Chapter 2

Finite Automata

(part B) (2015/10/02)

Windmills in Holland

Outline

- 2.0 Introduction (in part a)
- 2.1 An Informal Picture of Finite Automata (in part a)
- 2.2 Deterministic Finite automata (in part a)
- 2.3 Nondeterministic Finite Automata (in part a)
- 2.4 An Application: Text Search
- 2.5 Finite Automata with Epsilon-Transitions

2.4 An Application — Text Search

2.4.1 Finding Strings in Text

Concept: searching Google for a set of words is equivalent to just finding strings in documents

Techniques

- Using inverted indexes
- Using finite automata
- Technique using inverted indexes --- as illustrated by Fig. 2.14.

Fig. 2.14 An illustration of the technique of inverted indexes.

- Applications unsuitable to use inverted indexing:
 - The document repository changes rapidly.
 - Documents to be searched cannot be catalogued.

2.4.2 NFA's for Text Search

■ A simple example (supplemental) ---

Find the DFA equivalent to the NFA which searches words of $x_1 = ab$ and $x_2 = b$ in long text strings over the alphabet $\Sigma = \{a, b\}$.

• Such words y_1 and y_2 may be described as

Segment $x_1 = ab$ or $x_2 = b$ following any string of *a* and *b*, and followed by any string of *a* and *b*.

◆ Equivalently, the two words are two strings *y*₁ and *y*₂ which may be described by concatenations as

$$y_1 = z_1 x_1 z_2$$
$$y_2 = z_3 x_2 z_4$$

where z_i with i = 1, 2, 3, 4 is any string of a and b

♦ An intuitive solution in NFA form according to the above discussion can be drawn directly as shown in Fig. 2.15.

Fig. 2.15 An NFA for searching words of $x_1 = ab$ and $x_2 = b$ in long text strings.

♦ By the lazy evaluation method, the transition table of a DFA equivalent to the NFA in Fig. 15 is shown in Table 2.6 (note: state 12 means state {1, 2}, etc.). The detail of obtaining the DFA is left as an exercise.

	а	b
\rightarrow {1}	{1,2}	{1,3}
{1,2}	{1, 2}	{1, 3, 4}
*{1,3}	$\{1, 2, 3\}$	{1,3}
*{1, 2, 3}	{1, 2, 3}	$\{1, 3, 4\}$
*{1, 3, 4}	$\{1, 2, 3, 4\}$	{1, 3, 4}
*{1, 2, 3, 4}	$\{1, 2, 3, 4\}$	{1, 3, 4}

Table 2.6 The transition table for the DFA which is equivalent to the NFA of Fig. 2.15.

• The transition diagram of the DFA equivalent to the NFA is shown in Fig. 2.16.

Fig. 2.16 A DFA equivalent to the NFA in Fig. 2.15.

2.4.3 A DFA to Recognize a Set of Keywords

Example 2.14 ---

use an NFA to search two keywords "web" and "eBay" among text.

• Derive the desired NFA in a way as described previously, which is shown in Fig. 2.17.

Fig. 2.17 The NFA for Example 2.14.

• How to implement the NFA?

• Write a *simulation program* like Fig. 2.8 which is repeated here as Fig. 2.18 below.

Fig. 2.18 The NFA of Example 2.2 accepting x = 00101 which can be implemented by a simulation program.

- Convert the NFA to an equivalent DFA using subset construction and simulate the DFA, which is shown as the Fig. 17 in the textbook (*not* the Fig. 17 above in this lecture note!!!).
- Some rules may be inferred *as a theorem* for constructing *directly* this kind of keyword-recognition DFA. (For the details, read the textbook by yourself.)

2.5 Finite Automata with Epsilon-Transitions

2.5.1 <u>Use of ε-transitions</u>

Concepts ---

- We allow the automaton to accept the empty string ε .
- This means that a transition is allowed to occur *without* reading in a symbol.
- The resulting NFA is called ε -NFA.
- ♦ It adds "programming (design) convenience" (more intuitive for use in designing FA's)

■ Example 2.16 ----

An ϵ -NFA accepting decimal numbers like 2.15, .125, +1.4, -0.501... is as shown in Fig. 2.19.

• To accept a number like "+5." (nothing after the decimal point), we have to add q_4 .

Fig.2.19 An ε-NFA accepting decimal numbers.

Example 2.17 ---

A more intuitive ε -NFA for Example 2.14 is shown in Fig. 2.20.

Fig. 2.20 A more intuitive ε -NFA for Example 2.14.

2.5.2 Formal Notation for an ε-NFA

Definition ---

An ε -NFA *A* is denoted by $A = (Q, \Sigma, \delta, q_0, F)$ where the transition function δ takes the following as arguments:

- \blacklozenge a state in Q, and
- a member of $\Sigma \cup \{\varepsilon\}$.
- Notes ----
 - The empty string ε cannot be used as an input symbol, but can be accepted to yield a transition!

- $\delta(q_i, \varepsilon)$ is defined for every state q_i (getting into the dead state ϕ if there is no next state with ε as input symbol originally).
- Example 2.18 ----
 - The ε -NFA of Fig. 2.19 is described as follows.
 - ♦ $E = (\{q_0, q_1, ..., q_5\}, \{., +, -, 0, 1, ..., 9\}, \delta, q_0, \{q_5\}).$
 - ♦ The transitions include, e.g.,
 - $\delta(q_0, \varepsilon) = \{q_1\};$
 - $\delta(q_1, \varepsilon) = \phi$.
 - See Table 2.7 for a complete transition table of *E*.

	3	+, -	٠	0, 1,, 9
q_0	$\{q_1\}$	$\{q_1\}$	φ	φ
q_1	φ	φ	$\{q_2\}$	$\{q_1, q_4\}$
q_2	φ	φ	φ	$\{q_3\}$
q_3	$\{q_5\}$	φ	φ	$\{q_3\}$
q_4	φ	φ	$\{q_3\}$	φ
q_5	φ	φ	φ	φ

Table 2.7 The transition table for the ε -NFA of example 2.18.

2.5.3 Epsilon-Closures (ε-closures)

- Concepts ---
 - We have to define the ε-closure to define the extended transition function for the ε-NFA.
 - We " ε -closure" a state q by following all transitions out of q that are labeled ε .
- Formal recursive definition of *the set* ECLOSE(*q*) for *q* ---
 - ♦ *Basis*: state *q* is in ECLOSE(*q*) (i.e., ECLOSE(*q*) includes the state *q* itself);
 - *Induction*: if p is in ECLOSE(q), then all states accessible from p through paths of ε 's are also in ECLOSE(q).

(A metaphor: those "state stations" accessible through " ε -type highways" are all included in ECLOSE(*q*).)

(比喻:"經ɛ式快速道路路段可到的所有 states 車站皆算在 ECLOSE(q)之内")

Definition of the ε -closure of a set *S* of states ---

 $ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q).$

Example 2.19 ---

Given an ε -NFA as shown in Fig. 2.21, we have

- ECLOSE(1) = $\{1, 2, 3, 4, 6\};$
- ♦ ECLOSE($\{3, 5\}$) = ECLOSE(3) \cup ECLOSE(5) = $\{3, 6\} \cup \{5, 7\}$ = $\{3, 5, 6, 7\}$.

Fig. 2.21 The ε-NFA of Example 2.19.

2.5.4 Extended Transitions & Languages for ε-NFA's

- **E** Recursive definition of extended transition function $\hat{\delta}$ ----
 - *Basis*: $\hat{\delta}(q, \varepsilon) = \text{ECLOSE}(q)$.
 - *Induction*: if w = xa, then $\hat{\delta}(q, w)$ is computed as:

If
$$\hat{\delta}(q, x) = \{p_1, p_2, ..., p_k\}$$
 and $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$, then
 $\hat{\delta}(q, w) = \text{ECLOSE}(\{r_1, r_2, ..., r_m\}) = \text{ECLOSE}(\bigcup_{i=1}^k \delta(p_i, a)).$

■ An illustration of the above definition is shown in Fig. 2.22.

Fig. 2.22 A illustration of computing the recursive definition of extended transition function $\hat{\delta}$.

■ Example 2.20 ----

Compute $\hat{\delta}(q_0, 5.6)$ for the ε -NFA of Fig. 2.19.

- Compute $\hat{\delta}(q_0, 5) = \hat{\delta}(q_0, \epsilon 5)$ first:

 - δ̂ (q₀, ε) = ECLOSE(q₀) = {q₀, q₁};
 δ̂(q₀, 5) ∪ δ̂(q₁, 5) = φ ∪ {q₁, q₄} = {q₁, q₄};
 - $\hat{\delta}(q_0, 5) = \hat{\delta}(q_0, \varepsilon 5) = \text{ECLOSE}(\delta(q_0, 5) \cup \delta(q_1, 5))$ $= \text{ECLOSE}(\{q_1, q_4\}) = \text{ECLOSE}(\{q_1\}) \cup \text{ECLOSE}(\{q_4\})$

 $= \{q_1, q_4\}.$ (Complete the rest of computations by yourself!)

• The language of an ε -NFA ----

Given an ε -NFA $E = (Q, \Sigma, \delta, q_0, F)$, the language accepted by it is

$$L(E) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \phi \}.$$

2.5.5 Eliminating ε-Transitions

- Concepts ---
 - The ε-transition is good for design of FA, but for implementation, they have to be eliminated.
 - Given an ε -NFA, we can find an equivalent DFA (a theorem seen later).
- Proof of equivalence of the ε-NFA and the DFA ----
 - Let $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$ be the given ε -NFA, the equivalent DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ is constructed as follows.
 - Q_D is the set of subsets of Q_E in which each subset *S* is accessible as an ε -closed subset of Q_E , i.e., $S \subseteq Q_E$ such that S = ECLOSE(S).

(In other words, each ε -closed set *S* of states includes those states such that any ε -transition out of one of the states in *S* leads to a state that is also in *S*.)

- $q_D = \text{ECLOSE}(q_0)$ (initial state of *D*).
- $F_D = \{S \mid S \in Q_D \text{ and } S \cap F_E \neq \phi\}.$
- δ_D(S, a) is computed for each a in Σ and each S in Q_D in the following way:
 (1) let S = {p₁, p₂, ..., p_k};

(2) compute
$$\bigcup_{i=1}^{k} \delta(p_i, a)$$
 and let this set be $\{r_1, r_2, ..., r_m\}$;

(3) set
$$\delta_D(S, a) = \text{ECLOSE}(\{r_1, r_2, \dots, r_m\}) = \text{ECLOSE}(\bigcup_{i=1}^k \delta(p_i, a)).$$

- Technique to create accessible states in DFA *D* ---
 - Starting from the start state q_0 of ε -NFA *E*, generate ECLOSE(q_0) as the start state q_D of *D*.
 - From the generated states, derive the other states.
- Example 2.21 ---

Eliminate the ε -transitions of Fig. 2.19 above.

- Start state $q_D = \text{ECLOSE}(q_0) = \{q_0, q_1\}.$
- $\bullet \ \delta_D(\{q_0, q_1\}, +) = \text{ECLOSE}(\delta_E(q_0, +) \cup \delta_E(q_1, +)).$

 $= \text{ECLOSE}(\{q_1\} \cup \phi) = \text{ECLOSE}(\{q_1\}) = \{q_1\}, \dots$

- ♦ $\delta_D(\{q_0, q_1\}, 0) = \text{ECLOSE}(\delta_E(q_0, 0) \cup \delta_E(q_1, 0))$ = ECLOSE ($\phi \cup \{q_1, q_4\}$) = ECLOSE($\{q_1, q_4\}$) = $\{q_1, q_4\}$, ...
- $\bullet \ \delta_D(\{q_0, q_1\}, \boldsymbol{\cdot}) = \text{ECLOSE}(\delta_E(q_0, \boldsymbol{\cdot}) \cup \delta_E(q_1, \boldsymbol{\cdot})) = \{q_2\}.$

(The above partial derivation may be described by Fig. 2.23.)

- $_D(\{q_1\}, 0) = \text{ECLOSE}(e_{E}(q_1, 0)) = \text{ECLOSE}(\{q_1, q_4\}) = \{q_1, q_4\}... \\ _D(\{q_1\}, \bullet) = \text{ECLOSE}(e_{E}(q_1, \bullet)) = \text{ECLOSE}(\{q_2\}) = \{q_2\}.$
- ٠

(The above partial derivation may be described by Fig. 2.24.)

Fig. 2.23 The first partial derivation of the equivalent DFA of the ϵ -NFA of Example 2.21.

Fig. 2.24 The second partial derivation of the equivalent DFA of the ε-NFA of Example 2.21.

- ♦ $\delta_D(\{q_1, q_4\}, 0) = \text{ECLOSE}(\delta_E(q_1, 0) \cup \delta_E(q_4, 0)) = \text{ECLOSE}(\{q_1, q_4\} \cup \phi) = \{q_1, q_4\}...$
- $\bullet \ \delta_{D}(\{q_1, q_4\}, .) = \text{ECLOSE}(\delta_{E}(q_1, .) \cup \delta_{E}(q_4, .)) = \text{ECLOSE}(\{q_2\} \cup \{q_3\})$

 $= \text{ECLOSE}(q_2) \cup \text{ECLOSE}(q_3) = \{q_2\} \cup \{q_3, q_5\} = \{q_2, q_3, q_5\}.$

(The above partial derivation may be described by Fig. 2.25.)

Fig. 2.25 The third partial derivation of the equivalent DFA of the ϵ -NFA of Example 2.21.

- $\delta_D(\{q_2\}, 0) = \text{ECLOSE}(\delta_E(q_2, 0)) = \text{ECLOSE}(\{q_3\}) = \{q_3, q_5\}...$
- ♦ $\delta_D(\{q_2, q_3, q_5\}, 0) = \text{ECLOSE}(\delta_E(q_2, 0) \cup \delta_E(q_3, 0) \cup \delta_E(q_5, 0))$

 $= \text{ECLOSE}(\{q_3\} \cup \{q_3\} \cup \phi) = \text{ECLOSE}(q_3) = \{q_3, q_5\} \dots$

(The above partial derivation may be described by Fig. 2.26.)

Fig. 2.26 The fourth partial derivation of the equivalent DFA of the ε -NFA of Example 2.21.

• $\delta_D(\{q_3, q_5\}, 0) = \text{ECLOSE}(\delta_E(q_3, 0) \cup \delta_E(q_5, 0)) = \text{ECLOSE}(\{q_3\} \cup \phi) = \text{ECLOSE}(q_3)$ $= \{q_3, q_5\}...$

(The above fifth derivation may be described by Fig. 2.27.)

Fig. 2.27 The fifth partial derivation of the equivalent DFA of the ε -NFA of Example 2.21.

- The dead state φ need be shown to get the final version of the desired DFA as shown in Fig. 28.
- But according to Section 2.3.6, the diagram in Fig. 27 may be regarded as *deterministic*.

(A suggestion to the reader: you would better repeat the above entire derivation process to get a full understanding of the involved details.)

Fig. 2.28 The complete derivation of the equivalent DFA of the ϵ -NFA of Example 2.21.

Theorem 2.22 ---

A language L accepted by some ε -NFA if and only if L is accepted by some DFA.

- Proof: see the textbook yourself.
- A Review ----
 - ♦ 3 Types of Automata:
 - DFA --- good for soft/hardware implementation;
 - NFA ($\not \in$ -NFA) --- intermediately intuitive;

• ε-NFA --- most intuitive (Note: notation *g* in the above is pronounced as "non-epsilon.")

• Some equivalence relations among these 3 types of automata are shown in Fig. 2.29.

Fig. 2.28 Some relations among the three types of automata DFA, $\not \epsilon$ -NFA, and ϵ -NFA.