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2.0 Introduction 
 

 Two types of finite automata (FA): 

 deterministic FA (DFA) 

 nondeterministic FA (NFA) 

 

 Both types are of the same power: 

 the former is easier for hardware and software implementations; and 

 the latter is more efficient for descriptions of applications of FA. 

 

 

2.1 An Informal Picture of Finite Automata 
 

 A complete application example of finite automata for protocol design and verification 

 Involving a concept of “product of two automata” 

(read details in the textbook by yourself) 

 

 

2.2 Deterministic Finite Automata 
 

2.2.0 A Review (supplemental) 

 Recall the example of designing a vending machine selling 20-dolllar food packs in 

Chapter 0 (see Fig. 2.1). 

 What abstract concepts are involved in the design?  See the definition next. 

 

 

Fig. 2.1 Transition diagram of a finite automaton for a vending machine (from Chapter 0). 

 

2.2.1 Definition of DFA 

 Definition --- 

A deterministic finite automata (DFA) A consists of 5-tuples (1/2): 

 a finite (nonempty) set of states Q; 

 a finite (nonempty) set of input symbols ; 

 a (state) transition function  such that 

(q, a) = p 

Means “automaton A, in state q, takes input a and enters state p.” 

 a start state q0; 

 a set of (nonempty) final or accepting states F. 
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 DFA A may be written as a “5-tuple” as follows: 

A = (Q, , , q0, F). 

 A graphic model for a DFA --- see Fig. 2.2. 

 

 
 

2.2.2 How a DFA processes strings 

 Given an input string x = a1a2…an, if  

(q0, a1) = q1, (q1, a2) = q2, …, (qi1, ai) = qi, ..., (qn1, an) = qn, and qn  F, 

then x is “accepted”; otherwise, “rejected.” 

 Every transition is deterministic. 

 

 Example 2.1 --- 

Design an FA A to accept the language  

L = {x01y | x and y are any strings of 0’s and 1’s}. 

 Examples of strings in L: 01, 11010, 100011… 

 Transitions: 

(q0, 1) = q0, (q0, 0) = q2, (q2, 1) = q1, (q2, 0) = q2, (q1, 0) = q1, (q1, 1) = q1 

 5-Tuple: 

A = ({q0, q1, q2}, {0, 1}, , q0, {q1}) 

 

2.2.3 Simpler Notations for DFA’s 

 For the last example, we may have other ways of descriptions as follows. 

 Transition diagram --- see Fig. 2.3. 

 

 

Fig. 2.3 The transition diagram for the DFA of Example 2.1. 
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 Transition table --- see Table 2.1. 

 

Table 2.1 The transition table for Example 2.1. 
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(Notations: : initial state; *: final state) 

 

2.2.4 Extending transition function to strings 

 Extended transition function ̂  --- 

If x = a1a2…an and is such that 

(p, a1) = q1, (q1, a2) = q2, …, (qi1, ai) = qi, ..., (qn1, an) = q, 

then we define ̂  to be ̂ (p, x) = q. 

 

 ̂  may also be defined recursively as follows: 

Basis: ̂ (q, ) = q. 

Induction: if w = xa (a is the last symbol of w), then ̂ (q, w) = ( ̂ (q, x), a). 

 

 A graphic diagram for the concept of the above induction step --- see Fig. 2.4. 

 

 

Fig. 2.4 An illustration for the induction step in the definition of ̂ . 

 

 Difference between and  ̂  --- the former accepts single symbols as input while the 

latter may accept strings as input. 

 

2.2.5 The Language of a DFA 

 The language of a DFA A is defined as 

L(A) = {w | ̂ (q0, w) is in F}. 

 If L is L(A) for some DFA A, then we say L is a regular language. 
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2.3 Nondeterministic Finite Automata 
 

2.3.1 An informal view of NFA’s 

 Review of a previous example of DFA (of Example 2.1) --- 

 Original version --- see Fig. 2.5 (the same as Fig. 2.3) 

 

 

Fig. 2.5 The transition diagram for the DFA of Example 2.1 (Fig. 2.3 repeated here for comparison). 

 

 A nondeterministic finite automaton (NFA) version of the above DFA --- see Fig. 2.6. 

 More intuitive! 

 How to design an NFA will be described later. 

 

 

Fig. 2.6 Another transition diagram for the DFA of Example 2.1 using the extended transition function ̂ . 

 

 Some properties of NFA’s (see Fig. 2.6 for the illustration) --- 

 Some transitions may “die,” like ̂ (q2, 0). 

 Some transitions have multiple choices, like ̂ (q0, 0) = q0 and q2. 

 

 Example 2.6 --- 

Design an NFA accepting the following language 

L = {w | w{0, 1}* and ends in 01}. 

 By intuition, we can draw the transition diagram for an NFA A to accept L as shown in 

Fig. 2.7. 

 Nondeterminism may create many transition paths, but if there is one path leading to a 

final state, then the input is accepted. 

 

 

Fig. 2.7 A design of the NFA of Example 2.2 by intuition. 

 

 When input x = 00101, the NFA processes x in a way as shown in Fig. 2.8. 

 

 1 0 

 0, 1 q0 SSttaarrtt  q2 
 0  q1 

 1 

 0, 1 

q0 SSttaarrtt  q2 

 0 
$20 
 q1 

 1 
 0, 1 

q0 SSttaarrtt  q1 

 0 
$20 
 q2 

 1 

 0, 1 



7 

 

Fig. 2.8 The process of the NFA of Example 2.2 to accept the input x = 00101 (Fig. 2.10 in the textbook). 

 

2.3.2 Definition of NFA 

 An NFA A is a 5-tuple A = (Q, , , q0, F) where 

 Q = a finite (nonempty) set of states; 

  = a finite (nonempty) set of input symbols; 

 q0 = a start state; 

 F = a set of (nonempty) final or accepting states; 

  = a (state) transition function such that 

(q, a) = {p1, p2, …, pm} 

which means “automaton A, in state q, takes input a and enters one of the states p1, 

p2, …, pm.” 

 

 Example 2.7 --- 

The transition table of the NFA of the last example (Example 2.6) is as shown in Table 

2.2. 

 

Table 2.2 Transition table of NFA of Example 2.2. 

 0 1 

 q0     {q0, q1} {q0} 

  q1  {q2} 

 *q2   

 

 

2.3.3 Extended Transition Function 

 Recursive definition of ̂  (with strings, not symbols, as input) --- 

Basis: ̂ (q, ) = {q}. 

Induction: if w = xa (with a as the last symbol of w), ̂ (q, x) = {p1, p2, …, pk}, and 

(pi, a) = {r1, r2, …, rm}, then ̂ (q, w) = {r1, r2, …, rm}. 

 

 A graphic diagram for the concept involved in the induction step above is as shown in Fig. 

2.9(supplemental): 

 

q0 

q1 

Stuck! 

q0 

q1 

q2 Stuck! 

q0 q0 

q1 

q2 

Accept! 

q0 q0 q

0 

q

0 

q

0 

q

1 q

2 0 0 0 1 1 



8 

 

Fig. 2.10 A graphic model for explaining the induction step of the extended transition function. 

 

 Example 2.8 (continued from Example 2.6) --- 

With the input w = 00101 for the NFA of Example 2.6, we have 

1. ̂ (q0,) = {q0}; 

2. ̂ (q0, 0) = (q0, 0) = {q0, q1}; 

3. ̂ (q0, 00) = (q0, 0)∪(q1, 0) = {q0, q1}∪ = {q0, q1}… 

 

2.3.4 The Language of an NFA 

 Definition --- 

If A = (Q, ,, q0, F) is an NFA, then the language accepted by A is 

L(A) = {w | ̂ (q0, w)∩F  }. 

 That is, as long as a final state is reached, which is among possibly many, the input is 

accepted. 

 

 

2.3.5 Equivalence of DFA and NFA 

 A comparison of DFA’s and NFA’s is as follows. 

 NFA’s are more intuitive to construct for many languages; 

 DFA’s are easier for use in software and hardware implementations. 

 

 Definition: “Two models are said to be equivalent if they have identical languages.” 

 

 Theorem: Every NFA N has an equivalent DFA D, i.e., L(D) = L(N). 

 The proof of the theorem is based on the technique of “subset construction.” 

 Concept of subset construction: each state of DFA is a subset of NFA 

 Detail of proof:  

Given an NFA N = (QN, , N, q0, FN), we construct a DFA D = (QD, , D, q0', FD) 

such that: 

 the two alphabets are identical; 

 QD is the power set of QN (i.e., set of all subsets of QN); 

 inaccessible states in QD are deleted; 

 q0' = {q0}; 

 each subset S of QN is put in the final state set FD if S includes at least one accepting 
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state in FN (i.e., S∩FN ); 

 for each subset S of QN and for each input symbol a, D is defined as 

D(S, a) = 
p S

N(p, a). 

 

 Example 2.10 --- 

For the NFA of Example 2.6 (see Fig. 2.7), we have 

 The power set of QN = {q0, q1, q2} is QD = {, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, 

q2}, {q0, q1, q2}}. 

 The transition table is as shown Table 2.3. 

 

Table 2.3 The transition table for the NFA of Example 2.6. 

 0 1 

 

{q0} 

{q1} 

*{q2} 

{q0, q1} 

*{q0, q2} 

*{q1, q2} 

*{q0, q1, q2} 

 

{q0, q1} 

 

 

{q0, q1} 

{q0, q1} 

 

{q0, q1} 

 

{q0} 

{q2} 

  

{q0, q2} 

{q0} 

{q2} 

{q0, q2} 

 

 Elimination of inaccessible states --- 

 Changing the names of the states in Table 2.3 according to the following rules, we 

get a result as shown in Table 2.4 (which is Fig. 2.13 in the textbook): 

{q0} = B, {q1} = C, {q2} = D, {q0, q1} = E, 

{q0, q2} = F, {q1, q2} = G, {q0, q1, q2} = H. 

 

Table 2.4 A transition table transformed from Table 2.3 for the NFA of Example 2.6. 

 0 1 

A 

B 
C 

*D 

E 

*F 
*G 

*H 

A 

E 

A 

A 

E 

E 

A 

E 

A 

B 

D 

A 

F 

B 

D 

F 

 

 Checking accessible states from the start state (marked by “,”), we get a result 

shown as the red ones in Table 2.4 (only B, E, F left); the other states are 

inaccessible. 

 A transition diagram for the above is shown in Fig. 2.11. 
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Fig. 2.11 The transition diagram for the simplified NFA of Example 2.10. 

 

 Another way to eliminate inaccessible states by “lazy evaluation” --- 

starting from the start state, only accessible states are evaluated in order to avoid 

generation of inaccessible states (see Fig. 2.7 again during the evaluation process). 

 

 

 Example 2.10 (continued) --- 

 The result according to lazy evaluation for Example 2.10 using Table 2.3 is shown by 

the red parts in Table 2.5 which are the same as those red states shown in Table 2.4. 

 The corresponding transition diagram is shown in Fig. 2.12. 

 

Table 2.5 The transition table for the NFA of Example 2.6 using “lazy evaluation.” 

 0 1 

 

{q0} 

{q1} 

*{q2} 

{q0, q1} 

*{q0, q2} 
*{q1, q2} 

*{q0, q1, q2} 

 

{q0, q1} 

 

 

{q0, q1} 

{q0, q1} 

 

{q0, q1} 

 

{q0} 

{q2} 

  

{q0, q2} 

{q0} 

{q2} 

{q0, q2} 

 

 

Fig. 2.12 The transition diagram of Example 2.10 resulting from lazy evaluation. 
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 Theorem 2.11  

If DFA D = (QD, , D, {q0}, FD) is constructed from NFA N = (QN, , N, q0, FN) 

by subset construction, then L(D) = L(N). 

 Proof. See the textbook. 

 

 

 Theorem 2.12 (equivalence of DFA and NFA): 

A language L is accepted by some DFA if and only if L is accepted by some NFA. 

 Proof. See the textbook. 

 

 

2.3.6 A Bad Case of Subset Construction 

 The DFA constructed from an NFA usually has the same number of accessible states of 

the NFA. But the worse case is m = 2n where 

 m is the number of states in the DFA. 

 n is the number of states in the NFA. 

 

 Regarding NFA’s as DFA’s --- 

 In each state of a DFA, for each input there must be a next state. 

 In an NFA, for a certain input there might be no next state. So the automaton shown in 

Fig. 2.13 is an NFA.  

 But it is deterministic in nature --- either getting into a next state or becoming “dead” 

(getting into a “dead” state). 

 Such a kind of NFA has at most one transition out of any state on any symbol, and may 

be regarded as a DFA. 

 

 

Fig. 2.13 An NFA which may be regarded as a DFA. 

 

(to be continued in part II of this chapter) 
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