constructs” which a DPDA can accept.
4 The stack is infinite in size, so can be used as a “memory” to eliminate the weakness of
“finite states” of NFA’s, which cannot accept languages like L = {a"b" | n > 1}.

6.1 Definition of PDA

6.1.1

Informal Definition

B Advantage and weakness ---

4 Advantage of the stack --- the stack can “remember” an infinite amount of information.

¢ Weakness of the stack --- the stack can only be read in a first-in-last-out manner.

¢ Therefore, it can accept languages like Ly = {ww" | w is in (0 + 1)*}, but not
languages like L = {a"b"c" | n > 1}.

B A graphic model of a PDA --- as shown in Fig. 6.1.

tape
o[[o[i[o[

Tape reader

finite-state H <— Top of stack
control

reader

& writer

<— Bottom of stack
Fig. 6.1 A graphic model of the PDA.

B Some comments ---

4 The input string on the “tape” can only be read.

4 But operations applied to the stack is complicated; we may replace the top symbol by
any string ---
* by a single symbol
* by a string of symbols

* by the empty string € which means the top stack symbol is “popped up (eliminated).”

B Example 6.1 ---

6.1.2

Design a PDA to accept the language Ly = {ww® |wisin {0, 1} }.

4 In start state qo, copy input symbols onto the stack.

¢ Atany time, nondeterministically guess whether the middle of ww" is reached and enter
qs, Or continue copying input symbols.

4 In q;, compare the remaining input symbols with those on the stack one by one.

¢ If the stack can be so emptied, then the matching of w with w® succeeds.

Formal Definition

APDAiIsa7-tuple P=(Q, X, T, & Qo, Zo, F) where
4 Q: a finite set of states;
4 > a finite set of input symbols;
4 I': afinite stack alphabet;
4 o atransition function such that &(q, a, X) is a set of pairs (p,) where
* geQ (the current state);
* acX ora=¢ (an input symbol or an empty string);
e Xel;
* peQ (the next state)
« yeI"" which replaces X on the top of the stack in the following way:
(1) when y= ¢, the top stack symbol is popped up;
(2) when y= X, the stack is unchanged;
(3) when y=YZ, X'is replaced by Z, and Y is pushed to the top;
(4) when y= aZ, Xis replaced by Z and string « is pushed to the top.
* (o: the start state;
* Z,: the start symbol of the stack;
* F: the set of accepting or final states.

B Example 6.2 (Example 6.1 continued) ---

Designing a PDA to accept the language L.

4 Need a start symbol Z of the stack and a 3rd state g, as the accepting state.
¢ APDAis P = ({qo, 01, 92}, {0, 1}, {0, 1, Zo}, 6, 0o, Zo, {q2}) such that

* Ko, 0, Zo) = {(do, 0Z0)}, Kdo, 1, Zo) = {(dlo, 120)}
(conduct initial pushing steps with Z, to mark stack bottom)

* (0o, 0, 0) = {(go, 00)}, X0, O, 1) = {(qo, 01)}, K0, 1, 0) = {(o, 10)}, X, 1, 1) =

{(d, 11)} (continue pushing)
* Kdo, & Zo) = {0, Zo)} (check if input is & which is in Ly
* &do, € 0) = {(qu, 0)}, Kdo, &, 1) = {(az, 1)} (check the string’s middle)
* &d1, 0, 0) ={(as, &)}, Katz, 1, 1) = {(a, &)} (matching pairs)
* A0, & Zo) = {(A2, Zo)} (enter final state)

6.1.3 A Graphic Notation for PDA’s

B The transition diagram of a PDA is easier to follow.
B We use “a, X/&” on an arc from state p to q to represent that “transition &q, a, X) contains
(p, @)” as shown in Fig. 6.2.

a, Xla

P

Fig. 6.2 A graphic notation for transitions of a PDA.

)\ 4

B Example 6.3 ---

The transition diagram of the PDA of Example 6.2 is as shown in Fig. 6.3 (Fig. 6.2 in
p. 230 of the textbook).

4 A question --- where is the nondeterminism?

0, Zo/0Zg(push 0 on top of Zo)

1, Zol1Zg

0, 0/00

0, 1/01 0, 0/c
1,0/10 11 e
1,111 '

€, 0/0
g 1/1

Fig. 6.3 The PDA of Example 6.3.

6.1.4 Instantaneous Descriptions of a PDA

B The configuration of a PDA is represented by a 3-tuple (g, w, ») where
4 (is the state;
4 w is the remaining input; and
4 yis the stack content.

B Such a 3-tuple is called an instantaneous description (ID) of the PDA.
B The change of an ID into another is called a move, denoted by the symbol h ,or |

when P is understood.
B So, if &q, a, X) contains (p, «), then the following is a corresponding move:

(@ aw, Xp) F (p.w, af)

* N
B \We use E or |‘ to indicate zero or more moves.

B Example 6.4 (continued from Example 6.2) ---

The moves for the input w = 1111 is as follows.

(o, 1111, Zg) F (0o, 111,1Z0) | (0o, 11, 1120) | (s, 11, 11Z)

Foo(On1,1Z0) F (A& Zo) F o (02 & Zo)

4 There are other paths entering dead ends which are not shown in the above derivations.

B Theorem 6.5 ---
IfP=(Q, X%, T, 6 0o, Zo, F) is a PDA, and
@xa £ @A
then for any string w in 2* and yin F*, it is also true that
(@ xw, ap) £ (p.yw, B).
4 The reverse is not true; but if yis taken away, the reverse is true, as shown by the next

theorem.

B Theorem 6.6 ---
IfP=(Q,%,T, 5 qo Zo, F) isaPDA, and

(@ xw, @) E (p,yw,),
then it is also true that

(@ % @) t Py A

6.2 The Language of a PDA

B Some important facts ---

4 There are two ways to define languages of PDA’s as mentioned before:
* by final state;
* by empty stack.

4 It can be proved that a language L has a PDA that accepts it by final state if and only if
L has a PDA that accepts it by empty stack (a theorem to be proved later).

4 For a given PDA P, the language that P accepts by final state and by empty stack are
usually different.

4 In this section, we show conversions between the two ways of language acceptances.

6.2.1 Acceptance by Final State
B Definition ---

IfP=(Q, %I, d Qo Zo, F) isa PDA. Then L(P), the language accepted by P by
final state, is

W] (@ w Zo) £ (45 o) qeF}
for any a.

4 The PDA shown in Example 6.2 indeed accepts the language L, (see Example 6.7 for
the detail in the textbook).
6.2.2 Acceptance by Empty Stack
B Definition ---

IfP=(Q, T, 6 0o, Zo, F) is a PDA. Then N(P), the language accepted by P by
empty stack, is

{W | (qo, W, ZO) |_; (q, €, 8), qEF}

for any q.

4 The set of final states, F, may be dropped to form a 6-tuple, instead of a 7-tuple, for a
PDA.

B Example 6.8 ---

The PDA of Example 6.2 may be modified in the following way to accept Lyy» by
empty stack:

simply change the original transition &qu, €, Zo) = {(92, Zo)} to be &qs, &, Zo) = {(q2,
g)}. That is, just eliminate Z,.

6.2.3 From Empty Stack to Final State
® Theorem 6.9 ---

If L = N(Py) for some PDA Py = (Q, Z, T, &, Go, Zo), then there is a PDA Pg such
that L = L(Pg).

Proof. The idea for the proof is to use Fig. 6.4 below.

Fig. 6.4 Pr simulates Py and accepts the input string if Py empties its stack.

¢ Define P = (QU{po, pi}, Z, T U{Xo}, S Po, Xo, {Pr}) Where & is such that
e £(pos & Xo) ={(qo, ZoXo)} (with X, as the bottom of the stack);
e ForallqeQ,acXora=c¢,and YeT, &(q, a, Y) contains all the pairs in &y(q, &, Y).
* 5(q, &, Xo) contains (py, €) for every state g in Q.

4 It can be proved that W is in L(Pg) if and only if w is in N(Py) (see the textbook for that
detail).
B Example 6.10 ---
Design a PDA which accepts the if/else errors by empty stack.

¢ Letirepresents if; e represents else.
¢ The PDA is designed in such a way that

if the number of else (#else) > the number of if (#if), then the stack will be emptied.
4 A PDA by empty stack for this is as follows and shown in Fig. 6.5:

Pnv=({a}. {i. e}, {Z}, &, a. 2)

where
* when an “if” is seen, push a “Z”;
* when an “else” is seen, pop a “Z”;
» when (#else) > (#if + 1), the stack is emptied and the input sting is accepted.

i,2/22
e, Zle

start

Fig. 6.5 A PDA by empty stack for Example 6.10.

4 For example, for input string w = iee, the moves are:

(q,iee,2) F (g,ee,Z22) } (9,e,2) } (q,¢, €) accept !

¢ How about w = eei?

¢ A PDA by final state is as follows and shown in Fig. 6.6:

Pe= ({p! 0, r}! {I! 6}, {Z! XO}! OF, p, Xo, {r})

e, Zle
i, 2177

&, Xo/ZXO &, X()/S
start _—

Fig. 6.6 A PDA by final state for Example 6.10.

* For input w = iee, the moves are:

(p, iee, Xo) F (g, iee, ZXo) F (g, ee, ZZXo) | (0, €, ZXo)

F (@& Xo) F (r,e¢€) accept!

B Theorem 6.11 ---

Let L be L(Pg) for some PDA Pg = (Q, X, T', &, Qo, Zo, F). Then there is a PDA Py
such that L = N(Pn).

Proof. The idea is to use Fig. 6.7 below (in final states of Pg, pop up the remaining
symbols in the stack).

Pn

start Sv Xo/ZoXo

Fig. 6.7 Py simulating Pr and empties its stack when and only when Py enters an accepting state.

6.3 The Language of a PDA

B Equivalences to be proved ---
¢ CFL’s defined by CFG’s;
4 Languages accepted by final state by some PDA;
4 Languages accepted by empty stack by some PDA.

W Equivalence of the last two above have been proved.

6.3.1 From Grammars to PDA’s

B GivenaCFG G=(V, T, Q, S), we may construct a PDA P that accepts L(G) by empty
stack in the following way:
¢ P=({q}, T,VUT, 6, q, S) where the transition function ¢'is defined by:
* for each nonterminal A, &q, ¢, A) = {(q,) | A — Sis a production of G};
« for each terminal a, &q, a, a) = {(q, &)}

B Theorem 6.13 ---
If PDA P is constructed from CFG G by the construction above, then N(P) = L(G).
4 Proof. See the textbook.

B Example 6.12 ---

Construct a PDA from the expression grammar of Fig. 5.2:
l>alb|lajlb|l10]I1;
E— | |E*E| E+E | (E).

The transition function for the PDA is as follows:
a) Aq, & 1) ={(q, a), (q, b), (9, 1), (q, Ib), (9, 10), (q, 11)}

b) &a. &, E) ={(q, 1), (a, E+E), (0, E*E), (a, (E))}
c) &q, d, d) ={(q, €)} where d may any of the terminals a, b, 0, 1, (,), +, -

6.3.2 From PDA’s to Grammars
B Theorem 6.14 ---
LetP=(Q, % T, 4 s ZO) be a PDA. Then there is a context-free grammar G such
that L(G) = N(P).

Proof. Construct G = (V, T, P, S) where the set of nonterminals consists of:
4 the special symbol S as the start symbol;
4 all symbols of the form [pXq] where p and g are states in Q and X is a stack symbol
inT.
4 The productions of G are as follows.
(a) For all states p, G has the production S — [q,Z p].

(b) Let &q, a, X) contain the pair (r, Y)Y, .. Yk), where

* a s either asymbol in £ ora =¢;
* k can be any number, including 0, in which case the pair is (r, €).

Then for all lists of states s T G has the production
[quk] - a[rerl][rlerz]...[rk_lYkrk].

B Example 6.15 ---
Convert the PDA of Example 6.10 (shown in Fig. 6.5) to a grammar.

4 Nonterminals include only two symbols, S and [gZq].
4 Productions:

1.S - [gZq] (for the start symbol S);
2.[9Zq] — i[9Zq][aZa] (from (4, Z2)e 4, (a. 1, 2))
3.[0Zq] > e (from (q, s)e&N(q, e, 2))
¢ If we replace [gZq] by a simple symbol A, then the productions become
1.S>A
2. A > iAA
3.A>e
4 Obviously, these productions can be simplified to be
1.S—iSS
2.5—>e

4 And the grammar may be written simply as G = ({S}, {i, e}, {S —> iSS | e}, S).

10

6.4 Deterministic PDA’s

6.4.1 Definition of a Deterministic PDA

B [ntuitively, a PDA is deterministic if there is never a choice of moves (including e-moves)

6.4.2

in any situation.

Definition ---

APDAP=(Q,ZT, 6 0o, Zo, F) is said to be deterministic (a DPDA) if and only if
the following two conditions are met:

¢ (q, a, X) has at most one element for any qeQ, aeX or a = ¢, and XeI". (“There must
exist one.”)

¢ If &q, a, X) is nonempty for some aeS, then &q, &, X) must be empty. (“There cannot
be more than one.”)

Example 6.16 —
4 There is no DPDA for L+ of Example 6.2.
¢ But there is a DPDA for a modified version of L,z as follows, which is not an RL
(proved later):
Lucar = {wew® |w e L((0 + 1)*)}.

¢ To recognize wew”, just store 0’s and 1’s in stack until center marker c is seen. Then,
match the remaining input w® with the stack content which is w.

4 The PDA can so be designed to be deterministic by searching the center marker without
trying matching all the time nondeterministically.

4 A desired DPDA is shown in Fig. 6.8, which is difference from Fig. 6.3 in the blue c).

0, Zg/0Zg(push 0 on top of Z,)

1, Zol1Zg

0, 0/00

0, 1/01

1,010 (1)' 2;88
1,111 '

c, 0/0
c, 11

Fig. 6.8 The PDA of Example 6.16.

Regular Languages and DPDA’s

The DPDA accepts a class of languages that is between the RL’s and the CFL’s,
as proved in the following.

Theorem 6.17 ---
If L isan RL, then L = L(P) for some DPDA P (accepting by final state).

Proof.
4 Easy. Just use a DPDA to simulate a DFA as follows.

11

6.4.3

6.4.4

¢ IFDFAA=(Q, X, 6 go, F) accepts L, then construct DPDA P = (Q, X, {Zo}, J, Qo, Zo,
F) where & is such that os(q, a, Zo) = {(p, Zo)} for all states p and g in Q such that Ja(q,
a)=p.

The DPDA accepts a class of languages that is between the RL’s and the CFL’s, as
proved in the following.

The language-recognizing capability of the DPDA by empty stack is rather
limited.

A language L is said to have the prefix property if there are no two different strings x and
y in L such that x is a prefix of y.

4 For examples of such languages, see Example 6.18

Theorem 6.19 ---

A language L is N(P) for some DPDA P if and only if L has the prefix property and
L is L(P") for some DPDA P'.

4 For the proof, do exercise 6.4.3.

DPDA’s and CFL’s

DPDA’s can be used to accept non-RL’s, for example, L, mentioned before.
4 It can be proved by the pumping lemma that L, is not an RL (see the textbook, pp.
254~255).

On the other hand, DPDA’s by final state cannot accept certain CFL’s, for example, Ly~
4 It can be proved that L, cannot be accepted by a DPDA by final state (see an informal
proof in the textbook, p. 255).

Conclusion ---

The languages accepted by DPDA’s by final state properly include RL’s, but are
properly included in CFL’s.

DPDA’s and Ambiguous Grammars
Theorem 6.20 ---

If L = N(P) (accepting by empty stack) for some DPDA P, then L has an
unambiguous CFG.

¢ Proof. See the textbook.

Theorem 6.21 ---

If L = L(P) for some DPDA P (accepting by final state), then L has an
unambiguous CFG.

¢ Proof. See the textbook.

12

