Chapter 10

Intractable Problems (2015/12/25)

Lion Monument in Lucerne, Switzerland 1998

Outline

- 10.0 Introduction
- 10.1 The Class P and NP
- 10.2 An NP-Complete Problem
- 10.3 A Restricted Satisfiability Problem
- 10.4 Additional NP-Complete Problems

10.0 Introduction

■ Concepts to be taught ----

- We will study the theory of "intractability." That is, we will study the techniques for showing problems not solvable in polynomial time.
- Definition of *intractable* problems problems which can only be solved in exponential time.
- Review of two concepts ---
 - The problems solvable on computers are exactly those solvable on Turing machines.
 - Problems requiring polynomial time are solvable in amounts of time which we can tolerate, while those requiring exponential time generally cannot be solved in reasonable time except for small instances.
- We will study a "(boolean) satisfiability" problem equivalent to L_{μ} and PCP.
- We also reduce tractable or intractable problems but the *reduction should be done in polynomial time*. That is, we need polynomial-time reductions.
- ♦ Let *P* denote the class of problems which are solvable by deterministic TMs (DTMs) in polynomial time.
- ♦ Let NP denote the class of problems which are solvable by <u>n</u>ondeterministic TMs (NTMs) in polynomial time.
- A major assumption in the theory of intractability is $\mathcal{P} \neq \mathcal{NP}$ (*still an open problem*).
- $\mathcal{P} \neq \mathcal{NP}$ means: \mathcal{NP} includes at least some problems which are not in \mathcal{P} (even if we allow a higher-degree polynomial time for the DTM).
- ♦ There are thousands of problems in NP which are easily solved by a <u>polynomial-time</u> NTM but no polynomial-time DTM is known for their solution.
- ♦ *Either all* of these problems in *NP* have polynomial-time deterministic solutions *or* none does (i.e., they require exponential time).

10.1 The Classes \mathcal{P} and \mathcal{NP}

- Concepts to be taught ---
 - $\blacklozenge \mathcal{P}$
 - $\bullet \mathcal{NP}$
 - Technique of polynomial-time reduction
 - ♦ NP-completeness

10.1.1 <u>Problems Solvable in Polynomial Time</u>

Definitions ---

• A TM M is said to be of time complexity T(n) [or to have "running time T(n)"] if

whenever M is given an input w of length n, M halts after making at most T(n) moves, regardless of whether or not M accepts.

♦ A language L is in class P if there is some polynomial T(n) such that L = L(M) for some DTM M of time complexity T(n).

Questions ----

• (in-box discussion, p. 427) Is there anything between polynomial time $O(n^k)$ and exponential time $O(2^{cn})$ for some constant c?

Answer: Yes! It is $O(n^{\log_2 n}) = O(2^{(\log_2 n)2})$. Why?

- $\log_2 n > k$ for large *n*
- $cn > (\log_2 n)^2$ for large n

10.1.2 An Example: Kruskal's Algorithm

- Definitions
 - ♦ *Graphs* --- nodes + edges + weights
 - ♦ Spanning tree --- a subset of edges such that all nodes are connected
 - Minimum-weight spanning tree (MWST) --- a spanning tree with the least possible total edge weight
- Kruskal provides a "greedy' algorithm for finding an MWST.
- Kruskal's algorithm may be solved in polynomial time by a computer:
 - in $O(n^2)$ easily;
 - in $O(n \log n)$ more efficiently.
- The modified MWST problem ---

"does graph G has an MWST of total weight W or less?"

- This problem may solved in polynomial time $O(n^4)$ by a DTM (see pp. 430-431 in the textbook).
- Conclusion ---

The MWST problem is in \mathcal{P} .

10.1.3 Nondeterministic Polynomial Time

Definition ---

A language *L* is in class \mathcal{NP} if there is some polynomial T(n) such that L = L(M) for some NTM *M* of time complexity T(n), where *n* is the length of an input.

(Note: NP means nondeterministic polynomial)

- Because DTM's are also NTM's, so $\mathcal{P} \subseteq \mathcal{NP}$.
- It seems *some* problems in \mathcal{NP} is not in \mathcal{P} , but actually "whether $\mathcal{P} = \mathcal{NP}$?" is an open problem.
- That is, whether everything that can be done in polynomial time by an NTM can in fact be done by a DTM in polynomial time, perhaps with a higher-degree polynomial, is unknown yet.

10.1.4 <u>An *NP* Example: The Traveling Salesman Problem</u>

■ Definition of *traveling salesman problem* (TSP) ---

Given a graph with integer weights on edges and a weight limit, if there is a Hamilton circuit of total weight at most *W* in the graph?

◆ Hamilton circuit --- a set of edges that connect the nodes into a single cycle ("completing the traversal in one way to save time and gas" "一趟走完, 省時省油").

Properties of the TSP ----

- It appears that all ways to solve the TSP have to try all cycles and computing their total weights.
- The number of cycles in a graph with *m* nodes is O(m!) which is more than the exponential time $O(2^{cm})$ for any constant *c*.
- If we have a nondeterministic computer or NTM, we can guess all permutations of nodes and compute their weights in order in polynomial time O(n) and $O(n^4)$, respectively, using a single-tape TM. (note: *n* here = *m* in the last page)
- So, the TSP is in \mathcal{NP} .

10.1.5 Polynomial-Time Reductions

■ Concepts ----

• To prove a problem P_2 not in \mathcal{P} ,

we can reduce a problem P_1 also not in \mathcal{P} to it. (A)

- ♦ An illustrative diagram is Fig. 10.1 (Fig. 10.2 in the textbook) below (similar to Fig. 8.7).
- The reduction algorithm should take polynomial time; otherwise, the proof will not be valid.

Figure 10.1 Reduction of problems.

- Proof of statement (A) above (by contradiction) ---
 - Assume P_2 is in \mathcal{P} .
 - Given an input to P_1 , the reduction includes translation of P_1 to P_2 and the output of P_2 .
 - Polynomial-time reduction means:
 - the translation takes time $O(m^{i})$ on input of length m;
 - the output instance of P_2 cannot be longer than the number of steps $O(m^i)$, so that its length is at most $O(cm^i)$.
 - Suppose that we can decide the membership in P_2 in time $O(n^k)$ for an input of length *n*.

- Then we can decide the membership of P_1 for an input of length *m* by conducting:
 - the reduction of translating P_1 to P_2 with output instance of P_2 of length $O(cm^i)$; and
 - performing the decision work about P_2 .
- The total work takes time $O(m^i) + O((cm^j)^k) = O(m^i + cm^{i^k})$, which is an order of polynomial time (since c, j, k are all constants). (See the illustration in Fig. 10.2).
- Therefore, decision of P_1 takes polynomial time. That is, P_1 is in \mathcal{P} .
- This is a contradiction because we have known that P_1 is not in \mathcal{P} .
- Therefore, the assumption " P_2 is \mathcal{P} " made initially is wrong. Done.

Fig. 10.2 Time complexity of problem reduction.

- Concepts ----
 - Reversely, we can also say that if P_2 is in \mathcal{P} , and P_1 can be reduced to P_2 in polynomial time, then P_1 is also in \mathcal{P} .
 - Summary: if $P_1 \rightarrow_{\text{reduce}} P_2$, then
 - P_1 not in $\mathcal{P} \Rightarrow P_2$ not in \mathcal{P} ;
 - P_2 in $\mathcal{P} \Rightarrow P_1$ in \mathcal{P} .
 - Only polynomial-reductions will be used in the study of intractability.

10.1.6 NP-Complete Problems

Definition of NP-completeness ----

Let L be a language (problem). We say L is NP-complete if the following statements about L are true:

- L is in \mathcal{NP} .
- For every language L' in \mathcal{NP} , there is a polynomial-time reduction of L' to L (every: "completeness").
- Some comments on NP-completeness ----
 - ♦ As will be seen, an NP-complete problem is the TSP.

- ♦ It appears that P ≠ NP, and that all NP-complete problems are in NP P, so we view a proof of NP-completeness of a problem as a proof of the fact that the problem is *not* in P.
- ♦ We will show our first NP-complete problem to be the (boolean) satisfiability problem (SAT) by showing that <u>the language of every polynomial-time NTM has a</u> polynomial-time reduction to the SAT.
- ◆ Once we have an NP-complete problem, we can prove a new problem *P* to be NP-complete by reducing some known NP-complete problem to it (*P*), using a polynomial-time reduction.

■ Theorem 10.4 ---

If P_1 is NP-complete, P_2 is in \mathcal{NP} , and there is a polynomial-time reduction of P_1 to P_2 , then P_2 is NP-complete.

Proof.

- By the 2nd point of the definition of NP-completeness, we have to show every language L in NP polynomial-time reduces to P_2 .
- Since P_1 is NP-complete, we know that L may be reduced to P_1 in polynomial-time p(n).
- Thus, a string w in L of length n is converted to a string x in P_1 of length at most p(n).
- Also, we know P_1 may be reduced to P_2 in polynomial time, say, q(m).
- This reduction transforms x to a string y in P_2 , taking time at most q(p(n)).
- So, the transformation of w to y takes time at most p(n) + q(p(n)), which is a polynomial.
- ♦ Therefore, L is polynomial-time reducible to P₂. Done. (A diagram like the previous one may be drawn.)

Theorem 10.5 ---

If some NP-complete problem *P* is in \mathcal{P} , then $\mathcal{P} = \mathcal{NP}$.

(A wish to achieve so that the open problem can be solved!)

Proof.

- ♦ Since P is NP-complete, all languages L in NP reduce to P in polynomial time. And Since P is in P, then L is in P (by Section 10.1.5, green line in p.27).
- That is, all languages *L* in \mathcal{NP} are also in \mathcal{P} , i.e., $\mathcal{NP} \subset \mathcal{P}$.
- By definition, we have $\mathcal{P} \subset \mathcal{NP}$. So, $\mathcal{NP} = \mathcal{P}$. **Done.**

10.2 An NP-Complete Problems

- NP-hard problem (An in-box note of the last section) ---
 - ♦ Some problems are so hard that we can prove Condition (2) of the definition of NP-completeness ("every language in NP reduces to language L in polynomial time")

but we cannot prove Condition (1) ("*L* is in \mathcal{NP} .")

• "Intractable" is usually used to mean "NP-hard".

10.2.1 The Satisfiability Problem

Definition ---

The boolean expressions are built from the following elements.

- ♦ Variables with values 1 (true) and 0 (false).
- Binary operators \land and \lor for logical AND and OR, respectively.
- Unary operator \neg for logical NOT (negation).
- ♦ Parentheses (and) used to alter the default precedence of operators: ¬ (highest), ∧, ∨ (lowest).

■ Example 10.6 ---

An example of boolean expression is $E = x \land \neg (y \lor z)$.

• For *E* to be true, the only truth assignment *T* is: *x* is true, *y* is false, and *z* is false.

Definitions ---

- A truth assignment T for a given boolean expression E assigns either true or false to each of the variables mentioned in E.
- The value assigned to a variable x is denoted by T(x).
- The overall value of *E* is denoted by E(T).
- A truth assignment *T* is said to *satisfy* boolean expression *E* if E(T) = 1.
- A boolean expression is said to be *satisfiable* if there exists at least one truth assignment T that satisfies E.

Example 10.7 ---

The boolean expression *E* of the last example is satisfiable because the truth assignment *T* defined by T(x) = 1, T(y) = 0, and T(z) = 0 satisfies *E*.

• It can be figured out that the boolean expression $E' = x \land (\neg x \lor y) \land \neg y$ is not satisfiable (for details, see the textbook)

Definition ---

The *satisfiability problem* is:

given a boolean expression, is it satisfiable?

which will be abbreviated as SAT.

• Stated as a *language*, the problem SAT is the set of (*coded*) boolean expressions that are satisfiable.

10.2.2 <u>Representing SAT Instances</u> ■ Concepts ---

- We assume the variables are numbered as x_1, x_2, \ldots
- To represent the boolean expression by codes,
 - the symbols \land , \lor , \neg , (, and) are represented by themselves;
 - the variable x_i is represented by x followed by 0's and 1's that represent i in binary.

Example 10.8 ---

The boolean expression of Example 10.6 $E = x \land \neg (y \lor z)$ may be coded as $x1 \land \neg (x10 \lor x11)$ after regarding *x*, *y*, and *z* as x_1, x_2 , and x_3 , respectively.

10.2.3 NP-completeness of the SAT Problem

Concepts ---

- <u>The SAT problem is NP-complete</u>.
- To prove this, we have to do the following:
 - show the SAT problem is in \mathcal{NP} ; and
 - reduce every language in \mathcal{NP} to the SAT problem.
- Theorem 10.9 (Cook's Theorem) (The greatest theorem in computational complexity)----

SAT is NP-complete.

Proof. (too long; only a sketch is shown here)

(part A --- proving that SAT is in \mathcal{NP})

• use the nondeterministic ability of an NTM to guess a truth assignment T for the given expression E in polynomial time $O(n^4)$ (see the textbook for the details).

(part B --- proving if language L is in NP, there is a polynomial-time reduction of L to SAT)

- describe the sequence of ID's of the NTM accepting *L* in terms of boolean variables;
- express acceptance of an input *w* by writing a boolean expression that is *satisfiable* if and only if *M* accepts *w* by a sequence of at most p(n) moves where n = |w| (see the textbook for the details).

10.3 A Restricted Satisfiable Problem

Concepts to be taught ---

- We want to prove a wide variety of problems, such as the TSP, to be NP-complete.
- For this purpose, we may reduce SAT to each of these problems in polynomial time.
- But before that, we introduce a simpler SAT problem, called 3SAT, and reduce SAT to a *normal form* of it, called CSAT, in polynomial time.
- That is, we want to perform reductions in a sequence of SAT \Rightarrow CSAT \Rightarrow 3SAT \Rightarrow other problems.

10.3.1 Normal forms for Boolean Expressions

Definitions –

• A *literal* is either a variable or a negated one, like x and $\neg x$. And we use \overline{y} for $\neg y$;

- A *clause* is a logical OR of one or more literals, like x, $x \lor y$, and $x \lor \overline{y} \lor z$.
- ♦ A boolean expression is said to be in *conjunction normal form* or *CNF*, if it is the AND of clauses.

■ Notations for compression –

- use + for \lor ;
- treat \land as a product and use juxtaposition (no operator) for it (like concatenation).

Example 10.10 ---

- Boolean expression $(x \lor \neg y) \land (\neg x \lor z)$ now becomes $(x + \overline{y})(\overline{x} + z)$ which is in CNF.
- Boolean expression $(x + y\overline{z})(x + y + z)(\overline{y} + \overline{z})$ is not in CNF because $x + y\overline{z}$ is not a clause.

Definition ---

- ♦ A boolean expression is said to be in *k*-CNF if it is the product of clauses, each being of the sum of exactly *k* distinct literals.
 - For example, $(x + \overline{y})(\overline{x} + z)$ is in 2-CNF because every clause has two literals.

Definitions ---

- ♦ CSAT is the problem: "given a boolean expression in CNF, is it satisfiable?"
- ♦ *k*SAT is the problem: "given a boolean expression in *k*-CNF, is it satisfiable?"

Properties ----

- ♦ It can be proved that CSAT, 3SAT and *k*SAT with *k* > 3 are all NP-complete (later in Sections 10.3.2 & 10.3.3).
- However, there are linear-time algorithms for 1SAT and 2SAT.

10.3.2 <u>Converting Expressions to CNF</u>

Concepts ---

- Two boolean expressions are said to be *equivalent* if they have the same result on any truth assignment to their variables.
- If two expressions are equivalent, then either both are satisfiable or neither is.
- We want to reduce SAT to CSAT, by taking an SAT instance E and convert it to a CSAT instance F such that F is satisfiable if and only if E is. (E and F need *not* be equivalent.)

Reduction of SAT to CSAT ----

• $\neg (E \land F) \Longrightarrow \neg (E) \lor \neg (F)$

- The above-mentioned reduction of SAT to CSAT consists of two parts:
 - Step 1 *Push all* \neg 's down so that negations are **of** variables and the new expression becomes an AND and OR of literals (equivalent to the original).
 - Step 2 Write the above result into a product F of clauses to become CNF *in polynomial time (not* need to be equivalent to the result of last step), so that F is satisfiable if and only if the old expression E is.
- The 2^{nd} step above is implemented by creating an *extension* of the original assignment *T*.
- We say *S* is an *extension* of *T* if *S* assigns the same value as *T* to each variable that *T* assigns, but *S* may also assign a value to variables that *T* does not mention.
- The 1st step above is implemented as follows.
- (one of DeMorgan's laws)

•
$$\neg(E \lor F) \Rightarrow \neg(E) \land \neg(F)$$

• $\neg(\neg(E)) \Rightarrow E$

(the other of DeMorgan's laws) (Law of double negation)

Example 10.11 ---

The boolean expression $E = \neg((\neg(x + y))(\overline{x} + y))$ may be simplified by the above rules to be

$$E = \neg((\neg(x+y))(\overline{x} + y))$$
$$\Rightarrow \neg(\neg(x+y)) + \neg(\overline{x} + y)$$
$$\Rightarrow (x+y) + (\neg(\overline{x}))(\overline{y})$$
$$\Rightarrow x+y+x \overline{y}$$

which is an OR-and-AND expression of literals.

Theorem 10.12 ---

Every boolean expression E is equivalent to an expression F in which the only negations occur in literals, i.e., they apply directly to variables. Moreover, the length of F is linear in the number of symbols of E, and F can be constructed from E in polynomial time.

(for proof, see the textbook; if *E* has *n* operators, then *F* has no more then 2n - 1 ones)

■ A comment --- the details of the 2nd step mentioned in the last section, Section 10.3.2, will be implemented in the proof of the following theorem.

Theorem 10.13 ---

CSAT is NP-complete.

Proof.

- We prove the theorem by reducing SAT to CSAT.
- The 1st step is to use Theorem 10.12 to convert the given instance of SAT to an expression E whose \neg 's are only in literals.
- We show the 2^{nd} step of how to convert *E* to a CNF expression *F* in polynomial time here such that *F* is satisfiable if and only if *E* is.
- The construction of *F* is by an *induction* on the length of *E*.
 - **Basis:** if *E* consists of one or two symbols, then it is a literal which is also a clause, and so *E* is already in CNF.
 - **Induction:** assume every expression shorter than *E* has been converted into clauses. Two cases need be checked.
 - (1) $E = E_1 \wedge E_2$.

By induction, let F_1 and F_2 be CNF expressions derived from E_1 and E_2 , respectively. Then, let $F = F_1 \wedge F_2$ which is also in CNF.

(2) $E = E_1 \lor E_2$.

By induction, let $F_1 = g_1 \wedge g_2 \wedge \ldots \wedge g_p$, $F_2 = h_1 \wedge h_2 \wedge \ldots \wedge h_q$ be CNF expressions derived from E_1 and E_2 , respectively. Then, introduce a new variable y and let

$$F = (y + g_1) \land (y + g_2) \land \dots \land (y + g_p) \land (\overline{y} + h_1) \land (\overline{y} + h_2) \land \dots \land (\overline{y} + h_q).$$

• For the rest of the proof, see the textbook.

Example 10.14 ----

Given the boolean expression $E = x \overline{y} + \overline{x} (y + z)$, the corresponding CNF is constructed as follows.

- $y + z \Rightarrow (v + y)(\overline{v} + z)$ with v as an introduced variable.
- $\bullet \ \overline{x} (y+z) \Rightarrow \ \overline{x} (v+y)(\overline{v} + z).$

■ Theorem 10.15 ----

3SAT is NP-complete.

Proof.

- First, 3SAT is in \mathcal{NP} since SAT is in \mathcal{NP} .
- ♦ Next, we want to reduce CSAT to 3SAT. Since SAT has already been reduced to CSAT, it means that SAT can be reduced to 3SAT, and we are done.
- Given a CNF expression $E = e_1 \land e_2 \land \ldots \land e_k$ which is an instance of CSAT, we want to reduce it to an instance of 3SAT by transforming each e_i into a valid form F for 3SAT in the following way:
 - (1) If e_i is a single literal, say (x), then introduce two new variables u and v, and replace (x) by the four clauses (x + u + v)(x + u + v)(x + u + v)(x + u + v). The only way to make this expression true is for x to be true, as desired.
 - (2) If e_i is the sum of two literals, (x + y), then introduce a new variable z and replace e_i by $(x + y + z)(x + y + \overline{z})$. The only way to make this expression true is for (x + y) to be true, as desired.
 - (3) If e_i is the sum of three literals, then it is already in the form required for 3-CNF.
 - (4) If $e_i = (x_1 + x_2 + ... + x_m)$ for $m \ge 4$, then introduce new variables $y_1, y_2, ..., y_{m-3}$ and replace e_i by the product of clauses

$$(x_1 + x_2 + y_1)(x_3 + y_1 + y_2)(x_4 + y_2 + y_3)\dots(x_{m-2} + y_{m-4} + y_{m-3})(x_{m-1} + x_m + y_{m-3}).$$
(10.2)

If e_i is true to make *E* true because one of its literal x_j is true, then we may make y_1 through y_{j-2} as well as y_{j-1} through y_{m-3} true for the clauses of (10.2) above to be true.

• For other parts of the proof, see the textbook.

10.4 Additional NP-complete Problems

<u>10.4.1~10.4.6</u>

- **Theorems ---** the following problems are all NP-complete:
 - ♦ The problem of independent sets (IS)
 - The node-cover problem (NC)
 - The directed Hamilton-circuit problem (DHC)
 - The (undirected) Hamilton-circuit problem (HC)
 - The traveling salesman problem (TSP)

■ Comments ----

- The reductions of all the above problems and others studied before are illustrated in Fig. 10.12.
- ♦ An *independent set* or *stable set* in a graph is a set of nodes, no two of which are adjacent (see Fig. 10.8 for an example).
- ♦ A *node cover of a graph* is a set of nodes such that each edge of the graph is incident to at least one node of the set (cf. edge cover).

Figure 10.12 A hierarchy of problem reduction of the problems mentioned in this chapter.

A mention of some content in Chapter 11 ---

- Co- \mathcal{NP} = complements of \mathcal{NP} .
- ♦ See Figure 11.1.

Figure 11.1 Relations of \mathcal{NP} -related problems.