Chapter 6

Pushdown Automata

(2015/11/23)

Sagrada Familia, Barcelona, Spain

Outline

6.0 Introduction
6.1 Definition of PDA
6.2 The Language of a PDA
6.3 Equivalence of PDA's and CFG's
6.4 Deterministic PDA's

6.0 Introduction

- Basic concepts:

- CFL's may be accepted by pushdown automata (PDA's).
- A PDA is an ε-NFA with a stack.
- The stack can be read, pushed, and popped only on the top.
- Two different versions of PDA's ---
- Accepting strings by "entering an accepting state";
- Accepting strings by "emptying the stack."
- The original PDA is nondeterministic.
- There is also a subclass of PDA's which are deterministic in nature.
- Deterministic PDA's (DPDA's) resembles parsers for CFL's in compilers.
- It is interesting to know what "language constructs" which a DPDA can accept.
- The stack is infinite in size, so can be used as a "memory" to eliminate the weakness of "finite states" of NFA's, which cannot accept languages like $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

6.1 Definition of PDA

6.1.1 Informal Definition

■ Advantage and weakness ---

- Advantage of the stack --- the stack can "remember" an infinite amount of information.
- Weakness of the stack --- the stack can only be read in a first-in-last-out manner.
- Therefore, it can accept languages like $L_{w w^{R}}=\left\{w w^{R} \mid w\right.$ is in $\left.(\mathbf{0}+\mathbf{1})^{*}\right\}$, but not languages like $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.
- A graphic model of a PDA --- as shown in Fig. 6.1.

Fig. 6.1 A graphic model of the PDA.

■ Some comments ---

- The input string on the "tape" can only be read.
- But operations applied to the stack is complicated; we may replace the top symbol by any string ---
- by a single symbol
- by a string of symbols
- by the empty string ε which means the top stack symbol is "popped up (eliminated)."

■ Example 6.1 ---

Design a PDA to accept the language $L_{w w^{R}}=\left\{w w^{R} \mid w\right.$ is in $\left.\{0,1\}^{*}\right\}$.

- In start state q_{0}, copy input symbols onto the stack.
- At any time, nondeterministically guess whether the middle of $w w^{R}$ is reached and enter q_{1}, or continue copying input symbols.
- In q_{1}, compare the remaining input symbols with those on the stack one by one.
- If the stack can be so emptied, then the matching of w with w^{R} succeeds.

6.1.2 Formal Definition

■ A PDA is a 7 -tuple $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ where

- Q : a finite set of states;
- Σ : a finite set of input symbols;
- Γ : a finite stack alphabet;
- δ : a transition function such that $\delta(q, a, X)$ is a set of pairs (p, γ) where
- $q \in Q$ (the current state);
- $a \in \Sigma$ or $a=\varepsilon$ (an input symbol or an empty string);
- $X \in \Gamma$;
- $p \in Q$ (the next state)
- $\gamma \in \Gamma^{*}$ which replaces X on the top of the stack in the following way:
(1) when $\gamma=\varepsilon$, the top stack symbol is popped up;
(2) when $\gamma=X$, the stack is unchanged;
(3) when $\gamma=Y Z, X$ is replaced by Z, and Y is pushed to the top;
(4) when $\gamma=\alpha Z, X$ is replaced by Z and string α is pushed to the top.
- q_{0} : the start state;
- Z_{0} : the start symbol of the stack;
- F : the set of accepting or final states.

Example 6.2 (Example 6.1 continued) ---
Designing a PDA to accept the language $L_{w w^{R}}$.

- Need a start symbol Z of the stack and a 3 rd state q_{2} as the accepting state.
- A PDA is $P=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0,1, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)$ such that
- $\delta\left(q_{0}, 0, Z_{0}\right)=\left\{\left(q_{0}, 0 Z_{0}\right)\right\}, \delta\left(q_{0}, 1, Z_{0}\right)=\left\{\left(q_{0}, 1 Z_{0}\right)\right\}$
(conduct initial pushing steps with Z_{0} to mark stack bottom)
- $\delta\left(q_{0}, 0,0\right)=\left\{\left(q_{0}, 00\right)\right\}, \delta\left(q_{0}, 0,1\right)=\left\{\left(q_{0}, 01\right)\right\}, \delta\left(q_{0}, 1,0\right)=\left\{\left(q_{0}, 10\right)\right\}, \delta\left(q_{0}, 1,1\right)=$ $\left\{\left(q_{0}, 11\right)\right\}$
(continue pushing)
- $\delta\left(q_{0}, \varepsilon, Z_{0}\right)=\left\{\left(q_{1}, Z_{0}\right)\right\}$
(check if input is ε which is in $L_{w w^{n}}$)
- $\delta\left(q_{0}, \varepsilon, 0\right)=\left\{\left(q_{1}, 0\right)\right\}, \delta\left(q_{0}, \varepsilon, 1\right)=\left\{\left(q_{1}, 1\right)\right\}$ (check the string's middle)
- $\delta\left(q_{1}, 0,0\right)=\left\{\left(q_{1}, \varepsilon\right)\right\}, \delta\left(q_{1}, 1,1\right)=\left\{\left(q_{1}, \varepsilon\right)\right\}$
(matching pairs)
- $\delta\left(q_{1}, \varepsilon, Z_{0}\right)=\left\{\left(q_{2}, Z_{0}\right)\right\}$
(enter final state)

6.1.3 A Graphic Notation for PDA's

- The transition diagram of a PDA is easier to follow.

■ We use " $a, X / \alpha$ " on an arc from state p to q to represent that "transition $\delta(q, a, X)$ contains $(p, \alpha) "$ as shown in Fig. 6.2.

Fig. 6.2 A graphic notation for transitions of a PDA.

■ Example 6.3 ---

The transition diagram of the PDA of Example 6.2 is as shown in Fig. 6.3 (Fig. 6.2 in p. 230 of the textbook).

- A question --- where is the nondeterminism?

Fig. 6.3 The PDA of Example 6.3.

6.1.4 Instantaneous Descriptions of a PDA

■ The configuration of a PDA is represented by a 3-tuple (q, w, γ) where - q is the state;

- w is the remaining input; and
- γ is the stack content.

Such a 3-tuple is called an instantaneous description (ID) of the PDA.

- The change of an ID into another is called a move, denoted by the symbol \vdash_{p}, or \vdash when P is understood.
- So, if $\delta(q, a, X)$ contains (p, α), then the following is a corresponding move:

$$
(q, a w, X \beta) \vdash(p, w, \alpha \beta)
$$

■ We use $\left.\right|_{p} ^{*}$ or \vdash^{*} to indicate zero or more moves.
■ Example 6.4 (continued from Example 6.2) ---

The moves for the input $w=1111$ is as follows.

$$
\begin{aligned}
\left(q_{0}, 1111, Z_{0}\right) \vdash & \left(q_{0}, 111,1 Z_{0}\right) \vdash\left(q_{0}, 11,11 Z_{0}\right) \vdash\left(q_{1}, 11,11 Z_{0}\right) \\
\vdash & \left(q_{1}, 1,1 Z_{0}\right) \vdash\left(q_{1}, \varepsilon, Z_{0}\right) \vdash\left(q_{2}, \varepsilon, Z_{0}\right)
\end{aligned}
$$

- There are other paths entering dead ends which are not shown in the above derivations.

■ Theorem 6.5 ---

If $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is a PDA, and

$$
\left.(q, x, \alpha)\right|_{p} ^{*}(p, y, \beta),
$$

then for any string w in Σ^{*} and γ in Γ^{*}, it is also true that

$$
\left.(q, x w, \alpha \gamma)\right|_{p} ^{*}(p, y w, \beta \gamma) .
$$

- The reverse is not true; but if γ is taken away, the reverse is true, as shown by the next theorem.

■ Theorem 6.6 ---

If $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is a PDA, and

$$
\left.(q, x w, \alpha)\right|_{p} ^{*}(p, y w, \beta),
$$

then it is also true that

$$
\left.(q, x, \alpha)\right|_{p} ^{*}(p, y, \beta) .
$$

6.2 The Language of a PDA

- Some important facts ---

- There are two ways to define languages of PDA's as mentioned before:
- by final state;
- by empty stack.
- It can be proved that a language L has a PDA that accepts it by final state if and only if L has a PDA that accepts it by empty stack (a theorem to be proved later).
- For a given PDA P, the language that P accepts by final state and by empty stack are usually different.
- In this section, we show conversions between the two ways of language acceptances.

6.2.1 Acceptance by Final State

■ Definition ---

If $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is a PDA. Then $L(P)$, the language accepted by P by final state, is

$$
\left\{w\left|\left(q_{0}, w, Z_{0}\right)\right|_{P}^{*} \quad(q, \varepsilon, \alpha), q \in F\right\}
$$

for any α.

- The PDA shown in Example 6.2 indeed accepts the language $L_{w w^{R}}$ (see Example 6.7 for the detail in the textbook).

6.2.2 Acceptance by Empty Stack

- Definition ---

If $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is a PDA. Then $N(P)$, the language accepted by P by empty stack, is

$$
\left\{w\left|\left(q_{0}, w, Z_{0}\right)\right|_{p}^{*} \quad(q, \varepsilon, \varepsilon), q \in F\right\}
$$

for any q.

- The set of final states, F, may be dropped to form a 6-tuple, instead of a 7-tuple, for a PDA.

Example 6.8 ---
The PDA of Example 6.2 may be modified in the following way to accept $L_{w w^{R}}$ by empty stack:
simply change the original transition $\delta\left(q_{1}, \varepsilon, Z_{0}\right)=\left\{\left(q_{2}, Z_{0}\right)\right\}$ to be $\delta\left(q_{1}, \varepsilon, Z_{0}\right)=\left\{\left(q_{2}\right.\right.$, $\varepsilon)\}$. That is, just eliminate Z_{0}.

6.2.3 From Empty Stack to Final State

- Theorem 6.9 ---

If $L=N\left(P_{N}\right)$ for some $\operatorname{PDA} P_{N}=\left(Q, \Sigma, \Gamma, \delta_{N}, q_{0}, Z_{0}\right)$, then there is a PDA P_{F} such that $L=L\left(P_{F}\right)$.

Proof. The idea for the proof is to use Fig. 6.4 below.

Fig. 6.4 P_{F} simulates P_{N} and accepts the input string if P_{N} empties its stack.

- Define $P_{F}=\left(Q \cup\left\{p_{0}, p_{f}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta_{F}, p_{0}, X_{0},\left\{p_{f}\right\}\right)$ where δ_{F} is such that
- ${ }_{F}\left(p_{0}, \varepsilon, X_{0}\right)=\left\{\left(q_{0}, Z_{0} X_{0}\right)\right\}$ (with X_{0} as the bottom of the stack);
- For all $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $Y \in \Gamma, \delta_{F}(q, a, Y)$ contains all the pairs in $\delta_{N}(q, a, Y)$.
- $\delta_{F}\left(q, \varepsilon, X_{0}\right)$ contains $\left(p_{f}, \varepsilon\right)$ for every state q in Q.
- It can be proved that W is in $L\left(P_{F}\right)$ if and only if w is in $N\left(P_{N}\right)$ (see the textbook for that detail).

■ Example 6.10 ---

Design a PDA which accepts the if/else errors by empty stack.

- Let i represents $i f ;$ e represents else.
- The PDA is designed in such a way that
if the number of else (\#else) > the number of if (\#if), then the stack will be emptied.
- A PDA by empty stack for this is as follows and shown in Fig. 6.5:

$$
P_{N}=\left(\{q\},\{i, e\},\{Z\}, \delta_{N}, q, Z\right)
$$

where

- when an " $i f$ " is seen, push a " Z ";
- when an "else" is seen, pop a " Z ";
- when $(\# e l s e)>(\# i f+1)$, the stack is emptied and the input sting is accepted.

Fig. 6.5 A PDA by empty stack for Example 6.10.

- For example, for input string $w=i e e$, the moves are:

$$
(q, \text { iee }, Z) \vdash(q, e e, Z Z) \vdash(q, e, Z) \vdash(q, \varepsilon, \varepsilon) \text { accept ! }
$$

- How about $w=e e i$?
- A PDA by final state is as follows and shown in Fig. 6.6:

$$
P_{F}=\left(\{p, q, r\},\{i, e\},\left\{Z, X_{0}\right\}, \delta_{F}, p, X_{0},\{r\}\right) .
$$

Fig. 6.6 A PDA by final state for Example 6.10.

- For input $w=i e e$, the moves are:

$$
\begin{aligned}
\left(p, \text { iee }, X_{0}\right) & \vdash\left(q, i e e, Z X_{0}\right) \vdash\left(q, e e, Z Z X_{0}\right) \vdash\left(q, e, Z X_{0}\right) \\
& \vdash\left(q, \varepsilon, X_{0}\right) \vdash(r, \varepsilon, \varepsilon) \text { accept }!
\end{aligned}
$$

Theorem 6.11 ---

Let L be $L\left(P_{F}\right)$ for some PDA $P_{F}=\left(Q, \Sigma, \Gamma, \delta_{F}, q_{0}, Z_{0}, F\right)$. Then there is a PDA P_{N} such that $L=N\left(P_{N}\right)$.

Proof. The idea is to use Fig. 6.7 below (in final states of P_{F}, pop up the remaining symbols in the stack).

Fig. 6.7 P_{N} simulating P_{F} and empties its stack when and only when P_{N} enters an accepting state.

6.3 The Language of a PDA

■ Equivalences to be proved ---

- CFL's defined by CFG's;
- Languages accepted by final state by some PDA;
- Languages accepted by empty stack by some PDA.

■ Equivalence of the last two above have been proved.

6.3.1 From Grammars to PDA's

■ Given a CFG $G=(V, T, Q, S)$, we may construct a PDA P that accepts $L(G)$ by empty stack in the following way:

- $P=(\{q\}, T, V \cup T, \delta, q, S)$ where the transition function δ is defined by:
- for each nonterminal $A, \delta(q, \varepsilon, A)=\{(q, \beta) \mid A \rightarrow \beta$ is a production of $G\}$;
- for each terminal $a, \delta(q, a, a)=\{(q, \varepsilon)\}$.

■ Theorem 6.13 ---

If PDA P is constructed from CFG G by the construction above, then $N(P)=L(G)$.

- Proof. See the textbook.

■ Example 6.12 ---

Construct a PDA from the expression grammar of Fig. 5.2:

$$
\begin{aligned}
& I \rightarrow a|b| I a|I b| I 0 \mid I 1 \\
& E \rightarrow I\left|E^{*} E\right| E+E \mid(E)
\end{aligned}
$$

The transition function for the PDA is as follows:
a) $\delta(q, \varepsilon, I)=\{(q, a),(q, b),(q, I a),(q, I b),(q, I 0),(q, I 1)\}$
b) $\delta(q, \varepsilon, E)=\left\{(q, \mathrm{I}),(q, E+E),\left(q, E^{*} E\right),(q,(E))\right\}$
c) $\delta(q, d, d)=\{(q, \varepsilon)\}$ where d may any of the terminals $a, b, 0,1,(),,+, *$.

6.3.2 From PDA's to Grammars

■ Theorem 6.14 ---

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}\right)$ be a PDA. Then there is a context-free grammar G such that $L(G)=N(P)$.

Proof. Construct $G=(V, T, P, S)$ where the set of nonterminals consists of:

- the special symbol S as the start symbol;
- all symbols of the form $[p X q]$ where p and q are states in Q and X is a stack symbol in Γ.
- The productions of G are as follows.
(a) For all states p, G has the production $S \rightarrow\left[q_{0} Z_{0} p\right]$.
(b) Let $\delta(q, a, X)$ contain the pair $\left(r, Y_{1} Y_{2} \ldots Y_{k}\right)$, where
- a is either a symbol in Σ or $a=\varepsilon$;
- k can be any number, including 0 , in which case the pair is (r, ε).

Then for all lists of states $r_{1}, r_{2}, \ldots, r_{k}, G$ has the production

$$
\left[q X r_{k}\right] \rightarrow a\left[r Y_{1} r_{1}\right]\left[r_{1} Y_{2} r_{2}\right] \ldots\left[r_{k-1} Y_{k} r_{k}\right]
$$

Example 6.15 ---

Convert the PDA of Example 6.10 (shown in Fig. 6.5) to a grammar.

- Nonterminals include only two symbols, S and $[q Z q]$.
- Productions:

1. $S \rightarrow[q Z q]$
(for the start symbol S);
2. $[q Z q] \rightarrow i[q Z q][q Z q]$
$\left(\right.$ from $\left.(q, Z Z) \in \delta_{N}(q, i, Z)\right)$
3. $[q Z q] \rightarrow e$
$\left(\operatorname{from}(q, \varepsilon) \in \delta_{N}(q, e, Z)\right)$

- If we replace $[q Z q]$ by a simple symbol A, then the productions become

1. $S \rightarrow A$
2. $A \rightarrow i A A$
3. $A \rightarrow e$

- Obviously, these productions can be simplified to be

1. $S \rightarrow i S S$
2. $S \rightarrow e$

- And the grammar may be written simply as $G=(\{S\},\{i, e\},\{S \rightarrow i S S \mid e\}, S)$.

6.4 Deterministic PDA's

6.4.1 Definition of a Deterministic PDA

- Intuitively, a PDA is deterministic if there is never a choice of moves (including ε-moves) in any situation.

■ Definition ---

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is said to be deterministic (a DPDA) if and only if the following two conditions are met:

- $\delta(q, a, X)$ has at most one element for any $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $X \in \Gamma$. ("There must exist one.")
- If $\delta(q, a, X)$ is nonempty for some $a \in \mathrm{~S}$, then $\delta(q, \varepsilon, X)$ must be empty. ("There cannot be more than one.")

■ Example 6.16 -

- There is no DPDA for $L_{w w^{n}}$ of Example 6.2.
- But there is a DPDA for a modified version of $L_{w w^{R}}$ as follows, which is not an RL (proved later):

$$
L_{w c w R}=\left\{w c w^{R} \mid w \in L\left((\mathbf{0}+\mathbf{1})^{*}\right)\right\} .
$$

- To recognize $w c w^{R}$, just store 0 's and 1's in stack until center marker c is seen. Then, match the remaining input w^{R} with the stack content which is w.
- The PDA can so be designed to be deterministic by searching the center marker without trying matching all the time nondeterministically.
- A desired DPDA is shown in Fig. 6.8, which is difference from Fig. 6.3 in the blue c).

Fig. 6.8 The PDA of Example 6.16.

6.4.2 Regular Languages and DPDA's

- The DPDA accepts a class of languages that is between the RL's and the CFL's, as proved in the following.

■ Theorem 6.17 ---

If L is an RL, then $L=L(P)$ for some DPDA P (accepting by final state).
Proof.

- Easy. Just use a DPDA to simulate a DFA as follows.
- If DFA $A=\left(Q, \Sigma, \delta_{A}, q_{0}, F\right)$ accepts L, then construct DPDA $P=\left(Q, \Sigma,\left\{Z_{0}\right\}, \delta_{P}, q_{0}, Z_{0}\right.$, $F)$ where δ_{P} is such that $\delta_{P}\left(q, a, Z_{0}\right)=\left\{\left(p, Z_{0}\right)\right\}$ for all states p and q in Q such that $\delta_{A}(q$, a) $=p$.
- The DPDA accepts a class of languages that is between the RL's and the CFL's, as proved in the following.
- The language-recognizing capability of the DPDA by empty stack is rather limited.
- A language L is said to have the prefix property if there are no two different strings x and y in L such that x is a prefix of y.
- For examples of such languages, see Example 6.18

■ Theorem 6.19 ---

A language L is $N(P)$ for some DPDA P if and only if L has the prefix property and L is $L\left(P^{\prime}\right)$ for some DPDA P^{\prime}.

- For the proof, do exercise 6.4.3.

6.4.3 DPDA's and CFL's

- DPDA's can be used to accept non-RL's, for example, $L_{w w^{R}}$ mentioned before.
- It can be proved by the pumping lemma that $L_{w w^{R}}$ is not an $R L$ (see the textbook, pp. 254~255).
- On the other hand, DPDA's by final state cannot accept certain CFL's, for example, $L_{w w^{R}}$. - It can be proved that $L_{w w^{R}}$ cannot be accepted by a DPDA by final state (see an informal proof in the textbook, p. 255).

- Conclusion ---

The languages accepted by DPDA's by final state properly include RL's, but are properly included in CFL's.

6.4.4 DPDA's and Ambiguous Grammars

■ Theorem 6.20 ---

If $L=N(P)$ (accepting by empty stack) for some DPDA P, then L has an unambiguous CFG.

- Proof. See the textbook.

- Theorem 6.21 ---

If $L=L(P)$ for some DPDA P (accepting by final state), then L has an unambiguous CFG.

- Proof. See the textbook.

