

Chapter 5

Context-Free Grammars and Languages
(2015/11)

Adriatic Sea shore at Opatija, Croatia

 2

Outline

5.0 Introduction

5.1 Context-Free Grammars (CFG’s)

5.2 Parse Trees

5.3 Applications of CFG’s

5.4 Ambiguity in Grammars and Languages

 3

5.0 Introduction

 Concepts ---

 Context-free grammars (CFG’s) generate context-free languages (CFL’s).

 CFG’s play a central role in compiler technology since 1960’s.

 Applications of CFG’s ---

 Recently, CFG’s are used to describe document formats via document-type definitions

(DTD’s) which are used in XML’s (extensible markup languages).

 XML’s are used mainly for information exchange on the Web.

5.1 Context-free Grammars (CFG’s)

5.1.1 An Informal Example

 Palindromes ---

 A palindrome is a word, phrase, number, or other sequence of symbols or elements,

whose meaning may be interpreted the same way in either forward or reverse direction.

 e.g., otto, madamimadam (“Madam, I’m Adam”)…

 An Example ---

Design a CFG for the language of binary palindromes Lpal = {w | w{0, 1}*, wR = w}.

 Examples of strings in Lpal: 00, 0110, 011110, …

 CFG ---

P (1)

P 0 (2)

P 1 (3)

P 0P0 (4)

P 1P1 (5)

 Productions (4) & (5) are recursive.

 P is a variable (nonterminal).

 0 and 1 are terminals.

 Examples of derivations of strings ---

 P (4) 0P0 (5) 01P10 (5) 011P110 (1) 011110

 P (4) 0P0 (3) 010 …

5.1.2 Definition of CFG’s

 A CFG is a 4-tuple G = (V, T, P, S) where

 V is the set of variables (or nonterminals, syntactic categories);

 T is the set of terminals;

 S is the start symbol;

 P is the set of productions or rules of the form “head” “body”

A

where A V, (V∪T)*, i.e., the head is a single variable and the body is a string

 4

of zero or more terminals and variables.

 An Example (the last example continued) ---

 V = {P}

 T = {0, 1}

 P = A = the set of the five productions (1)~(5) below:

P (1)

P 0 (2)

P 1 (3)

P 0P0 (4)

P 1P1 (5)

 S = P.

(Note: P is used for two meanings here; do not get confused!)

 Example 5.3 ---

A CFG Gr for arithmetic expressions with productions as follows:

 E I

 E E + E

 E E*E

 E (E)

where I is an identifier describable by RE (a + b)(a + b + 0 + 1)* and transformable into

productions of the following forms:

 I a

 I b

 I Ia

 I Ib

 I I0

 I I1

 The above productions may be rewritten integrally as

 E I | E + E | E*E | (E)

 I a | b | Ia | Ib | I0 | I1

 An example of string derivations ---

E EE IE aE a(E) a(E + E) a(I0 + E) ... a(a0 +b1)

5.1.3 Derivations Using a Grammar

 Concept: we use productions to generate (“infer”) strings in the language described by

the grammar.

 Two ways for such string inference ---

 Recursive inference ---

 bottom up (“from body to head”);

 starting from known strings (often from terminals in productions).

 Derivation ---

 top down (“from head to body”) in concept;

 5

 as shown by the examples given before.

 Example 5.4 ---

Show a bottom-up recursive inference of the string w = a(a + b00) using the

productions of the CFG Gr described previously.

 A recursive inference of w may be described by Fig. 5.1.

 Note: w above is not a regular expression but an arithmetic expression.

Derivation steps String inferred For language of Production used String(s) used

(i) a I 5: (I a)

(ii) b I 6: (I b)

(iii) b0 I 9: (I I0) (ii)

(iv) b00 I 9: (I I0) (iii)

(v) a E 1: (E I) (i)

(vi) b00 E 1: (E I) (iv)

(vii) a + b00 E 2: (E E+ E) (v), (vi)

(viii) (a + b00) E 4: (E (E)) (vii)

(iv) a(a + b00) E 3: (E E*E) (v), (viii)

Fig. 5.1 Inference of a string w = a(a+b00).

 Notations used in derivations ---

If A is a string of terminals and variables, and if A is a production, then we

write

A
G

to denote a derivation.

 For zero and more derivations, we use the following notation.

A
G

 The label G under the double arrow may be omitted if which grammar is being used is

understood.

 Example 5.5 ---

A derivation of the string w = a(a+b00) is as follows.

E EE IE aE a(E) a(I + E) a(a + E)

 a(a + I) a(a + I0) a(a + I00) a(a + b00)

5.1.4 Leftmost and Rightmost Derivations

 Definitions ---

 Leftmost derivation --- replacing the leftmost variable in each derivation step

(represented by the notation
lm
 or, for typing convenience, also by lm)

 6

 Rightmost derivation --- rightmost instead (represented by
rm
 or by rm).

 Example 5.6 (continuation of Example 5.5) ---

 The leftmost derivation of the string w = a(a+b00) of Example 5.5 is as follows.

E
lm

 EE
lm

 IE
lm

 aE
lm

 a(E)
lm

 a(E + E)

lm

 a(I + E)
lm

 ...
lm

 a(a +I00)
lm

 a(a + b00).

 The rightmost derivation of w is as follows.

E rm EE rm E(E) rm E(E + E) rm E(E + I) rm E(E + I0)

rm E(E + I00) rm ... rm I(a + b00) rm a(a + b00).

 Any derivation has an equivalent leftmost derivation and an equivalent rightmost one

(proved in the next section).

5.1.5 The Language of a Grammar

 Definition ---

The language L(G) of a CFG G = (V, T, P, S) is

L(G) = {w | w T*, S
G

 w}.

 The language of a CFG is called a context-free language (CFL).

 Theorem 5.7 in the text book shows a typical way to prove that a given grammar really

generates the desired language (the set of palindromes) (using induction) (read by

yourself).

 Derivations from the start symbol are called sentential forms.

 Given a CFG G = (V, T, P, S), if S

 with (V∪T)*, then is a sentential form.

 If S
lm

 where (V∪T)*, then is a left-sentential form.

 If S
rm

 where (V∪T)*, then is a right-sentential form.

5.2 Parse Trees

 Advantage of parse trees –

 In a compiler, the parse tree structure facilitates translation of the source program into

recursive executable codes.

 Parse trees are closely related to derivations and recursive inferences.

 An important application of the parse tree is the study of grammatical ambiguity which

 7

makes the grammar unsuitable for a programming language.

 A note about the term YACC in textbook ---

 The computer program YACC is a parser generator developed by Stephen C. Johnson

at AT&T for the Unix operating system.

 The name is an acronym for “Yet Another Compiler Compiler.”

 It generates a parser (the part of a compiler that tries to make syntactic sense of the

source code) based on an analytic grammar written in a notation similar to BNF.

 YACC generates the code for the parser in the C programming language.

(Retrieved from Wikipedia, 2007/10/8)

5.2.1 Constructing Parse Trees

 Definition ---

Given a grammar G = (V, T, P, S), the parse tree is defined in the following way.

 Each interior node is labeled by a variable in V.

 Each leaf is labeled by either a variable, a terminal, or .

 If is the label, it must be the only child of its parent.

 If an interior node is labeled A, and its children are labeled X1, X2, …, Xk, respectively,

from the left, then A X1X2…Xk is a production in P.

 A Note --- the only time one of the X’s can be is when is the label of the only child,

and A is a production of G.

 Example 5.10 ---

A parse tree of derivation P

 0110 of the palindrome is shown in Fig. 5.2.

Fig. 5.2 A parse tree of Example 5.10.

5.2.2 The Yield of a Parse Tree

 The yield of a parse tree is the string obtained by concatenating all the leaves from the left,

like 0110= 0110 for the tree of the last example (Example 5.10).

 Showing the yields of the parse trees of a grammar G is another way to describe the

P

 0 P 0

 1 P 1

 8

language of G (provable).

5.2.3 Inference, Derivations, and Parse Trees

 Theorems ---

Given a grammar G = (V, T, P, S), the following facts are all equivalent:

 the recursive inference procedure determines that terminal string w is in the language of

variable A;

 A

w;

 A
lm

w;

 A
rm

w;

 there is a parse tree with root A and yield w.

 A note: equivalences of the facts in the previous page are proved in a way as shown in the

diagram of Fig. 5.3 by theorems found in Sections 5.2.4~5.2.6 of the textbook (read by

yourself).

Fig. 5.3 Equivalences of ways to generate strings based on grammars.

5.3 Applications of CFG’s

 History --- CFG’s were originally conceived by N. Chomsky for describing natural

languages, but not all natural languages can be so described.

 Two applications of CFG’s ---

 Describing programming languages ---

 There is a mechanical way for turning a CFG into a parser.

 Describing DTD’s in XML’s ---

 DTD --- document type definition

 XML --- extensible markup language

5.3.1 Parsers

 There are components in programming languages which are not RL’s.

 Two examples of non-RL structures ---

 Balanced structures ---

like parentheses “(),” “begin-end” pair, “if-else” pair, …

Parse tree

Leftmost
derivation

Rightmost
derivation

Derivation
Recursive
inference

 9

 Unbalanced structures ---

like unbalanced “if else” pairs…

 e.g., a balanced if-else pair in C is

if (condition) Statement; else Statement;

 Example 5.19 ---
 A grammar for balanced parentheses is as follows.

Gbal = ({B}, {(,)}, P, B)

where

P: B BB | (B) |

 e.g., strings generated by Gbal include x = (()), ()(), etc.

 A grammar for unbalanced if-else pairs is as follows.

S | SS | iS | iSeS

where i = if …, e = else …

 The production S iS is used to generate unbalance “if” (with no matching “else”)

 e.g., the following is a generated segment of a C program

if (Condition) {
…
if (Condition) Statement;

else Statement;
…
if (Condition) Statement;

else Statement;
…

}

5.3.2 The YACC Parser-Generator

 Input to YACC is a CFG with each production being associated additionally with an

action (see {…} in Example 5.21 below).

 Example 5.21 ---

A CFG in the YACC notation identical to that of Example 5.3 is shown in Fig. 5.4

(the right part).

Fig. 5.4 A CFG in the YACC notation identical to that of Example 5.3.

 EExxpp:: IIdd {{……}}

 || EExxpp ’’++’’ EExxpp {{……}}

 || EExxpp ’’**’’ EExxpp {{……}}

 || ’’((’’ EExxpp ’’))’’ {{……}}

 ;;

IIdd:: ’’aa’’

 || ’’bb’’ {{……}}

 || IIdd ’’aa’’ {{……}}

 || IIdd ’’bb’’ {{……}}

 || IIdd ’’00’’ {{……}}

 || IIdd ’’11’’ {{……}}

 10

5.3.3 Markup Languages

 The strings in a markup language are documents with “marks,” called tags which specify

semantics of the strings.

 An example ---

The HTML (HyperText Markup Language) for webpage design includes two

functions:

 creating links between documents;

 describing formats (“looks”) of documents.

 Example 5.22 ---

The HTML of a webpage is shown in Fig. 5.5, where the left part shows the text

seen on the webpage, and right part shows the HTML source defining the webpage

content. Also the tags in the right part include:

 <P>: defining a paragraph; (unmatched single tag)

 …</PM>: emphasizing a text part; (matched tag pair)

 …: defining an ordered list of items; (matched tag pair)

 : defining a list item. (unmatched single tag)

Fig. 5.5 The HTML of a webpage.

 Part of an HTML grammar ---

The following productions are part of those of an HTML grammar.

1. Doc | Element Doc

2. Element Text | Doc | <P> Doc | List | …

3. Text | Char Text

4. Char a | A | …

5. List | Listitem List

6. Listitem Doc

5.3.4 XML and Document-Type Definitions (DTD’s)

 An XML (extensible markup language) describes the semantics of the text in a document

using DTD’s, while an HTML describes the format of a document.

The thing I hate:

 1. Moldy bread.

 2. People who drive too slow in the fast lane.

<P>The thing I hate

Moldy bread.

People who drive too slow in the

fast lane.

 11

 The DTD is itself described with a language which is essential in the form of a CFG

mixed with regular expressions.

 The form of a DTD is

<!DOCTYPE name-of-DTD [list of element definitions]>

 The form of an element definition is

<!Element element-name (description of the element)>

 Descriptions of elements are essentially regular expressions, which may be described in

the following way:

 An element may appear in another element.

 The special term #PCDATA stands for any text involving no tags.

 The allowed operators are

 A vertical bar | means union;

 A comma , denotes concatenation

 3 variants of the closure operator --- *, +, ? as described before:

(1) *: zero or more occurrences of;

(2) +: one or more occurrences of;

(3) ?: zero or one occurrence of.

 Example 5.23 ---

Fig. 5.6 (Fig. 5.14 in the textbook) shows a DTD for describing personal computers

(PC’s).

 Each element is represented in the document by a tag with the name of the element and

a matching tag at the end with an extra slash, just as in HTML.

Fig. 5.6 A DTD for describing personal computers (PC’s).

 For examples:

 for <!ELEMENT MODEL (#PCDATA)>, an example is:

<MODEL>4560</MODEL>

 for <!ELEMENT PCS (PC*)>, an example is:

<PCS>
 <PC>
 …
 </PC>

<!DOCTYPE PcSpecs [
<!ELEMENT PCS (PC*)>
<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>
<!ELEMENT MODEL (#PCDATA)>
<!ELEMENT PRICE (#PCDATA)>
<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>
<!ELEMENT MANF (#PCDATA)>
<!ELEMENT MODEL (#PCDATA)>
<!ELEMENT SPEED (#PCDATA)>
<!ELEMENT RAM (#PCDATA)>
<!ELEMENT DISK (HARDDISK | CD | DVD)>
<!ELEMENT HARDDISK (MANF, MODEL, SIZE)>
 <!ELEMENT SIZE (#PCDATA)>
<!ELEMENT CD (SPEED)>
 <!ELEMENT DVD (SPEED)>
]>

 12

 <PC>
 …
 </PC>
</PCS>

 A description for two PC’s using the DTD language is shown in Fig. 5.7 (Fig.5.15 in

the textbook):

Fig. 5.7 Part of a document obeying DTD of Fig. 5.14.

 Examples of converting DTD rules, which include RE’s, into CFG productions ---

 <!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>

 Processor Manf Model Speed
 (Note: the commas mean concatenations)

 <!ELEMENT DISK (HARDDISK | CD | DVD)>

 Disk Harddisk | Cd | Dvd
 (Note: the vertical bars mean the same as in production bodies)

 <!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>

 Pc Model Price Processor Ram Disks

 Disks Disk | Disk Disks
 (Note: the 2nd rule corresponds to the RE DISK+ which means one or more disks)

 General induction technique for converting DTD rules, which includes RE’s, into legal

CFG productions ---

 Basis:

If the body of a production P is a concatenation of elements, then P is in the legal

form for CFG’s.

 Induction:

Assuming E1 and E2 are in legal forms, we have the following rules:

1. A E1, E2 (1) A BC (2) B E1 (3) C E2

 <PCS>
 <PC>
 <MODEL>4560</MODEL>
 <PRICE>$2295</PRICE>
 <PROCESSOR>
 <MANF>Intel</MANF>
 <MODEL>Pentium</MODEL>
 <SPEED>800MHz</SPEED>
 </PROCESSOR>
 <RAM>256</RAM>
 <DISK><HARDDISK>
 <MANF>Maxtor</MANF>
 <MODEL>Diamond</MODEL>
 <SIZE>30.5Gb</SIZE>
 </HARDDISK></DISK>
 <DISK><CD>
 <SPEED>32x</SPEED>
 </CD></DISK>
 </PC>
 <PC>
 …
 </PC>
 </PCS>

 13

2. A E1 | E2 (1) A E1 (2) A E2

3. A (E1)* (1) A BA (2) A (3) B E1

4. A (E1)+ (1) A BA (2) A B (3) B E1

5. A (E1)? (1) A (2) A E1

 Example 5.24 ---

Try to use the above rules to convert the following into legal CFG productions:

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)> (a)

 By Rule 1: (a) Pc AB

 A Model Price Processor Ram

 B Disk+ (illegal) (b)

 By Rule 4: (b) B CB | C

 C Disk

 By observation, A and C may be eliminated, so the final result is

 Pc Model Price Processor Ram B

 B Disk B | Disk (compare with the last result!)

 Example 5.24a (supplemental) ---

Convert the following into legal CFG productions:

<!ELEMENT PCS (PC*)> (c)

 Rule 3: A (E1)* (1) A BA (2) A (3) B E1

 Therefore, (c) above may be converted in the following way:

(c) Pcs B Pcs

 Pcs

 B Pc

5.4 Ambiguity in Grammars & Languages

5.4.1 Ambiguous Grammars

 Definition ---

A CFG G = (V, T, P, S) is ambiguous if there exists at least one string w in T* for

which there are two different parse trees, each with root labeled S and yield w

identically.

If each string has at most one parse tree in G, then G is unambiguous.

 Ambiguity causes problems in program compiling.

 Example 5.25 ---

Given the productions of the arithmetic expression grammar Gr of Example 5.3 as

follows,

 14

E I | E + E | E*E | (E)

I a | b | Ia | Ib | I0 | I1

the parse trees of the following two derivations

E E + E E + E*E

E E*E E + E*E

are shown in Fig. 5.8. The two parse trees obviously are distinct.

 E E

 E + E E * E

 E * E E + E

Fig. 5.8 Two different parse trees for the derivation E E + E*E.

 Ambiguity in certain grammars may be removed by re-designing the grammar.

 But some CFL’s are “inherently ambiguous,” i.e., every grammar has more than one

distinct parse tree for each of some strings in the language.

 Note: two different derivations might have the same parse tree (see Example 5.26 below).

So, it is not multiplicity of derivations that causes ambiguity.

 Example 5.26 ---

Two derivations of the string a + b are as follows:

E E + E I + E a + E a + I a + b

E E + E E + I I + I I + b a + b

 The parse trees for the above two derivations may be checked easily to be the same.

 So, it is not multiplicity of derivations that causes ambiguity.

5.4.2 Removing Ambiguity from Grammars

 Concept ---

 There is no general algorithm that can tell whether a grammar is ambiguous or not.

That is, testing of grammatical ambiguity is undecidable.

 Ambiguity in inherently ambiguous grammars is also irremovable.

 But elimination of ambiguity in some common programming language structures is

possible.

 Example 5.27 ---

Remove the ambiguity of the arithmetic expression grammar of Example 5.3 whose

productions are repeated below:

E I | E + E | EE | (E)

I a | b | Ia | Ib | I0 | I1

 Trick for the removal: creating “terms,” which cannot be broken, as the units of the

 15

generated expressions (for details, see the textbook).

 An unambiguous version of the original expression grammar is as follows (T represents

“term”):

E T | E + T

T F | T F

F I | (E)

I a | b | Ia | Ib | I0 | I1

 A check of the parse tree for E + E*E --- now only the one shown in Fig. 5.9 can be

obtained now; no other alternative!

Fig. 5.9 Two different parse trees for the derivation E E + E*E.

5.4.3 Leftmost Derivations as a Way to Express Ambiguity

 In an unambiguous grammar, the leftmost derivation is unique (so is the rightmost one),

as shown by the following theorem.

 Theorem 5.29 ---

For each grammar G = (V, T, P, S) and string w in T*, w has two distinct parse trees

if and only if w has two distinct leftmost (rightmost) derivations.

Proof. See the textbook.

5.4.4 Inherent Ambiguity

 A CFL L is said to be inherently ambiguous if all its grammars are ambiguous.

 An example of inherently ambiguous languages

L = {anbncmdm | n 1, m 1}∪{anbmcmdn | n 1, m 1}.

Proof. See the textbook for the proof of its inherent ambiguity.

E

E + E

E * E

