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Abstract

Deep networks for Monocular Depth Estimation (MDE)
have achieved promising performance recently and it is of
great importance to further understand the interpretability
of these networks. Existing methods attempt to provide post-
hoc explanations by investigating visual cues, which may
not explore the internal representations learned by deep
networks. In this paper, we find that some hidden units of the
network are selective to certain ranges of depth, and thus
such behavior can be served as a way to interpret the inter-
nal representations. Based on our observations, we quan-
tify the interpretability of a deep MDE network by the depth
selectivity of its hidden units. Moreover, we then propose a
method to train interpretable MDE deep networks without
changing their original architectures, by assigning a depth
range for each unit to select. Experimental results demon-
strate that our method is able to enhance the interpretability
of deep MDE networks by largely improving the depth se-
lectivity of their units, while not harming or even improving
the depth estimation accuracy. We further provide compre-
hensive analysis to show the reliability of selective units,
the applicability of our method on different layers, models,
and datasets, and a demonstration on analysis of model er-
ror. Source code and models are available at https://
github.com/youzunzhi/InterpretableMDE.

1. Introduction

Monocular Depth Estimation (MDE) has drawn a lot of
attention since it is critical for further applications like 3D
scene understanding or autonomous driving, due to the less
requirement and cost compared to depth estimation using
stereo image pairs. Eigen et al. [10] first utilize convolu-
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Figure 1. Visualization of feature maps. (a) and (b) refer to the
feature map visualization of Unit 5 in layer MFF and Unit 26 in
layer D (cf. Section 5) of [18] (ResNet-50), respectively. (c) and
(d) refer to Unit 63 in layer D and Unit 0 in layer MFF of the
interpretable counterpart trained by our method, respectively (best
viewed in color). We show that (b) has activations over different
depth ranges, while our results in (c) and (d) focus on distant or
close depth, which allows more interpretability of the model.

tional neural networks to perform MDE; since then numer-
ous approaches based on deep neural networks have been
proposed and significantly improve state-of-the-art perfor-
mance [13, 18, 42, 26]. However, only few studies fo-
cus on the interpretability of these MDE networks [46].
Since depth estimation can be closely related to downstream
tasks like autonomous driving, the lack of interpretability on
MDE models could potentially cause critical consequences.



Figure 2. A comparison of the accuracy drop rate when units are
ablated successively in different orders. The units are sorted by
their depth selectivity and then successively ablated in two re-
versed order. The accuracy in the y-axis drops faster when units
with the higher selectivity are ablated before the less selective
ones.

In general, understanding deep networks is of great ne-
cessity. Previous works on the interpretability of deep net-
works for vision mainly focus on image classification [44,
2] or image generation [3]. On depth estimation, Hu et
al. [20] and Dijk et al. [9] analyze how deep networks es-
timate depth from single images by investigating the visual
cues in input images, on the level of pixels or semantics,
respectively. However, they still treat the networks as black
boxes, resulting in less exploration of the internal represen-
tations learned by the MDE networks. In addition, such
post-hoc explanations may not present the whole story of
interpretable machine learning models as discussed in [33].
Although there exists interpretable models for computer vi-
sion tasks, such as image classification [45, 5], object detec-
tion [41] or person re-identification [28], these tasks have
quite a different characteristics from MDE and are not di-
rectly applicable to MDE.

Recently, numerous methods try to discover what neu-
rons in neural networks look for [30, 2, 11, 32]. It is shown
that neuron units generally extract features that can be inter-
preted as various levels of semantic concept, from textures
and patterns to objects and scenes. Moreover, to learn in-
terpretable neural networks, one option is to disentangle the
representations learned by internal filters, which makes the
filters more specialized [45, 27]. Inspired by these works,
we observe that in deep MDE networks, some hidden units
are selective to some ranges of depth. For example, in
Fig. 1(a), we visualize several feature maps of one unit in a
layer of the network from [18]. This unit is obviously more
activated in the distant regions of the input images. We fur-
ther dissect the units by collecting their averaged response
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Figure 3. Dissection results on units. (a) and (b) are units of layer
D and layer MFF in [18] (ResNet-50), where it shows diverse
ranges of selectivity. Using our proposed interpretable model, we
consistently increase the selectivity over all the units, e.g., (c) and
(d), which improves the model interpretability.

on depth ranges (see Section 3.1 later for more details), and
Fig. 3(a) shows that for some units, activations are higher
for some certain ranges of depth.

To quantify this observation, we then compute its depth
selectivity for each unit (detailed in Section 3.2). To evalu-
ate the meaningfulness of depth selectivity, we successively
ablate units and see how the performance of the network
drops accordingly. We first sort the 128 units of the net-
work from [18] by their selectivity and then successively
ablate units from the most selective unit to the least one,
and then do the same thing similarly in the reversed way.
In Fig. 2, the performance of the MDE model drops much
quicker when more selective units are ablated earlier than
less selective ones. Based on the observations stated above,
we argue that for an MDE deep network, a unit is more im-
portant when it is more depth selective, and the behavior of
its units can be interpreted by telling which ranges of depth



activated most by those units. Therefore, the interpretability
of a deep network for MDE can be quantified by the depth
selectivity of its internal units.

However, in the existing MDE model, despite that some
units can be interpreted as being selective for some ranges
of depth, most of them have little interpretability. For ex-
ample, Fig. 1(b) and Fig. 3(b) show feature map visual-
izations and dissection results of typical units in the net-
work from [18], which have less interpretability. Therefore,
to achieve an MDE model with better interpretability, we
propose a simple yet effective interpretable deep network
for MDE by maximizing the selectivity of internal units.
Our method can be applied to existing deep MDE networks
without modifying their original architectures or requiring
any additional annotations. More importantly, we show that
it is possible to learn our interpretable model without harm-
ing its depth performance, which creates potential discus-
sions in explainable AI along the trade-off between inter-
pretability and model performance [34]. The experimental
results show that the our interpretable models achieve com-
petitive or even better performance than the original MDE
models, while the interpretability is largely improved.

Contributions. To summarize, this work has the follow-
ing contributions: (1) we quantify the interpretability of
deep networks for MDE based on the depth selectivity of
models’ internal units; (2) we propose a novel method to
learn interpretable deep networks for MDE without mod-
ifying the original network’s architecture or requiring any
additional annotations; (3) we empirically show that our
method effectively improves the interpretability of deep
MDE networks, while not harming or even improving the
depth accuracy, and further validate the reliability and ap-
plicability of the proposed method.

2. Related Work
2.1. Monocular Depth Estimation

Estimating depth from images is an important problem
towards scene understanding, and recently monocular depth
estimation has been studied extensively. Numerous meth-
ods based on deep convolutional neural networks have been
proposed to achieve better performance on this task, includ-
ing the usage of geometric constraints, adopting multi-scale
network architecture, or sharing features with semantic seg-
mentation [25, 13, 18, 42, 22, 26, 48]. Nevertheless, few
studies analyze what these deep networks have learned. By
modifying input images, Dijk et al. [9] investigate the vi-
sual cues of what a network [15] exploits when predicting
the depth. Hu et al. [20] hypothesize that deep networks
can estimate depth from only a selected set of image pixels
fairly accurately, and train another network to predict those
pixels. Despite that some of their findings are interesting
and useful to help understand deep networks for MDE, they

still treat the networks as black boxes and their post-hoc ex-
planations do not lead to inherently interpretable models.

2.2. Post-hoc Explanations for Deep Networks

Recently, many studies aim to explain deep networks in
a post-hoc fashion. Among them, a line of research can
be categorized into saliency methods or attribution meth-
ods, where the “important” pixels are highlighted in input
images for networks to give their predictions [43, 35, 37,
24, 40]. While some recent studies discuss their reliabil-
ity [23, 38, 1], these methods are not directly applicable to
the task of MDE, since MDE is required to predict a depth
value for every pixel, and thus it is not reasonable to use
highlighted pixels to attribute the dense prediction of all
pixels.

Another group of studies on interpretability of deep neu-
ral networks explore the properties or the behavior of single
units [43, 47, 2, 30, 31, 29, 3, 32], where our work gen-
erally falls in this group as we quantify the interpretability
of networks for MDE. The fundamental difference between
the task of MDE and image classification makes our work
distinct from theirs. Moreover, these methods still focus on
the explanations of deep networks, instead of designing in-
terpretable models.

2.3. Interpretable Deep Networks for Vision

Instead of providing explanations, some studies attempt
to design inherently interpretable models to alleviate the
lack of model interpretability in computer vision tasks.
Chen et al. [5] propose an interpretable model for object
recognition that finds prototypical parts and reasons from
them to make final decisions. Liao et al. [28] propose
an approach to enhance the interpretability of person re-
identification networks by making the matching process of
feature maps explicit. Moreover, other methods that share a
similar concept to our method are to learn more specialized
filters. In interpretable CNNs from [45], each filter repre-
sents a specific object part, while a more recent study [27]
trains interpretable CNNs by alleviating filter-class entan-
glement, i.e. each filter only responds to one or few classes.
In this paper, our proposed interpretable model focuses on
the MDE task by increasing the depth selectivity of units
internally in MDE models, which differs from the afore-
mentioned approaches.

3. Interpretability of Deep Networks for MDE
In this section, we present how we quantify the inter-

pretability of the units by calculating their depth selectivity
with their average response on different ranges of depth.

3.1. Average Response of Units on Depth

We first dissect a deep network for MDE by collecting
the average response of its units on depth. Denote images



and the corresponding depth maps in a depth dataset D as
(xi,di) ∈ D, where i ∈ {1, 2, ..., N} and N is the number
of samples in D. For every internal unit k in a layer l of
the deep network, the activation map Al,k(xi) is scaled up
to the resolution of depth map using bilinear interpolation,
denoted as Ãl,k(xi). Depth values in di can be discretized
into Nb bins to capture the meaningful depth distribution.
Then, for every discretized depth value d (i.e., the index
of a bin) in the discretized depth map d̂i, we can obtain a
binary mask Md

i calculated by I(d̂i = d), where I(·) is the
indicator function. The average response Rd

l,k of unit k in
layer l for depth d is then computed over the entire dataset:

Rd
l,k =

∑N
i=1 S(Ãl,k(xi)⊙Md

i )∑N
i=1 S(M

d
i )

, (1)

where S(·) sums over all the elements of a matrix and ⊙
denotes the element-wise multiplication.

3.2. Depth Selectivity

Based on the average response, we compare how each
unit is activated by different depth ranges and observe that
some units are selective to a certain range of depth. Inspired
by the commonly-used selectivity index in systems neuro-
science [8, 4, 12], Morcos et al. [29] propose a metric to
calculate the class-selectivity of a unit based on its class-
conditional average activity, for the task of image classifi-
cation. Here we adopt this metric to the domain of depth
estimation. We define the depth selectivity of a unit as:

DSl,k =
|Rmax

l,k | − |R̄−max
l,k |

|Rmax
l,k |+ |R̄−max

l,k |
, (2)

where |Rmax
l,k | is the absolute value of the max response of

unit k in layer l over all discretized depth d, and |R̄−max
l,k |

is the average of all the other non-maximum absolute re-
sponses. We use the absolute value to make it applicable
for units that may have negative output (e.g., units that use
ELU [7] as the activation function). The value of DS is
in the range [0, 1], and a DS value close to 1 indicates that
corresponding unit is highly selective (e.g., Fig. 3(c)(d)). To
give a more concrete idea about this quantity, we calculate
its expectation when unit’s response is totally randomized
(see supplementary material for the derivation).

E|Rd
l,k|

[DSl,k] =
1

3
, |Rd

l,k| ∼ U [0, b], (3)

where b is an arbitrary positive number as the upper bound
of |Rd

l,k|, in which its value would not affect the outcome
of the expectation. This expectation can be considered as
a random baseline to be further compared with the depth
selectivity of actual MDE networks.

4. Interpretable Deep Networks for MDE
As motivated previously, here we would like to consider

an important problem: Is it possible to enhance the in-
terpretability of an MDE deep network without modifying
its architecture and harming its performance? In this sec-
tion, we first present a naı̈ve thought (i.e., regularizing se-
lectivity) together with pointing out its potential issue, and
then describe our proposed approach (i.e., assigning depth
ranges to units).

4.1. Regularizing Selectivity

As we have the metric of depth selectivity to quantify the
interpretability, we in turn aim to enhance the interpretabil-
ity of an MDE network by increasing its depth selectivity.
A straightforward approach that first comes to our mind is
adding an additional regularization term Lreg to the objec-
tive of the MDE model, which encourages the depth selec-
tivity of all the units in layer l ∈ L to increase:

Lreg =− λ
∑
l∈L

1

Kl

∑
k

DSl,k

=− λ
∑
l∈L

1

Kl

∑
k

|Rmax
l,k | − |R̄−max

l,k |
|Rmax

l,k |+ |R̄−max
l,k |

,

(4)

where Kl is the number of units in layer l, and λ > 0 is a
hyperparameter to balance between the original depth esti-
mation loss and our regularization term of depth selectivity.

However, we experimentally find that such naı̈ve ap-
proach leads to unsatisfactory results. Fig. 4 shows the
dissection results of some units in the network trained via
regularizing the depth selectivity. Despite that some units
are still depth selective as we expect, many others are not
or collapse (i.e., having no response to any depth values).
This is due to the fact that, during the process of batch-wise
optimization, the discretized depths that activate units are
mostly different within each batch. Here can be two rea-
sons: (1) at the beginning of training, units are not selective
at all, and (2) even if a unit is depth selective, the selected
depth could be absent in a batch, and then the unit will be
encouraged to activate more on the other depth ranges (e.g.,
focusing on the range that it activates most in this batch).

4.2. Assigning Depth to Units

In order to tackle the above-mentioned issue happened
while regularizing the depth selectivity, we propose a sim-
ple yet effective method by assigning each unit a specific
depth range for it to select, which is realized by an objec-
tive function Lassign:

Lassign = −λ
∑
l∈L

1

Kl

∑
k

|Rdk

l,k| − |R̄−dk

l,k |
|Rdk

l,k|+ |R̄−dk

l,k |
, (5)



Table 1. Depth selectivity and performance of baseline networks for MDE from [18] and our interpretable counterparts.
Model Training Testing δ1.25 δ1.252 δ1.253 RMS REL log10

[18] (ResNet-50) 0.4617 0.4286 0.849 0.972 0.994 0.443 0.124 0.054
Interpretable [18] (ResNet-50) 0.8357 0.7529 0.861 0.973 0.994 0.422 0.119 0.051

[18] (SENet-154) 0.4906 0.4691 0.874 0.979 0.995 0.409 0.111 0.049
Interpretable [18] (SENet-154) 0.8411 0.7693 0.882 0.979 0.995 0.396 0.109 0.047

Figure 4. Dissection results of typical units in networks trained by
the approach of directly regularizing the depth selectivity via (4).

where dk is the discretized depth being assigned to unit k.
As a result, the calculation of selectivity of a unit k is now
based on the assigned discretized depth dk, where |R̄−dk

l,k |
is the average of all other absolute responses other than dk.
The assignment of depth range to units is based on the fol-
lowing principle:

dk = ⌊ k

Kl/Nb
⌋, (6)

where the number of depth bins Nb is set to Kl if Kl ≤ Nb,
such that every discretized depth d is assigned to at least
one unit. If dk is absent in a batch, the unit k will be sim-
ply disregarded from the computation of Lassign. As a re-
sult, this approach does not suffer from problems caused by
batch sampling. Moreover, the interpretability of the deep
network is enhanced from another perspective: the behavior
of a unit becomes interpretable and predictable as it is now
specifically assigned to a particular depth. Please note that
in the following sections and experiments, such proposed
approach of assigning depth to units is abbreviated to “our
method” unless otherwise stated.

5. Experimental Results
For simplicity, we follow the choice in [20] and use the

network proposed in [18] as our target model on the NYUD-
V2 dataset [36] to show experimental results of our method.
We first choose the layer after the multi-scale feature fu-

(a) (b) (c) (d)
Figure 5. Comparison of the feature maps from our interpretable
model and the baseline model [18]. (a) Input images. (b) Mask
of pixels whose predicted depth is assigned to the corresponding
units. (c) Feature maps of our selective units. (d) Feature maps of
units in the baseline.

sion module (referred as layer “MFF”) and after the decoder
module (referred as layer “D”) in [18] to apply our method,
as these two layers are closer to the depth output. Never-
theless, we also demonstrate that our approach can be ap-
plied to other layers, models, and datasets, and validate the
applicability of our method in Section 5.3. For networks
from [18], we consider two variants with different back-
bones, i.e., ResNet-50 [17] and SENet-154 [19]. During
training, we follow exactly the same training scheme with
the original implementation, including data augmentation,
optimizers, total training epochs, etc.

We set the number of discretized depth bins Nb to 64,
since the number of units in most of deep networks for
MDE is a power of two, which enables simpler assignment
of depth to units. Space-increasing discretization proposed
in [13] is adopted to discretize the depth maps, and λ in (5)
is set to 0.1.

5.1. Depth Selectivity and Performance

Setting and Evaluation Metric. First, we conduct exper-
iments to compare the depth selectivity and performance
of the baseline models with our interpretable counterparts.
We calculate depth selectivity on both training and testing
datasets. For depth estimation performance, we follow pre-
vious works on MDE to use the following metrics: accuracy
under threshold (δi < 1.25i, i = 1, 2, 3), root mean squared
error (RMS), mean absolute relative error (REL) and mean
log10 error (log10).

Main Results. It is first observed in Table 1 that depth se-
lectivity of baseline models is above the random baseline,
1/3, indicating that MDE deep networks have some level of



Table 2. Comparison of direct regularizing selectivity (cf. Section 4.1) and assigning depth to units (cf. Section 4.2).
Selectivity ↑ Depth Accuracy ↑ Depth Error ↓

Model Method Training Testing δ1.25 δ1.252 δ1.253 RMS REL log10

[18] (ResNet-50) Lreg in (4) 0.7417 0.6039 0.857 0.973 0.993 0.428 0.121 0.052
Lassign in (5) 0.8357 0.7529 0.861 0.973 0.994 0.422 0.119 0.051

[18] (SENet-154) Lreg in (4) 0.7314 0.5694 0.881 0.978 0.995 0.399 0.109 0.047
Lassign in (5) 0.8411 0.7693 0.882 0.979 0.995 0.396 0.109 0.047

(a) Input (b) Ground Truth (c) Baseline (d) Ours
Figure 6. Qualitative comparison of predicted depth maps by our
interpretable model and the baseline model [18]. The red boxes
highlight the difference of the two models.

depth selectivity in their units, while our interpretable mod-
els achieve much higher depth selectivity on both training
and testing datasets. Fig. 1 (c)(d) also visualize the feature
maps of some units in our interpretable networks. Quali-
tatively, it is shown that these units are more activated on
the regions of input images where the depth is assigned to
them based on their indices, e.g., distant or close regions. In
Fig. 3 (c)(d), we further plot the dissection results of some
units in our interpretable networks, showing the selectivity
is consistent through the entire dataset.

Fig. 5 further shows some example comparisons of fea-
ture maps. To demonstrate the effectiveness of our method,
pixels are highlighted if its predicted depth is assigned to the
corresponding units. We observe that our model has feature
maps that are more consistent with pixels of the correspond-
ing depth, showing better interpretability. From these quan-
titative and qualitative results, we conclude that our method
is able to significantly improve the interpretability of deep
networks for MDE. Meanwhile, across all depth prediction
metrics in Table 1, our interpretable models are competi-
tive or even outperform the baseline counterparts, showing
that it is possible to enhance the interpretability of an MDE
deep network without harming its accuracy. Fig. 6 provides
some qualitative comparisons of depth predictions between
our interpretable model and the baseline.

Direct Regularizing versus Assigning. We quantita-
tively compare our method of assigning depth to units (cf.
Section 4.2) with the direct approach of regularizing the
depth selectivity (c.f Section 4.1). As shown in Table 2,
although models trained via directly regularizing the selec-
tivity achieve comparable performance with those trained
by our assigning approach, their depth selectivity is much
lower due to the issue stated in Section 4.1.

Table 3. Performance evaluation before and after correction, where
R50 and S154 denote ResNet-50 and SENet-154, respectively (cf.
Section 5.2). In each result, we indicate the performance change
from the model without correction to the one after correction using
the → symbol.

Model δ1.25 ↑ RMS ↓
[18] (R50) 0.849 → 0.779 0.443 → 0.582

Interpretable [18] (R50) 0.861 → 0.947 0.422 → 0.362
[18] (S154) 0.874 → 0.856 0.409 → 0.466

Interpretable [18] (S154) 0.882 → 0.927 0.396 → 0.354

5.2. Reliability of Selective Units via Correction
We further design an experiment to validate the reliabil-

ity of the selective units. Considering a case where inter-
nal units are selective but have zero or little effect to the
final output of the model, these interpretable units do not
enhance the interpretability of the entire model. Previous
works evaluate the importance of units by ablation, but it is
shown that there is only little impact to the accuracy of the
model [29] when one-by-one ablating each unit. Here, we
propose another method to evaluate the reliability of these
units, by correcting the units instead of ablating them.

Fig. 7 illustrates the process of the correction. Here, we
define the correct response of a unit for a pixel as its aver-
age response in the training data on that pixel’s ground truth
depth. To be specific, the ground truth depth map is resized
to the size of feature maps of a unit using nearest interpo-
lation. Then, for every pixel of the feature map, its value
is corrected based on its corresponding ground truth depth
and its average response collected from training data.

Table 3 shows performance evaluation before and after
we conduct the correction operation. It is shown that the
performance of our models is largely improved after the
units’ response is corrected, which indicates that units are
responsible for the final prediction of the network. Fur-
thermore, our interpretable models demonstrate larger im-
provement compared to the gain on baseline models using
the same correction method. One reason is that our models
are more depth-selective than baseline models, such that the
average response contains more information that is related
to depth. We also note that, the purpose of this evaluation
is to validate the reliability of our interpretable units and
their effect to the final depth prediction, where the ground
truth depth maps are used to achieve such verification but
not used in real testing.



2.0 2.4
Correction

Feature Map of
Unit 50, Layer MFFInput Image

Ground Truth Depth Mask of d=50
in GT Depth

Depth Prediction
after Correction

Corrected Feature Map
of Unit 50, Layer MFF

Figure 7. Illustration of our correction operation (cf. Section 5.2). Suppose a pixel of a unit’s feature map has the value of 2.0, and its
corresponding depth ground truth is 50 after being discretized. From dissection, we know the correct response for this unit on depth 50 is
2.4, so we can get a new depth prediction map after the response is corrected.

Table 4. Selectivity comparisons on different layers of [18].

Selectivity ↑ (base) Selectivity ↑ (ours)
Model Layer Training Testing Training Testing

[18] (R50)
D&MFF 0.4617 0.4286 0.8357 0.7529
Rconv0 0.4877 0.4531 0.7608 0.6846
Rconv1 0.4712 0.4399 0.7436 0.6701

[18] (S154)
D&MFF 0.4906 0.4691 0.8411 0.7693
Rconv0 0.5306 0.5068 0.7582 0.6945
Rconv1 0.4404 0.4095 0.7217 0.6626

5.3. Applicability of Our Method

More Results on Layers, Models, and Datasets. We
further apply our method on different layers, models,
and datasets to explore its effectiveness. For networks
from [18], we consider layers after the first and second
convolutional layers in the refine module (referred as layer
“Rconv0” and “Rconv1”). Table 4 and Table 5 show that for
all different layers, our method improves the interpretabil-
ity (selectivity) over baseline models, while these inter-
pretable models perform competitively in depth estimation
accuracy. We further consider the current state-of-the-art
model from [26] with the backbone of DenseNet-161 [21]
using its four layers, i.e., the layer before the final convolu-
tional layer, the first, second and third upconv layer nearest
to the final output (referred as “iconv1”, “upconv1”, “up-
conv2”, “upconv3” following the definition in the supple-
mentary material of the original paper). We also provide
experimental results on another commonly-used dataset in
outdoor environment, i.e. KITTI [14]. We show the results
of selectivity and depth estimation accuracy in Table 7 and

Table 5. Depth estimation performance of applying our method
on different layers of [18]. Note that the first row of each model
(denoted as “-” in Layer) shows the performance of the original
baseline model.

Model Layer δ1.25 ↑ RMS ↓ REL ↓ log10 ↓

[18] (R50)

- 0.849 0.443 0.124 0.054
D&MFF 0.861 0.422 0.119 0.051
Rconv0 0.860 0.423 0.119 0.051
Rconv1 0.862 0.423 0.119 0.051

[18] (S154)

- 0.874 0.409 0.111 0.049
D&MFF 0.882 0.396 0.109 0.047
Rconv0 0.881 0.396 0.110 0.047
Rconv1 0.883 0.395 0.108 0.047

Table 81, which validate that our approach is applicable to
these various models on another dataset.

Application in Depth Completion. To show the applica-
bility of our interpretable model, we conduct experiments
to apply our method on the monocular depth completion
model. Monocular depth completion is a task highly related
to monocular depth estimation, while it additionally takes
sparse depth pixels acquired from depth sensors (e.g. Li-
DAR) or with ground truth depth values as the condition
for solving the scale ambiguities and improving the perfor-
mance of depth estimation. Here we select CSPN [6] as
our target model. Following their original paper, we adopt
the evaluation metrics including accuracy under threshold
(δi < t, t ∈ {1.02, 1.05, 1.10, 1.25, 1.252, 1.253}), RMS,
and REL. Table 6 shows that our approach works well on
this model for depth completion, while providing a much

1For KITTI, we use an improved set of ground truth depth maps pro-
vided by [39] to train and evaluate both the baseline and our models, so the
performance is better than the reported one in the original paper [26].



(a) (b) (c) (d) (e) (f)
Figure 8. Demonstration of explaining the prediction error on adversarial samples. (a) An adversarial image. (b) Ground truth depth map
(c) Predicted depth map. (d) Pixels whose δ error is above 1.25. (e) Pixels whose predicted depth is within the 11th depth bin. (f) Feature
map of Unit 11 in layer MFF.

Table 6. Depth selectivity and performance of the monocular depth completion model CSPN [6] and our interpretable counterpart.
Selectivity ↑ Depth Accuracy ↑ Depth Error ↓

Model Training Testing δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253 RMS REL

CSPN 0.4022 0.4213 0.832 0.934 0.971 0.992 0.999 1.000 0.117 0.016
Interpretable CSPN 0.9394 0.9475 0.860 0.948 0.976 0.992 0.998 0.999 0.119 0.015

Table 7. Selectivity of applying our method on different layers
of [26] on the dataset of NYUD-V2 [36] and KITTI [14].

Selectivity ↑ (base) Selectivity ↑ (ours)
Dataset Layer Training Testing Training Testing

NYUD-V2

iconv1 0.5202 0.3799 0.8580 0.7667
upconv1 0.6763 0.5507 0.9117 0.8072
upconv2 0.5271 0.4262 0.9051 0.7929
upconv3 0.5476 0.4390 0.7981 0.7434

KITTI

iconv1 0.5000 0.4319 0.8321 0.8000
upconv1 0.7128 0.5988 0.8935 0.8658
upconv2 0.4919 0.4181 0.8896 0.8616
upconv3 0.5192 0.4795 0.8053 0.7893

better selectivity.

Analysis of Model Error. Our interpretable model has
the advantage of providing a cue to explain why the model
makes mistakes. Here we show this application by ana-
lyzing the internal representations when predicting on ad-
versarial samples in Fig. 8. We first generate adversarial
samples by commonly used white-box attacks FGSM [16]
(ϵ = 0.05). As expected, the prediction is not as accurate
as before (δ1 dropped to 0.488 from 0.843). When looking
into the mistakes of the prediction, which can be defined
as pixels whose δ error is above 1.25 (i.e., not counted in
δ1.25), we find that the predicted depth of a large portion of
errors is caused by the 11th depth bin. As we trace back to
the neurons, the feature map of Unit 11 shows that the unit
is activated on the region with errors, well explaining why
those mistakes have been made. The process allows devel-
opers and users to know why the model gives unsatisfactory
predictions, making the model more trustworthy.

6. Conclusions
In this paper, we propose to investigate the interpretabil-

ity of deep networks for monocular depth estimation via ex-
ploring their internal representations, and advance to make
the networks more interpretable. We first find that some
hidden units in deep networks for MDE are selective to cer-

Table 8. Depth estimation performance of applying our method
on different layers of [26] on the dataset of NYUD-V2 [36] and
KITTI [14].

Dataset Layer δ1.25 ↑ RMS ↓ REL ↓ log10 ↓

NYUD-V2

- 0.885 0.392 0.110 0.047
iconv1 0.882 0.389 0.110 0.047

upconv1 0.882 0.388 0.110 0.047
upconv2 0.880 0.392 0.111 0.047
upconv3 0.882 0.392 0.110 0.047

KITTI

- 0.963 2.430 0.056 0.025
iconv1 0.961 2.435 0.059 0.026

upconv1 0.959 2.477 0.059 0.026
upconv2 0.960 2.436 0.059 0.026
upconv3 0.960 2.415 0.058 0.026

tain ranges of depth, which inspires us to quantify the in-
terpretability of these networks as the depth selectivity of
their internal units. Furthermore, we propose a simple yet
effective method that is applicable to existing deep MDE
networks without modifying their original architectures or
requiring any additional annotations, showing that it is pos-
sible to largely improve the interpretability while not harm-
ing or even improving the depth estimation accuracy. Ex-
perimental results demonstrate the effectiveness, reliability
and applicability of our method. In the future work, we
will extend our studies on the behavior of internal units in
MDE networks to other concepts, such as occlusion bound-
ary, surface normal, and semantics, aiming for a more com-
prehensive quantification of interpretability and better un-
derstanding of deep networks for MDE.
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Klaus-Robert Müller, Dumitru Erhan, Been Kim, and Sven
Dähne. Learning how to explain neural networks: Pattern-
net and patternattribution. In International Conference on
Learning Representations (ICLR), 2018. 3

[25] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In International
Conference on 3D Vision (3DV), 2016. 3

[26] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong
Suh. From big to small: Multi-scale local planar guidance
for monocular depth estimation. ArXiv:1907.10326, 2019.
1, 3, 7, 8

[27] Haoyu Liang, Zhihao Ouyang, Yuyuan Zeng, Hang Su, Zi-
hao He, Shu-Tao Xia, Jun Zhu, and Bo Zhang. Training in-
terpretable convolutional neural networks by differentiating
class-specific filters. In European Conference on Computer
Vision (ECCV), 2020. 2, 3



[28] Shengcai Liao and Ling Shao. Interpretable and generaliz-
able person re-identification with query-adaptive convolution
and temporal lifting. In European Conference on Computer
Vision (ECCV), 2020. 2, 3

[29] Ari S. Morcos, David G. T. Barrett, Neil C. Rabinowitz, and
Matthew Botvinick. On the importance of single directions
for generalization. In International Conference on Learning
Representations (ICLR), 2018. 3, 4, 6

[30] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization, 2017. https://distill.pub/2017/feature-
visualization. 2, 3

[31] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter,
Ludwig Schubert, Katherine Ye, and Alexander Mord-
vintsev. The building blocks of interpretability, 2018.
https://distill.pub/2018/building-blocks. 3

[32] Ivet Rafegas, Maria Vanrell, Luı́s A Alexandre, and Guillem
Arias. Understanding trained cnns by indexing neuron selec-
tivity. Pattern Recognition Letters, 2020. 2, 3

[33] Cynthia Rudin. Stop explaining black box machine learning
models for high stakes decisions and use interpretable mod-
els instead. Nature Machine Intelligence, 2019. 2

[34] Cynthia Rudin and Joanna Radin. Why are we using black
box models in ai when we don’t need to? a lesson from an
explainable ai competition. Harvard Data Science Review,
2019. 3

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In IEEE International Confer-
ence on Computer Vision (ICCV), 2017. 3

[36] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision
(ECCV), 2012. 5, 8

[37] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic attribution for deep networks. In Doina Precup and
Yee Whye Teh, editors, International Conference on Ma-
chine Learning (ICML), 2017. 3

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic
attribution for deep networks. In International Conference
on Machine Learning (ICML), 2017. 3

[39] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In 2017 international conference on 3D Vision (3DV), pages
11–20. IEEE, 2017. 7

[40] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. Learn-
ing reliable visual saliency for model explanations. IEEE
Transactions on Multimedia (TMM), 2019. 3

[41] Tianfu Wu and Xi Song. Towards interpretable object de-
tection by unfolding latent structures. In IEEE International
Conference on Computer Vision (ICCV), 2019. 2

[42] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. En-
forcing geometric constraints of virtual normal for depth pre-
diction. In IEEE International Conference on Computer Vi-
sion (ICCV), 2019. 1, 3

[43] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European Conference
on Computer Vision (ECCV), 2014. 3

[44] Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and
Song-Chun Zhu. Interpreting CNN knowledge via an ex-
planatory graph. In Sheila A. McIlraith and Kilian Q. Wein-
berger, editors, AAAI Conference on Artificial Intelligence
(AAAI), 2018. 2

[45] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Inter-
pretable convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
2, 3

[46] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang,
and Feng Qian. Monocular depth estimation based on deep
learning: An overview. Science China Technological Sci-
ences, 2020. 1

[47] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva,
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