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Static2Dynamic:
Video Inference from a Deep Glimpse

Yu-Ying Yeh, Yen-Cheng Liu, Wei-Chen Chiu, and Yu-Chiang Frank Wang, Member, IEEE

Abstract—In this paper, we address a novel and challenging
task of video inference, which aims to infer video sequences from
given non-consecutive video frames. Taking such frames as the
anchor inputs, our focus is to recover possible video sequence
outputs based on the observed anchor frames at the associated
time. With the proposed Stochastic and Recurrent Conditional
GAN (SR-cGAN), we are able to preserve visual content across
video frames with additional ability to handle possible temporal
ambiguity. In the experiments, we show that our SR-cGAN not
only produces preferable video inference results, it can also be
applied to relevant tasks of video generation, video interpolation,
video inpainting, and video prediction.

Index Terms—video synthesis, video inference, generative
model, adversarial learning.

I. INTRODUCTION

IN this paper, we tackle a unique video synthesis problem
of video inference, which requires one to generate possible

video sequences based on few observed (and non-consecutive)
anchor frames, as shown in Fig. 1(a). Different from prior
video synthesis tasks like video generation from prior distri-
bution (see Sec. II-C) or video prediction (see Sec. II-D) from
one or few consecutive frames, video inference needs to output
more than one possible video while matching the input anchor
frames at the associated time.

Take Fig 1(a) for example, given two face images (one
with mouth closing and the other with mouth opening), it is
possible to recover more than one complete video sequences
(disgusting or smiling). We regard that a robust video inference
model should be able to capture the intrinsic uncertainty of the
observed input video frames in addition to sufficient temporal
smoothness while preserving context information.

To address this unique and challenging task, we propose a
novel recurrent network architecture of Stochastic and Recur-
rent Conditional GAN (SR-cGAN). To enforce the consistency
of the output content across frames, we advance image-based
conditional Generative Adversarial Network (cGAN) [1] to
a video-based conditional GAN. To handle the ambiguity
during video inference, stochasticity is introduced into our
model to preserve intra-video temporal transition; this would
allow randomness during the prediction of video frames. As

Y.-Y. Yeh was with the Department of Computer Science and Engineering,
University of California San Diego, La Jolla, CA, 92093 USA e-mail:
yuyeh@eng.ucsd.edu

Y.-C. Liu was with the Department of Machine Learning, Georgia Institute
of Technology, Atlanta, CA, 30332 USA e-mail: ycliu@gatech.edu

W.-C. Chiu was with the Department of Computer Science, National Chiao
Tung University, Hsinchu, 30010 Taiwan e-mail: walon@cs.nctu.edu.tw

Y.-C. F. Wang was with the Department of Electrical Engineering, National
Taiwan University, Taipei, 10617 Taiwan e-mail: ycwang@ntu.edu.tw

Manuscript received Oct 31, 2019; revised Oct 31, 2019.

Fig. 1. Illustration of video inference via deep latent representation. Given
an arbitrary number of non-consecutive video frames as anchors (in yellow
bounding boxes), we observe a deep latent space for recovering more than
one possible video sequence (e.g., curves in red and blue).

detailed later, this is achieved by learning a smooth trajectory
connecting the resulting visual representations of the observed
frames in the resulting latent space, as shown in Fig. 1(b).

We highlight the contributions of this paper as follows:

• We address a more general type of task of video synthesis
– video inference, which recovers more than one possible
video sequence conditioned on non-consecutive input
anchor frames.

• Our proposed Stochastic and Recurrent Conditional GAN
(SR-cGAN) learns video representation not only preserv-
ing visual content but also modeling the ambiguity of the
temporal structure in the recovered video sequences.

• We show that our proposed model can be generalized
to the tasks of video generation from prior distribution,
video interpolation, video inpainting, and video predic-
tion.

We note that applications for video inference include dis-
covering unseen past activities or events, synthesizing slow-
motion videos (i.e., video super-resolution), and predicting
future events due to the capability of recovering the past,
intermediate and future visual dynamics from static input
images. Therefore, we regard video inference is an important
problem and worth exploring.

II. RELATED WORKS

We regard video inference is one of the tasks in video
synthesis. Table I highlights and compares a number of
works in video synthesis, including video interpolation, video
inpainting, video generation from prior information, and video
prediction, which are detailed in the following subsections.
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TABLE I
COMPARISONS OF RECENT WORKS ON VIDEO SYNTHESIS.

Synthesize
Sequential Frames

Synthesize
Intermediate Frames

Synthesize
Succeeding Frames

Synthesize
Preceding Frames

Video Interpolation - / X X - -
Video Inpainting X X - -
Video Generation from Prior Dist. X - - -
Video Prediction X - X -
Video Inference (Ours) X X X X

A. Video Interpolation

Video interpolation focus on recovering intermediate frames
between any two consecutive original video frames. Recently,
several neural network based models [2]–[7] are proposed to
handle the challenging scenes including motion blur, light
changing, or occlusion reasoning. Particularly, the model
proposed by [8] is able to perform both interpolation and
extrapolation. Nevertheless, while these models can synthesize
high-quality intermediate frames, they require the input frames
to be consecutive and cannot handle the case when the interval
between frames is large (e.g., no more than 0.05 seconds
apart) [9]). Video inference consider much larger temporal
gaps between input frames and more general input condition
than video interpolation.

B. Video Inpainting

While some video inpainting methods attempt to reconstruct
missing image patches within one/few frames in a video, here
we focus our discussions on those aiming at reconstructing
a missing sequence of frames given preceding frames and
succeeding frames. In other words, compared to video in-
terpolation, the approaches for the above video inpainting
tasks consider a larger temporal gap between input frames.
Previously, several models [10], [11] have been evaluated
in this challenging setting, while a recent deep learning-
based model of TAI network [9] was proposed to tackle
this task. Although video inpainting is close to our task of
video inference, video inpainting relies on both preceding and
succeeding frames to synthesize frames, not non-consecutive
input frames (as the requirement of video inference).

C. Video Generation from Prior Distribution

With the observation of abundant video clips, several
works [12]–[16] generate sequential video data from observed
prior distributions by modeling the temporal and spatial struc-
tures from training videos. Thus, given a random sample
from some prior (e.g., Gaussian prior), one can produce a
sequence of frames which is similar to real ones (but cannot
be conditioned on particular input frames).

D. Video Prediction

Another line of research related to video synthesis is video
prediction, which generates the succeeding video sequences
based on few consecutive video frames. As a growing pop-
ularity of interests, a large number of methods [15], [17]–
[31] have been proposed to tackle this task. In addition, some

models [16], [32]–[36] further synthesize video frames based
on a single input frame.

E. Video Inference
Video inference, a unique task in video synthesis, aims

at recovering/synthesizing preceding, intermediate, and suc-
ceeding frames based on few non-consecutive input frames.
The most related and recent work proposed by [15] can
complete a video with a constraint on the first and the last
frames. Although video inference can be handled if we set the
constrained frames other than the first and the last frames, the
optimization process is required. Moreover, this method can
be only applied to synthesis of human action videos since the
model leverages human pose information as prior information,
and decomposes the task of video inference into separated
stages to complete. Our proposed SR-cGAN does not need
to leverage explicit information (e.g., human pose or facial
landmark), and can directly generate output videos as verified
later in the experiments.

III. PROPOSED METHOD

A. Problem Definition and Notations
We define the observed M input frames as anchor frames
A = {xa1 , ..., xaM}, which are imposed to appear in the
synthesized video sequence of N -frames ṽ = {x̃1, ..., x̃N}
at the associated time steps T = {t1, ..., tM}. Note that ti
indicates that xai appears at the ti-th frame in ṽ, while we
have M < N without loss of generality. As shown in Fig. 2
as an example, one needs to infer N = 6 frames video from
M = 2 input anchor frames at time t1 = 2 and t2 = 5,
respectively.

Due to the high dimensionality and diversity of real-world
videos, we approach the task of video inference problem by
decomposing it into the modeling of spatial and temporal
structures. The former learns the frame-based representation
from the input video to describe their content and spatial infor-
mation, while the latter is to capture temporal variation within
that video sequence, resulting in video-based representation.
Such representations will be utilized in a recurrent network
for video inference, which needs to observe visual content
consistency while allowing temporal ambiguity in recovered
outputs.

B. Base Model: Video Synthesis from Deep Video Represen-
tation

1) Learning Frame-Based Video Representation: Since a
video is composed of consecutive frames, we first utilize
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Fig. 2. Example of video inference. We take input anchor frames A =
{xa

1 , x
a
2} = {x2, x5} at time T = {t1, t2} = {2, 5} for generating a video

ṽ = {x̃1, ..., x̃6}, while {x̃2, x̃5} would match {x2, x5}.

the architecture of VAE-GAN [37] for learning frame-based
representation, which consists of components of Variational
Autoencoder (VAE) [38] and GAN [39]. As shown in Fig. 3(a),
we have EI , GI , and DI be the image encoder, image
generator, and image discriminator, respectively. For the VAE
part of VAE-GAN, EI encodes an image (video frame) x to
an image latent representation zI and GI decodes zI back to
image space:

zI ∼ EI(x) = qI(zI |x), x̃ ∼ GI(zI) = pI(x|zI). (1)

We thus define the objective function of this image-based VAE
LIV AE

as:

LIV AE
(EI , GI) =

− Eq(zI |x)[log pI(x|zI)] + KL(q(zI |x)||pI(zI)),
(2)

where the first term denotes the image reconstruction error, and
the second term is the Kullback-Leibler divergence over the
auxiliary distribution q(zI |x) and the prior distribution pI(zI).
Following [38], we have zI ∼ N (0, I).

For the component of GAN in VAE-GAN, GI is to recover
realistic images from the latent space to fool DI , which aims
to distinguish between the real images x and synthesized ones
GI(zI), so that GI(zI) would fit the real data distribution.
Thus, the objective function for this frame-based GAN LIGAN

is defined as:

LIGAN
(GI , DI) = log(DI(x)) + log(1−DI(GI(zI)))

+ log(1−DI(GI(EI(x)))).
(3)

To sum up, the objective function of learning frame-based
visual representation is defined as:

min
EI ,GI

max
DI

LIV AE
(EI , GI) + LIGAN

(GI , DI). (4)

2) Learning Video Representation: Since a video consists
of consecutive frames exhibiting temporal and content con-
sistency, it is desirable to learn a more robust visual repre-
sentation, which is beyond representation simply at the frame
level. In our proposed network architecture in Fig. 3(b), we
specifically have the latent space of video data exhibit the abil-
ity in modeling the distribution of reasonable representation
trajectories. If such spaces are derived, video can be generated
by randomly drawing a sample of video latent representation
zT from it.

As depicted in Fig. 3(b), the above process is achieved by
utilizing a Recurrent Neural Network (RNN) as the temporal

Fig. 3. Learning of (a) frame-based representation zI via VAE-GAN and
(b) video representation zT . Note that RNN is utilized in (b) for learning
video representation which preserves the associated temporal structure. Note
that adversarial training is introduced in both (a) and (b) for improved video
output quality.

generator GT , which models the distribution of latent repre-
sentation trajectories. Thus, given a sample zT , a sequence of
frame-based representations {z̃(1)I , ..., z̃

(N)
I } can be generated

by GT in each time step:

{z̃(1)I , ..., z̃
(N)
I } ∼ GT (zT ), (5)

and thus the corresponding video ṽ = {x̃1, ..., x̃N} can be
produced accordingly:

x̃t ∼ GI(z̃(t)I ), ∀t ∈ {1, ..., N}. (6)

As a result, one can obtain the synthesized video by:

ṽ = {x̃1, ..., x̃N} ∼ GI(GT (zT )). (7)

The above video synthesis model is trained by adversarial
learning strategies. That is, the video generator GI(GT (zT ))
aims to generate realistic videos to make the temporal discrim-
inator DT hard to determine whether a video is synthesized
from GI(GT (zT )) or is a real video v. Thus, the objective
function for this video-based GAN is defined as:

min
GT ,GI

max
DT

LTGAN
(GT , GI , DT ) =

log(DT (v)) + log(1−DT (GI(GT (zT )))).
(8)

C. Stochastic & Recurrent Conditional-GAN (SR-cGAN) for
Video Inference

The architecture of our proposed network for video infer-
ence, Stochastic & Recurrent Conditional-GAN (SR-cGAN),
is illustrated in Fig. 4. The full version of SR-cGAN is
composed of image encoder EI , image generator/decoder GI ,
RNN-based temporal encoder ET , generator/decoder GT , and
discriminator DT , respectively.

We now explain why the use of our SR-cGAN is able
to synthesize video frames based on non-consecutive inputs.
Moreover, how we preserve the recovered content and tem-
poral consistency while exhibiting stochasticity in producing
more than one possible video output will be also discussed.
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Fig. 4. Illustration of our proposed SR-cGAN for video inference. The architecture consists of RNN-based temporal encoder/generator and a discriminator,
which is conditioned on the input anchor frames.

1) Stochastic Video Inference Module: Given few input
anchor frames, it is desirable to observe more than one possible
video sequence output. In order to model such temporal
ambiguity across frames, we introduce a VAE-like stochastic
video inference module into our SR-cGAN, which consists of
image encoder EI , image generator/decoder GI , RNN-based
temporal encoder and generator/decoder ET and GT .

The image encoder EI first converts the input se-
quence of anchor frames A to frame-based representations
{z(t1)I , ..., z

(tM )
I }, followed by the encoding of ET which

further maps the features into a video representation zT by en-
coding a sequence of image representations {z(t1)I , ..., z

(tM )
I }

with time T = {t1, ..., tM}. To be more precise, our temporal
encoder ET outputs the mean µT and standard deviation
σT via observing the anchor frames, where the distribu-
tion of video representation zT is given by q(zT |A, T ) =
N (µT (A, T ), σT (A, T )).

On the other hand, the generator GT in our SR-cGAN
decodes zT to generate a sequence of image representations
{z̃(1)I , ..., z̃

(N)
I } at each time step {t̃1, ..., t̃N}. Such a sequence

of image representations {z̃(1)I , ..., z̃
(N)
I } can be regarded as a

plausible trajectory in the latent space of video data. With the
above definitions, the objective function LTV AE

can be written
as:

LTV AE
(EI , ET , GT , GI) =− Eq(zT |A,T )[log pT (ṽ|zT )]

+KL(q(zT |A, T )||pT (zT )),
(9)

where the first term denotes reconstruction loss of all syn-
thesized frames within the generated video ṽ, and the prior
distribution pT (zT ) in the second term follows N (0, I) in our
model.

To enforce the output video matching input anchor frames
A at each corresponding time T , the RNN cells in GT needs
to predict the correct time step at the associated time. In other
words, the predicted time step t̃i should match the correct time
step i for anchor frame xai . Let yi, ŷi be the one-hot encodings
of i and t̃i, respectively. We have the anchor loss Lanchor with

cross-entropy as follows:

Lanchor(ET , GT ) = −
N∑
i=1

yi log(ŷi) (10)

which matches each anchor frame xai and its corresponding
timing ti. Note that we consider N (the number of output
frames) instead of M (the number of anchor frames) in (10),
since the resulting anchor loss would not only enforce the
anchor frames to match the corresponding frames in the output
video, the overall temporal consistency of the output video can
be preserved as well.

2) Observing Content Consistency in SR-cGAN: A suc-
cessful video inference output should preserve the content
information across video frames while matching the input
anchor frames at the associated time. To achieve this goal,
the component of conditional GAN in our SR-cGAN shows
that we particularly have the discriminator DT take the con-
catenation of anchor frames A and either the generated video
ṽ or the real video v as the input. Thus, the resulting loss
function Lcontent is defined as:

Lcontent(GI , GT , DT ) = Ev∼pdata(v)[logDT (v|A)]

+EzT∼q(zT |A)[log(1−DT (GI(GT (zT |A))))].
(11)

D. Learning of SR-cGAN

To sum up, the overall objective function of our proposed
SR-cGAN for video inference can be written as below:

min
EI ,ET ,GI ,GT

max
DI ,DT

L(EI , ET , GI , GT , DI , DT ) =

LIV AE
(EI , GI) + LIGAN

(GI , DI)

+LTV AE
(EI , ET , GT , GI)

+Lanchor(ET , GT ) + Lcontent(GT , GI , DT ).
(12)

While our model can be trained in an end-to-end manner
ideally, we observe that it would be desirable to first initial-
ize/update frame-based network parameters of {EI , GI , DI},
followed by their fine-tune and the update of the video-
based model parameters {ET , GT , DT }. Therefore, for the
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former initialization phase, the learning process aims to derive
a proper image latent space, which treats each frame in
the videos as separate images and update the parameters of
{EI , GI , DI} with respect to the objective terms LIV AE

+
LIGAN

, as noted in (4).
As for the latter training phase, we then focus on capturing

the temporal structure of videos. This is achieved by randomly
sampling M frames from each N -frame video as the input
anchor frames A with its corresponding timing T to learn
our video inference model. In other words, we update the
parameters of {ET , GT , DT } and fine-tune {EI , GI} with
respect to LTV AE

+ Lanchor + Lcontent.

IV. EXPERIMENTS

In this section, we first demonstrate that the base model
of our SR-cGAN is able to synthesize video frames from
observed prior distributions. Then, we show the results of
video inference generated by the full version of our SR-cGAN.
We also evaluate the stochasticity of the results and the special
cases of video inference can also be applied to solving the
tasks of video interpolation/inpainting and video prediction.

A. Datasets

In our experiments, we consider a variety of video datasets:
Shape Motion, KTH, and MUG Facial Expression, as their
properties and settings discussed below.

1) Shape Motion – Synthesized Object Motion.: As pro-
posed in the work of [14], this dataset contains videos of
synthesized moving shapes, and is first used to verify the
effectiveness of our model. In each video, the shapes (i.e.,
circle or square) with various colors and sizes move along
different trajectories in front of a black background. The
dataset consists of 8000 videos with the length of 32 frames
and resolution of 64×64 pixels. We use 80% of sequences for
training and the rest for testing.

2) KTH – Human Actions.: We further evaluate on KTH
dataset [40] which contains 25 identities performing six differ-
ent actions in four scenarios. We select ”hand-waving” action
as our target, and each video in the dataset is divided into clips
of 16-frame length as a sequence in our experiments. In total,
we extract 1855 sequences of hand-waving action with each
frame resized to 64×64 pixels. The common rule of thumb
80/20 is used for the training/testing dataset split.

3) MUG – Facial Expressions.: MUG Facial Expression
Database [41] covers various facial expressions of several
identities, including: anger, disgust, happiness, fear, surprise,
and sadness. We partition each video into sequences with the
length of 16 frames and finally obtain 8,147 sequences in total
for experiments. We use the same training/testing dataset split
(80/20 respectively) as the other two datasets.

B. Video Synthesis from Prior Distribution

1) Qualitative experiments.: We first conduct video synthe-
sis to verify the effectiveness of learned video representation
zT . As described in Sec. III-B, given a random sample
zT , our model is able to synthesize a corresponding video.

Fig. 5. Example video synthesis results of SR-cGAN trained by the Shape
Motion dataset. Each row shows a synthesized video from a random sample
zT . Note that shape/color consistency and motion continuity can be observed
within a video sequence.

Fig. 6. Example video synthesis results of SR-cGAN trained by the KTH
dataset. Each row shows a synthesized video sequence from a random sample
zT . Note that identity/content information is preserved within a video, while
motion continuity can be observed.

From the results shown in Fig. 5, 6, and 7, our model
obtains satisfactory results for all three datasets with temporal
consistency. For instance, in Fig. 6, we observe the smooth and
correct sequence of hand movements for the action of hand-
waving, and in the first row of Fig. 7 the changes of facial
expression from non-smiling to smiling are clearly shown.

2) Quantitative Comparison.: In order to evaluate the qual-
ity of synthesized videos, we adopt the Averaged Content
Distance (ACD) metric used in MoCoGAN [14] to measure
the content consistency among frames of a video sequence.
We note that the reasonable video outputs need to exhibit
identity/content consistency. For example, a generated video
sequence for Shape Motion should contain the same object
with the same color while moving. For Shape Motion dataset,
with representing each frame by its mean color vector, ACD
is calculated as the average of pairwise L2 distance across
frames. While for the MUG dataset, the ACD is defined in
the same way but with per-frame feature vectors produced by
OpenFace [42].

We compare our SR-cGAN against several state-of-the-arts
of video synthesis, including VGAN [12], TGAN [13], and
MoCoGAN [14]. Following the same setting in [14], for each
dataset we sample 256 different videos and compute the mean
value of ACD. As listed in Table II, our SR-cGAN outperforms
others in a clear margin, in which it shows that our model is
able to better preserve the content consistency between frames
of a synthesized video.

C. Video Frame Inference

1) Video Inference with Random Anchor Frames: Our
proposed SR-cGAN aims to generate a complete video based
on the condition provided by anchor frames and their specific
time of occurrence. As shown in Fig. 8 and 9, we complete
16-frame videos based on 6 anchor frames (annotated by the
yellow border) and 8-frame videos based on 3 anchor frames
respectively, with specifying different settings of anchor timing
for each row. The visualizations demonstrate the capability of
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Fig. 7. Example video synthesis results of SR-cGAN trained by the MUG
dataset. Each row shows a synthesized video from a random sample zT . Note
that identity/content information is preserved within a video, while motion
continuity can be observed.

TABLE II
COMPARISONS OF CONTENT CONSISTENCY IN TERMS OF AVERAGE

CONTENT DISTANCE (ACD) [14]. NOTE THAT REFERENCE CALCULATES
ACD FROM THE TRAINING VIDEOS (NOT THE SYNTHESIZED ONES), AND

THUS THE RESULTING SCORES CAN BE VIEWED AS LOWER BOUNDS.

ACD Shape Motion Facial Expressions
Reference 0 0.116

VGAN 5.02 0.322
TGAN 2.08 0.305

MoCoGAN 1.79 0.201
Ours 1.05 0.137

Fig. 8. Example video inference results for Shape Motion. For each row,
six input anchor frames (in yellow bounding boxes) with the associated time
are provided in (a), while the recovered video sequence is shown in (b).

our model for reasonably completing the temporal structure
with respect to anchor frames.

2) Stochasticity: As described in Sec. III-C, one of the
contributions for our SR-cGAN is to handle the stochastic
dynamics within real-world videos. In order to verify this,
we refer to the similar procedure used in [24] for evalua-
tion. The basic idea behind this evaluation is to understand
whether the stochasticity modeled by our framework covers
the real dynamics happened in ground truth videos. To be more
detailed, even our model generates videos based on a video
representation zT with noise perturbation, as the number of
zT increases, there should be higher chances that the ground
truth video or the ones with a similar appearance are included
within the group of generated videos. Therefore, the similarity
between the ground truth video frames and their best matches
from generated videos should be increasing with respect to the
associated number of zT .

In our experiment, we utilize PSNR (Peak Signal to Noise
Ratio, [43]) as the metric to measure the similarity between
video frames. We first define 100 distinct settings of assigning
anchor frames. For each setting, we sample 200 zT with noise
perturbation, i.e., zT ∼ N (µT (A, T ), σT (A, T )). By comput-
ing the PSNR numbers of the best matches found in different
amounts of generated videos, we plot the changes of average
PSNR values across all anchor settings in correspondence
to the number of zT samples. As observable in Fig. 10, in
comparison to the deterministic model which uses zT without

Fig. 9. Example video inference results for KTH. For each row, three
input anchor frames (in yellow bounding boxes) with the associated time
are provided in (a), while the recovered video sequence is shown in (b).

Fig. 10. Evaluation of stochasticity of video inference. Note that the orange
curve shows the highest PSNR (compared to the ground truth video) reported
by zT with random noise perturbation. The blue line indicates the results of
the deterministic baseline model using zT without noise perturbation. With
the introduced stochasticity, our model achieves improved video inference
performances.

noise perturbation, i.e., zT = µT (A, T ), our stochastic model
is verified accordingly to handle ambiguity in video inference.
We further provide in supplementary materials the qualitative
visualization of experimenting this stochasticity.

Note that it is crucial to evaluate the stochasticity of our
model. If the stochasticity of a model cannot properly observe
underlying data distribution, it would fail to generate plausible
outcomes or results similar to ground truth. Not all generative
models would exhibit satisfactory stochasticity performances.
Moreover, a good video inference model is expected to syn-
thesize various results given the same set of anchor frames.
This is the reason why we adopt stochasticity in our model.

3) Comparison with Naive Linear Interpolation: In order
to prove that the proposed SR-cGAN does capture the smooth
and reasonable trajectories among latent image representa-
tions of video frames, we experiment to observe the tem-
poral transition between two static frames. To be precise,
we aim to generate the intermediate frames between two
anchor frames which are positioned on the first and the last
moments of a synthesized video. This can be regarded as
a more general setting of video interpolation (synthesizing
intermediate frames between two consecutive video frames
with the number of intermediate frames more than one) or a
more specific setting of inpainting (synthesizing intermediate
frames between preceding and succeeding frames when the
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Fig. 11. Comparisons with naive video interpolation. Four interpolated videos
are shown in (a) to (d), with starting and ending frames as anchors. In
each sub-figure, the upper sequence is recovered by latent representation
interpolation (via VAE-GAN), while the lower one is our output.

Fig. 12. Example video prediction results using the Shape Motion dataset.
Note that each row shows six consecutive anchor frames (in yellow bounding
boxes), followed by ten predicted future frames.

number of preceding and succeeding frame are only one,
respectively). Moreover, one might consider that a reasonable
trajectory can be easily approximated by piecewise linear
paths connecting representations of conditioned inputs. As
mentioned in Sec. II-E, the model proposed by [15] has tackled
this setting. However, their model can only be applied to
human motion videos.

We design a naive baseline which generates video frames
decoded from linearly-interpolated samples between image
representations of two anchor frames. As shown in Fig. 11,
the comparison between the results produced by our model
and the ones from the naive baseline clearly shows that our
network is able to synthesize the frames with smooth motion
and simultaneously preserve identity/content (i.e., color and
shape) at each time step, while the naive baseline fails to
achieve so. In other words, the video latent space learned in our
approach successfully captures the distribution of reasonable
trajectories over image representations.

4) Prediction of Future Frames: In this part of the exper-
iments, we treat the anchor frames to be the first few frames
observed, and thus video inference can be viewed as the task
of video prediction for producing future consecutive frames.
As shown in Fig. 12, given six anchor frames at the beginning
of a target video, our SR-cGAN is able to predict the next ten
frames. It can be seen that our model not only estimates the
future motion trajectories but also preserves the consistency
of content across output frames. It is worth noting that while
recent video prediction works attempt to tackle more difficult
scenarios (e.g. natural traffic scenes in [22]) than the ones used
in this paper, those works are not able to solve other tasks (e.g.
video synthesis and inference) under the same architecture.

V. DISCUSSIONS

A. Importance of Content Consistency Loss

We note that enforcing the content consistency loss Lcontent
in our proposed network architecture is necessary. From our

ablation study, we observe that removing this term would
result in mismatch between the content of input anchor frames
and output frames.

B. Video Length and Computational Restrictions

While we do not limit the length of our synthesized video,
the computation cost does practically restrict such implemen-
tation. In the case of video inference model with 6 anchor
frames and 16 output frames, we need 11 GB GPU memory
and takes about 72 hours to obtain satisfactory results on a
GTX 1080Ti.

C. Sensitivity to the Speed/Amount of Motion

It is expected that videos with more dramatic motion
changes would be more difficult to handle/synthesize. Thus,
we do our best to include the video datasets for experiments
exhibiting different speeds of motion. For instance, the KTH
dataset has videos in which people waving hands at different
speeds, while the moving speeds of the objects in the Shape
Motion dataset also vary. While our model is able to infer the
motion across the input anchor frames, we did observe that
anchor frames with larger motion differences are more difficult
to handle. Nevertheless, it can still be observed that larger
amounts of motion in our inference results were presented,
with the anchor frames were positioned on extreme time
instants (e.g., the first and the last moments, as shown in
Fig. 11).

VI. CONCLUSION

We proposed Stochastic and Recurrent Conditional GAN
(SR-cGAN) for solving the task of video inference, which
learns video representation in an RNN-based framework. Since
more than one possible video sequence is expected given a
fixed number of input anchor frames, we not only have our
model preserve visual content within a recovered video, we
also introduce the ability to handle temporal ambiguity during
the inference process. In our experiments, in addition to satis-
factory video inference results, we also applied our SR-cGAN
to video interpolation/inpainting and prediction with promising
qualitative and quantitative performances. Therefore, the use
of our proposed model for the above tasks can be successfully
verified.

APPENDIX A
VIDEO EXAMPLE RESULTS

In the supplementary video1, we provide several animations
to demonstrate our results.

A. Video Synthesis

In the first part of the video, we train our model with Shape
Motion, KTH, and MUG datasets and synthesize videos by
sampling from different zt.

1https://drive.google.com/file/d/1zFP-P7ktqIVSgcyjc8TQylYtyUHDjrPN/
view?usp=sharing
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B. Video Inference

The second part of the video aims to demonstrate the results
of video inference trained on Shape Motion and KTH datasets.
Moreover, we show the stochasticity of our model for video
inference task. Given the same anchor frames, the model is
able to generate different videos.

APPENDIX B
IMPLEMENTATION DETAILS

A. Frame-Based VAE-GAN

In practice, we update each component with respect to
its related loss terms alternately. For loss terms in LIV AE

(i.e., Equation (2) in the main paper), we let LIprior =
KL(q(zI |x)||pI(zI)) and LIrecon = −Eq(zI |x)[log pI(x|zI)].
Let θEI

, θGI
, and θDI

be the parameters of image encoder,
image generator, and image discriminator respectively. For
each iteration, we found that satisfactory results were obtained
with each component being updated once. We update θEI

, θGI
,

and θDI
with following gradients:

θEI

+←− −∆θEI
(LIprior + λ1LIrecon)

θGI

+←− −∆θGI
(LIGAN

+ λ2LIrecon)

θDI

+←− +∆θDI
(LIGAN

),

(13)

where the coefficients λ1 and λ2 are set as 50 and 0.5, respec-
tively. We use ADAM [44] as the optimizer with β1 = 0.5 and
β2 = 0.999. The learning rate is set as 10−4 for updating θEI

and θGI
and 2× 10−7 for updating θDI

.

B. SR-cGAN

For loss terms in LTV AE
(i.e., Equation (9) in the main

paper), we let LTprior = KL(q(zT |A, T )||pT (zT )) and
LTrecon = −Eq(zT |A,T )[log pT (ṽ|zT )]. Let θET

, θGT
, and θDT

be the parameters of temporal encoder, temporal generator,
and temporal discriminator respectively. We also update each
component once for each iteration. We update θET

, θGT
, and

θDT
with following gradients:

θET

+←− −∆θET
(λ3LTprior

+ λ4LTrecon
+ Lanchor + Lcontent)

θGT

+←− −∆θGT
(LTrecon

+ Lanchor + Lcontent)

θDT

+←− +∆θDT
(Lcontent),

(14)
where the coefficients λ3 and λ4 are set as 0.1 and 10,
respectively. We also use ADAM [44] as the optimizer with
β1 = 0.5 and β2 = 0.999. The learning rate is set as 2×10−4

for updating θET
and θGT

and 2 × 10−5 for updating θDT
.

We also fine-tune θEI
and θGI

with following gradients:

θEI

+←− −∆θET
(λ3LTprior + λ4LTrecon + Lanchor + Lcontent)

θGI

+←− −∆θGT
(LTrecon + Lanchor + Lcontent),

(15)

C. Network Architecture

The network architecture for our frame-based VAE-GAN is
listed in Table III. For the SR-cGAN, we implement ET and
GT using two-layer GRU [45] network. After ET we attach a
Fully-Connected layer with activation size 256 · 2 and Leaky
ReLU to predict the mean µT and the standard deviation σT .
The architecture of DT for our SR-cGAN is listed in Table IV.
The slope of Leaky ReLU in our model is set as 0.2.
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