

Chapter 10

Intractable Problems
(2015/12/25)

Lion Monument in Lucerne, Switzerland 1998

 2

Outline

10.0 Introduction

10.1 The Class P and NP

10.2 An NP-Complete Problem

10.3 A Restricted Satisfiability Problem

10.4 Additional NP-Complete Problems

 3

10.0 Introduction

 Concepts to be taught ---

 We will study the theory of “intractability.” That is, we will study the techniques for

showing problems not solvable in polynomial time.

 Definition of intractable problems – problems which can only be solved in exponential

time.

 Review of two concepts ---

 The problems solvable on computers are exactly those solvable on Turing

machines.

 Problems requiring polynomial time are solvable in amounts of time which we can

tolerate, while those requiring exponential time generally cannot be solved in

reasonable time except for small instances.

 We will study a “(boolean) satisfiability” problem equivalent to Lu and PCP.

 We also reduce tractable or intractable problems but the reduction should be done in

polynomial time. That is, we need polynomial-time reductions.

 Let  denote the class of problems which are solvable by deterministic TMs (DTMs) in

polynomial time.

 Let  denote the class of problems which are solvable by nondeterministic TMs

(NTMs) in polynomial time.

 A major assumption in the theory of intractability is    (still an open problem).

    means:  includes at least some problems which are not in  (even if we

allow a higher-degree polynomial time for the DTM).

 There are thousands of problems in  which are easily solved by a polynomial-time

NTM but no polynomial-time DTM is known for their solution.

 Either all of these problems in  have polynomial-time deterministic solutions or

none does (i.e., they require exponential time).

10.1 The Classes  and 

 Concepts to be taught ---

 

 

 Technique of polynomial-time reduction

 NP-completeness

10.1.1 Problems Solvable in Polynomial Time

 Definitions ---

 A TM M is said to be of time complexity T(n) [or to have “running time T(n)”] if

 4

whenever M is given an input w of length n, M halts after making at most T(n) moves,

regardless of whether or not M accepts.

 A language L is in class  if there is some polynomial T(n) such that L = L(M) for some

DTM M of time complexity T(n).

 Questions ---

 (in-box discussion, p. 427) Is there anything between polynomial time O(nk) and

exponential time O(2cn) for some constant c ?

Answer: Yes! It is O(nlog
2
n) = O(2(log

2
n)2). Why?

 log2n > k for large n

 cn > (log2n)2 for large n

10.1.2 An Example: Kruskal’s Algorithm

 Definitions –

 Graphs --- nodes + edges + weights

 Spanning tree --- a subset of edges such that all nodes are connected

 Minimum-weight spanning tree (MWST) --- a spanning tree with the least possible total

edge weight

 Kruskal provides a “greedy’ algorithm for finding an MWST.

 Kruskal’s algorithm may be solved in polynomial time by a computer:

 in O(n2) easily;

 in O(nlogn) more efficiently.

 The modified MWST problem ---

“does graph G has an MWST of total weight W or less?”

 This problem may solved in polynomial time O(n4) by a DTM (see pp. 430-431 in the

textbook).

 Conclusion ---

The MWST problem is in .

10.1.3 Nondeterministic Polynomial Time

 Definition ---

A language L is in class  if there is some polynomial T(n) such that L = L(M) for

some NTM M of time complexity T(n), where n is the length of an input.

(Note: NP means nondeterministic polynomial)

 Because DTM’s are also NTM’s, so   .

 It seems some problems in  is not in , but actually “whether  = ?” is an open

problem.

 That is, whether everything that can be done in polynomial time by an NTM can in fact be

done by a DTM in polynomial time, perhaps with a higher-degree polynomial, is

unknown yet.

 5

10.1.4 An  Example: The Traveling Salesman Problem

 Definition of traveling salesman problem (TSP) ---

Given a graph with integer weights on edges and a weight limit, if there is a Hamilton

circuit of total weight at most W in the graph?

 Hamilton circuit --- a set of edges that connect the nodes into a single cycle

(“completing the traversal in one way to save time and gas” “一趟走完, 省時省油”).

 Properties of the TSP ---

 It appears that all ways to solve the TSP have to try all cycles and computing their total

weights.

 The number of cycles in a graph with m nodes is O(m!) which is more than the

exponential time O(2cm) for any constant c.

 If we have a nondeterministic computer or NTM, we can guess all permutations of

nodes and compute their weights in order in polynomial time O(n) and O(n4),

respectively, using a single-tape TM. (note: n here = m in the last page)

 So, the TSP is in .

10.1.5 Polynomial-Time Reductions

 Concepts ---

 To prove a problem P2 not in ,

we can reduce a problem P1 also not in  to it. (A)

 An illustrative diagram is Fig. 10.1 (Fig. 10.2 in the textbook) below (similar to Fig.

8.7).

 The reduction algorithm should take polynomial time; otherwise, the proof will not be

valid.

Figure 10.1 Reduction of problems.

 Proof of statement (A) above (by contradiction) ---

 Assume P2 is in .

 Given an input to P1, the reduction includes translation of P1 to P2 and the output of P2.

 Polynomial-time reduction means:

 the translation takes time O(mj) on input of length m;

 the output instance of P2 cannot be longer than the number of steps O(mj), so that

its length is at most O(cmj).

 Suppose that we can decide the membership in P2 in time O(nk) for an input of length n.

Construct

P1
instance

 P2
instance

Decide yes

no

 6

 Then we can decide the membership of P1 for an input of length m by conducting:

 the reduction of translating P1 to P2 with output instance of P2 of length O(cmj);

and

 performing the decision work about P2.

 The total work takes time O(mj) + O((cmj)k) = O(mj + cmjk), which is an order of

polynomial time (since c, j, k are all constants). (See the illustration in Fig. 10.2).

 Therefore, decision of P1 takes polynomial time. That is, P1 is in .

 This is a contradiction because we have known that P1 is not in .

 Therefore, the assumption “P2 is ” made initially is wrong. Done.

Fig. 10.2 Time complexity of problem reduction.

 Concepts ---

 Reversely, we can also say that if P2 is in , and P1 can be reduced to P2 in polynomial

time, then P1 is also in .

 Summary: if P1 reduce P2, then

 P1 not in   P2 not in ;

 P2 in   P1 in .

 Only polynomial-reductions will be used in the study of intractability.

10.1.6 NP-Complete Problems

 Definition of NP-completeness ---

Let L be a language (problem). We say L is NP-complete if the following statements

about L are true:

 L is in .

 For every language L' in , there is a polynomial-time reduction of L' to L (every:

“completeness”).

 Some comments on NP-completeness ---

 As will be seen, an NP-complete problem is the TSP.

CCoonnssttrruucctt

P1
instance

 P2
instance

DDeecciiddee yes

no

Input length m

OO((mm
jj
)) OO((nn

kk
))

Input length n=O(cm
j
)

Time for decision

of P2: O((cm
j
)
k
)

Time for translation: O(m
j
)

Total time for decision of P1:

O(m
j
) + O((cm

j
)

k
) = O(m

j
 + cm

jk
)

 7

 It appears that   , and that all NP-complete problems are in   , so we view

a proof of NP-completeness of a problem as a proof of the fact that the problem is not

in .

 We will show our first NP-complete problem to be the (boolean) satisfiability problem

(SAT) by showing that the language of every polynomial-time NTM has a

polynomial-time reduction to the SAT.

 Once we have an NP-complete problem, we can prove a new problem P to be

NP-complete by reducing some known NP-complete problem to it (P), using a

polynomial-time reduction.

 Theorem 10.4 ---

If P1 is NP-complete, P2 is in , and there is a polynomial-time reduction of P1 to

P2, then P2 is NP-complete.

Proof.

 By the 2nd point of the definition of NP-completeness, we have to show every language

L in  polynomial-time reduces to P2.

 Since P1 is NP-complete, we know that L may be reduced to P1 in polynomial-time

p(n).

 Thus, a string w in L of length n is converted to a string x in P1 of length at most p(n).

 Also, we know P1 may be reduced to P2 in polynomial time, say, q(m).

 This reduction transforms x to a string y in P2, taking time at most q(p(n)).

 So, the transformation of w to y takes time at most p(n) + q(p(n)), which is a

polynomial.

 Therefore, L is polynomial-time reducible to P2. Done.

(A diagram like the previous one may be drawn.)

 Theorem 10.5 ---

If some NP-complete problem P is in , then  = .

(A wish to achieve so that the open problem can be solved!)

Proof.

 Since P is NP-complete, all languages L in  reduce to P in polynomial time. And

Since P is in , then L is in  (by Section 10.1.5, green line in p.27).

 That is, all languages L in  are also in , i.e., .

 By definition, we have . So,  = . Done.

10.2 An NP-Complete Problems

 NP-hard problem (An in-box note of the last section) ---

 Some problems are so hard that we can prove Condition (2) of the definition of

NP-completeness (“every language in  reduces to language L in polynomial time”)

 8

but we cannot prove Condition (1) (“L is in .”)

 “Intractable” is usually used to mean “NP-hard”.

10.2.1 The Satisfiability Problem

 Definition ---

The boolean expressions are built from the following elements.

 Variables with values 1 (true) and 0 (false).

 Binary operators  and  for logical AND and OR, respectively.

 Unary operator  for logical NOT (negation).

 Parentheses (and) used to alter the default precedence of operators:  (highest), , 

(lowest).

 Example 10.6 ---

An example of boolean expression is E = x   (y  z).

 For E to be true, the only truth assignment T is: x is true, y is false, and z is false.

 Definitions ---

 A truth assignment T for a given boolean expression E assigns either true or false to

each of the variables mentioned in E.

 The value assigned to a variable x is denoted by T(x).

 The overall value of E is denoted by E(T).

 A truth assignment T is said to satisfy boolean expression E if E(T) = 1.

 A boolean expression is said to be satisfiable if there exists at least one truth

assignment T that satisfies E.

 Example 10.7 ---

The boolean expression E of the last example is satisfiable because the truth

assignment T defined by T(x) = 1, T(y) = 0, and T(z) = 0 satisfies E.

 It can be figured out that the boolean expression E' = x  (x  y)  y is not

satisfiable (for details, see the textbook)

 Definition ---

The satisfiability problem is:

given a boolean expression, is it satisfiable?

which will be abbreviated as SAT.

 Stated as a language, the problem SAT is the set of (coded) boolean expressions that

are satisfiable.

10.2.2 Representing SAT Instances

 Concepts ---

 9

 We assume the variables are numbered as x1, x2, …

 To represent the boolean expression by codes,

 the symbols , , , (, and) are represented by themselves;

 the variable xi is represented by x followed by 0’s and 1’s that represent i in binary.

 Example 10.8 ---

The boolean expression of Example 10.6 E = x   (y  z) may be coded as x1  

(x10  x11) after regarding x, y, and z as x1, x2, and x3, respectively.

10.2.3 NP-completeness of the SAT Problem

 Concepts ---

 The SAT problem is NP-complete.

 To prove this, we have to do the following:

 show the SAT problem is in ; and

 reduce every language in  to the SAT problem.

 Theorem 10.9 (Cook’s Theorem) (The greatest theorem in computational complexity)---

SAT is NP-complete.

Proof. (too long; only a sketch is shown here)

(part A --- proving that SAT is in )

 use the nondeterministic ability of an NTM to guess a truth assignment T for the given

expression E in polynomial time O(n4) (see the textbook for the details).

(part B --- proving if language L is in , there is a polynomial-time reduction of L to SAT)

 describe the sequence of ID’s of the NTM accepting L in terms of boolean variables;

 express acceptance of an input w by writing a boolean expression that is satisfiable if

and only if M accepts w by a sequence of at most p(n) moves where n = |w| (see the

textbook for the details).

10.3 A Restricted Satisfiable Problem

 Concepts to be taught ---

 We want to prove a wide variety of problems, such as the TSP, to be NP-complete.

 For this purpose, we may reduce SAT to each of these problems in polynomial time.

 But before that, we introduce a simpler SAT problem, called 3SAT, and reduce SAT to

a normal form of it, called CSAT, in polynomial time.

 That is, we want to perform reductions in a sequence of SAT  CSAT  3SAT 

other problems.

10.3.1 Normal forms for Boolean Expressions

 Definitions –

 A literal is either a variable or a negated one, like x and x. And we usey for y;

 10

 A clause is a logical OR of one or more literals, like x, x  y, and x y  z.

 A boolean expression is said to be in conjunction normal form or CNF, if it is the AND

of clauses.

 Notations for compression –

 use + for ;

 treat  as a product and use juxtaposition (no operator) for it (like concatenation).

 Example 10.10 ---

 Boolean expression (xy)(xz) now becomes (x + y)(x + z) which is in CNF.

 Boolean expression (x + y z)(x + y + z)(y + z) is not in CNF because x + y z is not

a clause.

 Definition ---

 A boolean expression is said to be in k-CNF if it is the product of clauses, each being of

the sum of exactly k distinct literals.

 For example, (x + y)(x + z) is in 2-CNF because every clause has two literals.

 Definitions ---

 CSAT is the problem: “given a boolean expression in CNF, is it satisfiable?”

 kSAT is the problem: “given a boolean expression in k-CNF, is it satisfiable?”

 Properties ---

 It can be proved that CSAT, 3SAT and kSAT with k > 3 are all NP-complete (later in

Sections 10.3.2 & 10.3.3).

 However, there are linear-time algorithms for 1SAT and 2SAT.

10.3.2 Converting Expressions to CNF

 Concepts ---

 Two boolean expressions are said to be equivalent if they have the same result on any

truth assignment to their variables.

 If two expressions are equivalent, then either both are satisfiable or neither is.

 We want to reduce SAT to CSAT, by taking an SAT instance E and convert it to a

CSAT instance F such that F is satisfiable if and only if E is. (E and F need not be

equivalent.)

 Reduction of SAT to CSAT ---

 The above-mentioned reduction of SAT to CSAT consists of two parts:

 Step 1 - Push all ’s down so that negations are of variables and the new

expression becomes an AND and OR of literals (equivalent to the original).

 Step 2 - Write the above result into a product F of clauses to become CNF in

polynomial time (not need to be equivalent to the result of last step), so that F is

satisfiable if and only if the old expression E is.

 The 2nd step above is implemented by creating an extension of the original assignment

T.

 We say S is an extension of T if S assigns the same value as T to each variable that T

assigns, but S may also assign a value to variables that T does not mention.

 The 1st step above is implemented as follows.

 (EF)  (E)(F) (one of DeMorgan’s laws)

 11

 (EF)  (E)(F) (the other of DeMorgan’s laws)

 ((E))  E (Law of double negation)

 Example 10.11 ---

The boolean expression E = (((x + y))(x + y)) may be simplified by the above

rules to be

E = (((x + y))(x + y))

  ((x + y)) + (x + y)

  (x + y) + ((x))(y)

  x + y + x y

which is an OR-and-AND expression of literals.

 Theorem 10.12 ---

Every boolean expression E is equivalent to an expression F in which the only

negations occur in literals, i.e., they apply directly to variables. Moreover, the length of

F is linear in the number of symbols of E, and F can be constructed from E in

polynomial time.

(for proof, see the textbook; if E has n operators, then F has no more then 2n – 1 ones)

 A comment --- the details of the 2nd step mentioned in the last section, Section 10.3.2,

will be implemented in the proof of the following theorem.

 Theorem 10.13 ---

CSAT is NP-complete.

Proof.

 We prove the theorem by reducing SAT to CSAT.

 The 1st step is to use Theorem 10.12 to convert the given instance of SAT to an

expression E whose ’s are only in literals.

 We show the 2nd step of how to convert E to a CNF expression F in polynomial time

here such that F is satisfiable if and only if E is.

 The construction of F is by an induction on the length of E.

 Basis: if E consists of one or two symbols, then it is a literal which is also a clause,

and so E is already in CNF.

 Induction: assume every expression shorter than E has been converted into clauses.

Two cases need be checked.

(1) E = E1  E2.

By induction, let F1 and F2 be CNF expressions derived from E1 and E2,

respectively. Then, let F = F1  F2 which is also in CNF.

 12

(2) E = E1  E2.

By induction, let F1 = g1  g2  …  gp, F2 = h1  h2  …  hq be CNF

expressions derived from E1 and E2, respectively. Then, introduce a new

variable y and let

F = (y + g1)  (y + g2)  …  (y + gp)  (y + h1)  (y + h2)  …  (y

+ hq).

 For the rest of the proof, see the textbook.

 Example 10.14 ---

Given the boolean expression E = x y + x (y + z), the corresponding CNF is

constructed as follows.

 y + z  (v + y)(v + z) with v as an introduced variable.

 x (y + z)  x (v + y)(v + z).

 x y + x (y + z)  x y + x (v + y)(v + z)  (u + x)(u + y)(u + x)(u + v +

y)(u + v + z) with u as an introduced variable.

 Theorem 10.15 ---

3SAT is NP-complete.

Proof.

 First, 3SAT is in  since SAT is in .

 Next, we want to reduce CSAT to 3SAT. Since SAT has already been reduced to

CSAT, it means that SAT can be reduced to 3SAT, and we are done.

 Given a CNF expression E = e1  e2  …  ek which is an instance of CSAT, we want

to reduce it to an instance of 3SAT by transforming each ei into a valid form F for

3SAT in the following way:

(1) If ei is a single literal, say (x), then introduce two new variables u and v, and

replace (x) by the four clauses (x + u + v)(x + u +v)(x +u + v)(x +u +v). The

only way to make this expression true is for x to be true, as desired.

(2) If ei is the sum of two literals, (x + y), then introduce a new variable z and replace

ei by (x + y + z)(x + y +z). The only way to make this expression true is for (x +

y) to be true, as desired.

(3) If ei is the sum of three literals, then it is already in the form required for 3-CNF.

(4) If ei = (x1 + x2 + … + xm) for m  4, then introduce new variables y1, y2, …, ym3

and replace ei by the product of clauses

(x1 + x2 + y1)(x3 +y1 + y2)(x4 +y2 + y3)…(xm2 +ym4 + ym3)(xm1 + xm +ym3).

 (10.2)

If ei is true to make E true because one of its literal xj is true, then we may make y1

through yj2 as well as yj1 through ym3 true for the clauses of (10.2) above to be

true.

 13

 For other parts of the proof, see the textbook.

10.4 Additional NP-complete Problems

10.4.1~10.4.6

 Theorems --- the following problems are all NP-complete:

 The problem of independent sets (IS)

 The node-cover problem (NC)

 The directed Hamilton-circuit problem (DHC)

 The (undirected) Hamilton-circuit problem (HC)

 The traveling salesman problem (TSP)

 Comments ---

 The reductions of all the above problems and others studied before are illustrated in Fig.

10.12.

 An independent set or stable set in a graph is a set of nodes, no two of which are

adjacent (see Fig. 10.8 for an example).

 A node cover of a graph is a set of nodes such that each edge of the graph is incident to

at least one node of the set (cf. edge cover).

Figure 10.12 A hierarchy of problem reduction of the problems mentioned in this chapter.

 A mention of some content in Chapter 11 ---

 Co-  = complements of .

 See Figure 11.1.

SAT

CSAT

3SAT

IS

NC

DHC

HC

TSP

 14

Figure 11.1 Relations of -related problems.



--ccoommpplleettee 

CCoo--





CCoommpplleemmeenntt ooff

--ccoommpplleettee 

