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10.0 Introduction 
 

 Concepts to be taught --- 

 We will study the theory of “intractability.” That is, we will study the techniques for 

showing problems not solvable in polynomial time. 

 

 Definition of intractable problems – problems which can only be solved in exponential 

time. 

 

 Review of two concepts --- 

 The problems solvable on computers are exactly those solvable on Turing 

machines. 

 Problems requiring polynomial time are solvable in amounts of time which we can 

tolerate, while those requiring exponential time generally cannot be solved in 

reasonable time except for small instances. 

 

 We will study a “(boolean) satisfiability” problem equivalent to Lu and PCP. 

 We also reduce tractable or intractable problems but the reduction should be done in 

polynomial time. That is, we need polynomial-time reductions. 

 

 Let  denote the class of problems which are solvable by deterministic TMs (DTMs) in 

polynomial time. 

 Let  denote the class of problems which are solvable by nondeterministic TMs 

(NTMs) in polynomial time. 

 

 A major assumption in the theory of intractability is    (still an open problem). 

    means:  includes at least some problems which are not in  (even if we 

allow a higher-degree polynomial time for the DTM). 

 

 There are thousands of problems in  which are easily solved by a polynomial-time 

NTM but no polynomial-time DTM is known for their solution. 

 Either all of these problems in  have polynomial-time deterministic solutions or 

none does (i.e., they require exponential time). 

 

 

10.1 The Classes  and  

 

 Concepts to be taught --- 

 

 

 Technique of polynomial-time reduction 

 NP-completeness 

 

10.1.1 Problems Solvable in Polynomial Time 

 Definitions ---  

 A TM M is said to be of time complexity T(n) [or to have “running time T(n)”] if 
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whenever M is given an input w of length n, M halts after making at most T(n) moves, 

regardless of whether or not M accepts. 

 A language L is in class  if there is some polynomial T(n) such that L = L(M) for some 

DTM M of time complexity T(n). 

 

 Questions --- 

 (in-box discussion, p. 427) Is there anything between polynomial time O(nk) and 

exponential time O(2cn) for some constant c ? 

Answer: Yes! It is O(nlog
2
n) = O(2(log

2
n)2). Why?  

 log2n > k for large n 

 cn > (log2n)2 for large n 

 

 

10.1.2 An Example: Kruskal’s Algorithm 

 Definitions – 

 Graphs --- nodes + edges + weights 

 Spanning tree --- a subset of edges such that all nodes are connected 

 Minimum-weight spanning tree (MWST) --- a spanning tree with the least possible total 

edge weight 

 

 Kruskal provides a “greedy’ algorithm for finding an MWST. 

 Kruskal’s algorithm may be solved in polynomial time by a computer:  

 in O(n2) easily; 

 in O(nlogn) more efficiently. 

 

 The modified MWST problem --- 

“does graph G has an MWST of total weight W or less?” 

 This problem may solved in polynomial time O(n4) by a DTM (see pp. 430-431 in the 

textbook). 

 

 Conclusion --- 

The MWST problem is in . 

 

10.1.3 Nondeterministic Polynomial Time 

 Definition --- 

A language L is in class  if there is some polynomial T(n) such that L = L(M) for 

some NTM M of time complexity T(n), where n is the length of an input. 

(Note: NP means nondeterministic polynomial) 

 Because DTM’s are also NTM’s, so   . 

 It seems some problems in  is not in , but actually “whether  = ?” is an open 

problem. 

 That is, whether everything that can be done in polynomial time by an NTM can in fact be 

done by a DTM in polynomial time, perhaps with a higher-degree polynomial, is 

unknown yet. 



 5 

 

10.1.4 An  Example: The Traveling Salesman Problem 

 Definition of traveling salesman problem (TSP) --- 

Given a graph with integer weights on edges and a weight limit, if there is a Hamilton 

circuit of total weight at most W in the graph? 

 Hamilton circuit --- a set of edges that connect the nodes into a single cycle 

(“completing the traversal in one way to save time and gas” “一趟走完, 省時省油”). 

 

 Properties of the TSP --- 

 It appears that all ways to solve the TSP have to try all cycles and computing their total 

weights. 

 The number of cycles in a graph with m nodes is O(m!) which is more than the 

exponential time O(2cm) for any constant c. 

 If we have a nondeterministic computer or NTM, we can guess all permutations of 

nodes and compute their weights in order in polynomial time O(n) and O(n4), 

respectively, using a single-tape TM. (note: n here = m in the last page) 

 So, the TSP is in . 

 

10.1.5 Polynomial-Time Reductions 

 Concepts ---  

 To prove a problem P2 not in ,  

we can reduce a problem P1 also not in  to it.  (A) 

 An illustrative diagram is Fig. 10.1 (Fig. 10.2 in the textbook) below (similar to Fig. 

8.7). 

 The reduction algorithm should take polynomial time; otherwise, the proof will not be 

valid. 

 

 
Figure 10.1 Reduction of problems. 

 

 

 Proof of statement (A) above (by contradiction) --- 

 Assume P2 is in . 

 Given an input to P1, the reduction includes translation of P1 to P2 and the output of P2. 

 Polynomial-time reduction means: 

 the translation takes time O(mj) on input of length m; 

 the output instance of P2 cannot be longer than the number of steps O(mj), so that 

its length is at most O(cmj). 

 Suppose that we can decide the membership in P2 in time O(nk) for an input of length n. 

 
Construct 

 

P1 
instance 

  P2 
instance 

Decide yes 

no 
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 Then we can decide the membership of P1 for an input of length m by conducting: 

 the reduction of translating P1 to P2 with output instance of P2 of length O(cmj); 

and  

 performing the decision work about P2. 

 The total work takes time O(mj) + O((cmj)k) = O(mj + cmjk), which is an order of 

polynomial time (since c, j, k are all constants). (See the illustration in Fig. 10.2). 

 Therefore, decision of P1 takes polynomial time. That is, P1 is in . 

 This is a contradiction because we have known that P1 is not in . 

 Therefore, the assumption “P2 is ” made initially is wrong. Done. 

 

 

 

Fig. 10.2 Time complexity of problem reduction. 

 

 

 Concepts --- 

 Reversely, we can also say that if P2 is in , and P1 can be reduced to P2 in polynomial 

time, then P1 is also in . 

 Summary: if P1 reduce P2, then  

 P1 not in   P2 not in ;  

 P2 in   P1 in . 

 Only polynomial-reductions will be used in the study of intractability. 

 

 

10.1.6 NP-Complete Problems 

 Definition of NP-completeness --- 

Let L be a language (problem). We say L is NP-complete if the following statements 

about L are true: 

 L is in . 

 For every language L' in , there is a polynomial-time reduction of L' to L (every: 

“completeness”). 

 

 Some comments on NP-completeness --- 

 As will be seen, an NP-complete problem is the TSP. 

  

CCoonnssttrruucctt  

  

P1 
instance 

  P2 
instance 
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no 

Input length m 
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Input length n=O(cm
j
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j
)
k
) 

Time for translation: O(m
j
) 

Total time for decision of P1:  

O(m
j
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j
)

k
) = O(m

j
 + cm
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 It appears that   , and that all NP-complete problems are in   , so we view 

a proof of NP-completeness of a problem as a proof of the fact that the problem is not 

in . 

 We will show our first NP-complete problem to be the (boolean) satisfiability problem 

(SAT) by showing that the language of every polynomial-time NTM has a 

polynomial-time reduction to the SAT. 

 Once we have an NP-complete problem, we can prove a new problem P to be 

NP-complete by reducing some known NP-complete problem to it (P), using a 

polynomial-time reduction. 

 

 

 Theorem 10.4 --- 

If P1 is NP-complete, P2 is in , and there is a polynomial-time reduction of P1 to 

P2, then P2 is NP-complete. 

Proof. 

 By the 2nd point of the definition of NP-completeness, we have to show every language 

L in  polynomial-time reduces to P2.  

 Since P1 is NP-complete, we know that L may be reduced to P1 in polynomial-time 

p(n). 

 Thus, a string w in L of length n is converted to a string x in P1 of length at most p(n). 

 Also, we know P1 may be reduced to P2 in polynomial time, say, q(m). 

 This reduction transforms x to a string y in P2, taking time at most q(p(n)). 

 So, the transformation of w to y takes time at most p(n) + q(p(n)), which is a 

polynomial. 

 Therefore, L is polynomial-time reducible to P2. Done. 

(A diagram like the previous one may be drawn.) 

 

 

 Theorem 10.5 --- 

If some NP-complete problem P is in , then  = . 

(A wish to achieve so that the open problem can be solved!) 

Proof. 

 Since P is NP-complete, all languages L in  reduce to P in polynomial time. And 

Since P is in , then L is in  (by Section 10.1.5, green line in p.27). 

 That is, all languages L in  are also in , i.e., . 

 By definition, we have . So,  = . Done. 

 

 

10.2 An NP-Complete Problems 
 

 NP-hard problem (An in-box note of the last section) --- 

 Some problems are so hard that we can prove Condition (2) of the definition of 

NP-completeness (“every language in  reduces to language L in polynomial time”) 
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but we cannot prove Condition (1) (“L is in .”) 

 “Intractable” is usually used to mean “NP-hard”. 

 

 

10.2.1 The Satisfiability Problem 

 Definition --- 

The boolean expressions are built from the following elements. 

 Variables with values 1 (true) and 0 (false). 

 Binary operators  and  for logical AND and OR, respectively. 

 Unary operator  for logical NOT (negation). 

 Parentheses ( and ) used to alter the default precedence of operators:  (highest), ,  

(lowest). 

 

 Example 10.6 --- 

An example of boolean expression is E = x   (y  z).  

 For E to be true, the only truth assignment T is: x is true, y is false, and z is false.  

 

 

 Definitions --- 

 A truth assignment T for a given boolean expression E assigns either true or false to 

each of the variables mentioned in E. 

 The value assigned to a variable x is denoted by T(x). 

 The overall value of E is denoted by E(T). 

 A truth assignment T is said to satisfy boolean expression E if E(T) = 1. 

 A boolean expression is said to be satisfiable if there exists at least one truth 

assignment T that satisfies E. 

 

 

 Example 10.7 --- 

The boolean expression E of the last example is satisfiable because the truth 

assignment T defined by T(x) = 1, T(y) = 0, and T(z) = 0 satisfies E.  

 It can be figured out that the boolean expression E' = x  (x  y)  y is not 

satisfiable (for details, see the textbook)  

 

 

 Definition ---  

The satisfiability problem is: 

given a boolean expression, is it satisfiable? 

which will be abbreviated as SAT. 

 Stated as a language, the problem SAT is the set of (coded) boolean expressions that 

are satisfiable. 

 

10.2.2 Representing SAT Instances 

 Concepts --- 
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 We assume the variables are numbered as x1, x2, … 

 To represent the boolean expression by codes, 

 the symbols , , , (, and ) are represented by themselves; 

 the variable xi is represented by x followed by 0’s and 1’s that represent i in binary. 

 

 Example 10.8 --- 

The boolean expression of Example 10.6 E = x   (y  z) may be coded as x1   

(x10  x11) after regarding x, y, and z as x1, x2, and x3, respectively. 

 

 

10.2.3 NP-completeness of the SAT Problem 

 Concepts --- 

 The SAT problem is NP-complete. 

 To prove this, we have to do the following: 

 show the SAT problem is in ; and 

 reduce every language in  to the SAT problem. 

 

 Theorem 10.9 (Cook’s Theorem) (The greatest theorem in computational complexity)--- 

SAT is NP-complete. 

Proof. (too long; only a sketch is shown here) 

(part A --- proving that SAT is in ) 

 use the nondeterministic ability of an NTM to guess a truth assignment T for the given 

expression E in polynomial time O(n4) (see the textbook for the details). 

(part B --- proving if language L is in , there is a polynomial-time reduction of L to SAT) 

 describe the sequence of ID’s of the NTM accepting L in terms of boolean variables; 

 express acceptance of an input w by writing a boolean expression that is satisfiable if 

and only if M accepts w by a sequence of at most p(n) moves where n = |w| (see the 

textbook for the details). 

 

 

 

10.3 A Restricted Satisfiable Problem 
 

 Concepts to be taught --- 

 We want to prove a wide variety of problems, such as the TSP, to be NP-complete. 

 For this purpose, we may reduce SAT to each of these problems in polynomial time. 

 But before that, we introduce a simpler SAT problem, called 3SAT, and reduce SAT to 

a normal form of it, called CSAT, in polynomial time. 

 That is, we want to perform reductions in a sequence of SAT  CSAT  3SAT  

other problems. 

 

 

10.3.1 Normal forms for Boolean Expressions 

 Definitions – 

 A literal is either a variable or a negated one, like x and x. And we usey for y; 
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 A clause is a logical OR of one or more literals, like x, x  y, and x y  z. 

 A boolean expression is said to be in conjunction normal form or CNF, if it is the AND 

of clauses. 

 

 Notations for compression – 

 use + for ; 

 treat  as a product and use juxtaposition (no operator) for it (like concatenation). 

 

 

 Example 10.10 --- 

 Boolean expression (xy)(xz) now becomes (x + y )( x  + z) which is in CNF. 

 Boolean expression (x + y z )(x + y + z)( y  + z ) is not in CNF because x + y z  is not 

a clause. 

 

 Definition ---  

 A boolean expression is said to be in k-CNF if it is the product of clauses, each being of 

the sum of exactly k distinct literals. 

 For example, (x + y )( x  + z) is in 2-CNF because every clause has two literals. 

 

 Definitions ---  

 CSAT is the problem: “given a boolean expression in CNF, is it satisfiable?” 

 kSAT is the problem: “given a boolean expression in k-CNF, is it satisfiable?” 

 

 Properties ---  

 It can be proved that CSAT, 3SAT and kSAT with k > 3 are all NP-complete (later in 

Sections 10.3.2 & 10.3.3). 

 However, there are linear-time algorithms for 1SAT and 2SAT. 

 

10.3.2 Converting Expressions to CNF 

 Concepts --- 

 Two boolean expressions are said to be equivalent if they have the same result on any 

truth assignment to their variables. 

 If two expressions are equivalent, then either both are satisfiable or neither is. 

 We want to reduce SAT to CSAT, by taking an SAT instance E and convert it to a 

CSAT instance F such that F is satisfiable if and only if E is. (E and F need not be 

equivalent.) 

 

 Reduction of SAT to CSAT --- 

 The above-mentioned reduction of SAT to CSAT consists of two parts: 

 Step 1 - Push all ’s down so that negations are of variables and the new 

expression becomes an AND and OR of literals (equivalent to the original). 

 Step 2 - Write the above result into a product F of clauses to become CNF in 

polynomial time (not need to be equivalent to the result of last step), so that F is 

satisfiable if and only if the old expression E is. 

 The 2nd step above is implemented by creating an extension of the original assignment 

T. 

 We say S is an extension of T if S assigns the same value as T to each variable that T 

assigns, but S may also assign a value to variables that T does not mention. 

 The 1st step above is implemented as follows. 

 (EF)  (E)(F)  (one of DeMorgan’s laws) 
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 (EF)  (E)(F)  (the other of DeMorgan’s laws) 

 ((E))  E  (Law of double negation) 

 

 

 Example 10.11 --- 

The boolean expression E = (((x + y))( x  + y)) may be simplified by the above 

rules to be  

E = (((x + y))( x  + y)) 

  ((x + y)) + ( x  + y) 

  (x + y) + (( x ))( y ) 

  x + y + x y  

which is an OR-and-AND expression of literals. 

 

 

 Theorem 10.12 --- 

Every boolean expression E is equivalent to an expression F in which the only 

negations occur in literals, i.e., they apply directly to variables. Moreover, the length of 

F is linear in the number of symbols of E, and F can be constructed from E in 

polynomial time. 

(for proof, see the textbook; if E has n operators, then F has no more then 2n – 1 ones) 

 

 A comment --- the details of the 2nd step mentioned in the last section, Section 10.3.2, 

will be implemented in the proof of the following theorem. 

 

 

 Theorem 10.13 --- 

CSAT is NP-complete. 

Proof.  

 We prove the theorem by reducing SAT to CSAT. 

 The 1st step is to use Theorem 10.12 to convert the given instance of SAT to an 

expression E whose ’s are only in literals. 

 We show the 2nd step of how to convert E to a CNF expression F in polynomial time 

here such that F is satisfiable if and only if E is. 

 

 The construction of F is by an induction on the length of E. 

 Basis: if E consists of one or two symbols, then it is a literal which is also a clause, 

and so E is already in CNF. 

 Induction: assume every expression shorter than E has been converted into clauses. 

Two cases need be checked. 

(1) E = E1  E2. 

By induction, let F1 and F2 be CNF expressions derived from E1 and E2, 

respectively. Then, let F = F1  F2 which is also in CNF. 
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(2) E = E1  E2. 

By induction, let F1 = g1  g2  …  gp, F2 = h1  h2  …  hq be CNF 

expressions derived from E1 and E2, respectively. Then, introduce a new 

variable y and let 

F = (y + g1)  (y + g2)  …  (y + gp)  ( y  + h1)  ( y  + h2)  …  ( y  

+ hq). 

 For the rest of the proof, see the textbook. 

 

 

 Example 10.14 ---  

Given the boolean expression E = x y  + x (y + z), the corresponding CNF is 

constructed as follows. 

 y + z  (v + y)( v  + z) with v as an introduced variable. 

 x (y + z)  x (v + y)( v  + z). 

 x y  + x (y + z)  x y  + x (v + y)( v  + z)  (u + x)(u + y )( u  + x )( u  + v + 

y)( u  + v  + z) with u as an introduced variable. 

 

 

 Theorem 10.15 --- 

3SAT is NP-complete. 

Proof. 

 First, 3SAT is in  since SAT is in . 

 Next, we want to reduce CSAT to 3SAT. Since SAT has already been reduced to 

CSAT, it means that SAT can be reduced to 3SAT, and we are done. 

 Given a CNF expression E = e1  e2  …  ek which is an instance of CSAT, we want 

to reduce it to an instance of 3SAT by transforming each ei into a valid form F for 

3SAT in the following way: 

(1) If ei is a single literal, say (x), then introduce two new variables u and v, and 

replace (x) by the four clauses (x + u + v)(x + u +v)(x +u + v)(x +u +v). The 

only way to make this expression true is for x to be true, as desired. 

(2) If ei is the sum of two literals, (x + y), then introduce a new variable z and replace 

ei by (x + y + z)(x + y +z). The only way to make this expression true is for (x + 

y) to be true, as desired. 

(3) If ei is the sum of three literals, then it is already in the form required for 3-CNF. 

(4) If ei = (x1 + x2 + … + xm) for m  4, then introduce new variables y1, y2, …, ym3 

and replace ei by the product of clauses 

(x1 + x2 + y1)(x3 +y1 + y2)(x4 +y2 + y3)…(xm2 +ym4 + ym3)(xm1 + xm +ym3). 

 (10.2) 

If ei is true to make E true because one of its literal xj is true, then we may make y1 

through yj2 as well as yj1 through ym3 true for the clauses of (10.2) above to be 

true. 
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 For other parts of the proof, see the textbook. 

 

 

10.4 Additional NP-complete Problems 
 

10.4.1~10.4.6 

 Theorems --- the following problems are all NP-complete: 

 The problem of independent sets (IS) 

 The node-cover problem (NC) 

 The directed Hamilton-circuit problem (DHC) 

 The (undirected) Hamilton-circuit problem (HC) 

 The traveling salesman problem (TSP) 

 

 Comments --- 

 The reductions of all the above problems and others studied before are illustrated in Fig. 

10.12. 

 An independent set or stable set in a graph is a set of nodes, no two of which are 

adjacent (see Fig. 10.8 for an example). 

 A node cover of a graph is a set of nodes such that each edge of the graph is incident to 

at least one node of the set (cf. edge cover). 

 

 

 

 

Figure 10.12 A hierarchy of problem reduction of the problems mentioned in this chapter. 

 

 

 

 

 

 

 A mention of some content in Chapter 11 --- 

 Co-  = complements of . 

 See Figure 11.1. 

 

SAT 

CSAT 

3SAT 

IS 

NC 

DHC 

HC 

TSP 
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Figure 11.1 Relations of -related problems. 
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