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Here, we provide the detailed structure of our implicit

degradation predictor, explicit kernel estimator, adaptive

arbitrary-scale SR module, as well as the training details of

these aforementioned modules/sub-networks. Then, more

quantitative and qualitative experimental results are pro-

vided. Finally with an ablation study shows the effective-

ness of wavelet transform. Our source code and model are

available here.

A. Details of Networks

A.1. Implicit Degradation Predictor

The implicit degradation predictor E is composed of six

stacked and repeated blocks, in which each block is sequen-

tially composed of convolution, batch normalization, and

leaky Relu layer. The kernel size of each convolution layer

is 3 × 3, and the channel size increases from 9 (which is

the concatenation of the high-frequency subbands) to 256.

While for the predictor head, which is the same as [2], is

composed of only one aforementioned block and followed

by a linear layer.

A.2. Explicit Kernel Estimator

The explicit kernel estimator is made up of two fully con-

nected layers with channel size from 256 (which is the di-

mension of the implicit degradation representation) to 64,

and the four separately fully connected layers with output

sizes of 121, 49, 25, and 1. Due to having small numer-

ical values in the kernels, we also use a weighted mask,

which applies on k̂l and kl, to aid the convergence of the

model. The initial mask values are set to 100 but are dou-

bled at locations (i, j) where the corresponding values in kl
are greater than zero, as given by the following equation:

mask(i,j) =

{
200, if k

(i,j)
l > 0

100, otherwise
(1)

A.3. Adaptive Arbitraryscale SR Module

The image feature extractor is EDSR [6] without the up-

sampling layer, which is composed of 16 Resblocks. And

the INR network consists of three consecutive composi-

tions, each of which consists of an MLP layer with a relu

layer behind it. Here we further provide a detailed process

of how we derived the input coordinates and cell size when

querying the SR with HR and LR size: Following LIIF [3]

and LTE [5], the coordinates are first normalized to [-1, 1],

and the cell size c is defined as 2
shape

, where shape indi-

cates the size of the queried image (for simplicity, in the

following explanation, we assume the image has the same

height and width). Hence, the coordinates and cell size are

what we control to get the SR with HR or LR size. For the

SR in LR size which is in the shape of n × n, the general

formula to get the input coordinate is defined as

−1 + c× (
1

2
+m) (2)

where m belongs to the integer between [0, n], and the cell

size c here is therefore 2
n

. For the SR image with HR size,

which is s times larger than LR, with shape sn × sn, the

cell size c becomes 2
sn

. And the coordinate is queried with

the Equation 2 with m in the range of [0, sn].

A.4. Training Details

In stage one (i.e., the degradation representation train-

ing stage), we empirically set the batch size to 128 and the

model is trained for 1500 epochs with learning rate 0.03.

In stage two (i.e. arbitrary-scale super-resolution training

stage), 1000 epochs with learning rate 0.001 and batch size

16 are set for training. Both are optimized with Adam of

having β1 = 0.9 and β2 = 0.999. Since the training data

is online generated, it limits the diversity of the generated

data (because the size of input images have to be the same

in a batch) and impedes the arbitrary-scale blind-SR train-

ing scheme. Motivated by [8], we maintain a data queue

to put images inside after data processing at each iteration.

And the index is shuffled to select the data for training. The

queue size is empirically set to be 2048 for stage one and

320 for stage two.

https://github.com/vivian210223/arbitrary-scale-blind-SR


B. More Quantitative Results

Here, we provide more results in different scales in Ta-

ble 1, and more quantitative experiment on fixed kernel as

well as RealSR dataset.

B.1. Fixed Kernel Comparison

To experiment with degradation under various degrada-

tion conditions, we compare our method with other ASSR

models. We use six different degradations (with two dif-

ferent blur kernels and three different downsampling opera-

tions, which are labeled as ’kernel’ and ’down’ respectively

in Table 2) for evaluation. All methods here are trained

under unknown degradations. Table 2 presents the perfor-

mance on Set14 [11] under ×4 up-sampling scale with three

evaluation metrics. Quantitative results demonstrate that

our proposed method outperforms other ASSR methods in

all kinds of degradations.

B.2. RealSR

To justify the robustness under real-world images, the

quantitative results on the RealSR version-3 dataset [1] are

provided. All methods are trained the same as mentioned

in Section 4.1 except for the noise level being set to 10,

followed by the way that [10] adopts for the real-world

images. In Table 3, our method is on average superior to the

others on all scales; especially on scale two, we are better

than others by more than 1db on PSNR.

C. More Qualitative Results

More qualitative results are provided here: we gener-

ate the real-world SR images from the RealSR version-3

dataset [1] (cf. Figure 1) and the historical images (cf.

Figure 2), while the continuous scale SR images are from

Set14 [11] (cf. Figure 5). We observe that the SR im-

ages generated by the baselines produce more artifacts than

ours. Also, they suffer from distortion (for example, the

second row in Figure 1 demonstrates the distortion of the

hole, where they should be in the shape of a circle), while

our method better preserves the structure.

D. Effectiveness of Wavelet transform

We demonstrate the benefit of learning degradation rep-

resentation from the high-frequency subbands of input LR

images in the wavelet space (noting again that our implicit

degradation predictor takes the high-frequency subbands as

input). Firstly, we adopt t-SNE [7] to visualize the dis-

tributions of implicit degradation representations learnt in

wavelet space or the original RGB space. As there are four

parameters (i.e. {λ1, λ2, θ} to determine the degradation

kernel and the downsampling scale s) which would make

differences upon the degradation representations, three dif-

ferent experimental scenarios are considered here: 1) fixing

the scale s while randomizing the other parameters; 2) fix-

ing the kernel parameters {λ1, λ2, θ} and randomizing the

scale s; and 3) randomizing all four parameters. The ran-

domization upon scale parameter s is ∼ U(1, 10), {λ1, λ2}
is ∼ U(0.2, 6), and θ is ∼ U(0, π). Please note that, in

order to have better visualization, for each of the experi-

mental scenarios, there are only 6 distinct combinations of

{λ1, λ2, θ, s}. In Figure 3 the first row shows the distri-

butions for the implicit degradation representations (pro-

duced by the implicit degradation predictor) learnt in the

wavelet space, while the second row shows the ones learnt

in the RGB space. Moreover, three columns sequentially

correspond to the aforementioned three experimental sce-

narios. The implicit representation stemmed from different

parameter settings are colorized differently. It is observed

that, with adopting wavelet transform, learnt implicit repre-

sentations are more discriminative (or distinguishable) with

respect to be different degradations and scaling factors, in

comparison to the ones learnt in the RGB space.

Secondly, we would like to show the (indirect) impact

of using wavelet transform upon the learning of explicit

kernel estimation. In Figure 4, it demonstrates the ker-

nel k̂l in LR space estimated by our method. All of the

training procedures and hyper-parameters are set to be the

same. It shows that with using the original RGB space in-

stead of the wavelet one for learning the implicit represen-

tations, all explicit kernels degenerate to a cross-like shape

with few variations in magnitudes. We argue that, since the

explicit kernel estimator is implicit-degradation-dependent,

the worse discriminativeness in the learnt implicit represen-

tations thereby negatively affects the explicit kernel esti-

mator. In contrast, our proposed method can estimate the

explicit kernel with various tendencies and magnitudes in

consistent with the corresponding groundtruth kernel kl.

In Table 4, it reports the quantitative performance with

respect to whether the implicit degradation representation

is learnt upon the original RGB or wavelet spaces. It can be

concluded that the wavelet transform does help to improve

the learning of super-resolution. We can also see the impor-

tance of learning discriminative degradation representations

towards the task of arbitrary-scale blind-SR.
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Table 1. Quantitative comparison on various datasets with using continuous upsampling scales. The best performance is in red while the

second best is in blue. All models are trained with continuous scales randomly sampled from U(1, 4).

Dataset Set5 Set14 BSD100 Urban100

Scale Method PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic 27.9485 / 0.7667 25.7769 / 0.6757 25.5221 / 0.6294 22.9406 / 0.6234

MetaSR [4] 31.0373 / 0.8715 27.9307 / 0.8042 26.4721 / 0.7228 24.7597 / 0.7401

×2 LIIF [3] 31.8991 / 0.8892 28.1747 / 0.8137 26.4302 / 0.7272 24.9905 / 0.7519

LTE [5] 31.7331 / 0.8865 28.2148 / 0.8144 26.4117 / 0.7251 25.0141 / 0.7515

SRNO [9] 31.5307 / 0.8851 28.6815 / 0.8303 26.3458 / 0.7344 25.0909 / 0.7622

Ours 32.7075 / 0.8975 28.5204 / 0.8244 26.4582 / 0.7335 25.2237 / 0.7652

Bicubic 24.7017 / 0.6857 23.9357 / 0.6188 24.2446 / 0.5925 21.3123 / 0.5611

MetaSR [4] 25.7880 / 0.7370 24.5656 / 0.6491 24.7521 / 0.6251 22.1059 / 0.6076

×2.7 LIIF [3] 26.0169 / 0.7500 24.6822 / 0.6564 24.8227 / 0.6337 22.2511 / 0.6207

LTE [5] 25.7915 / 0.7398 24.5778 / 0.6510 24.7266 / 0.6270 22.1302 / 0.6127

SRNO [9] 25.9713 / 0.7470 24.4804 / 0.6500 24.6761 / 0.6301 22.1040 / 0.6113

Ours 26.5096 / 0.7720 25.3506 / 0.6837 25.0788 / 0.6555 22.6549 / 0.6504

Table 2. Quantitative comparison on Set14 with ×4 upsampling scale. The best performance is colored in red. All models are trained

under unknown degradations. Please refer to the description in Section B.1 for details.

Method MetaSR LIIF LTE SRNO Ours

kernel down PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

bicubic 25.7660 / 0.6930 26.0368 / 0.7038 26.0692 / 0.7026 26.0654 / 0.7113 26.3796 / 0.7168

bilinear 25.4994 / 0.6801 25.8211 / 0.6938 25.7557 / 0.6904 25.9430 / 0.7005 26.2525 / 0.7110

area 25.8433 / 0.6932 26.2315 / 0.7069 26.7001 / 0.7216 26.4831 / 0.7186 26.7462 / 0.7239

bicubic 25.9936 / 0.7011 26.2683 / 0.7133 26.3721 / 0.7154 26.2579 / 0.7162 26.5603 / 0.7247

bilinear 25.7851 / 0.6903 26.1042 / 0.7054 26.1754 / 0.7051 26.1238 / 0.7067 26.4504 / 0.7188

area 26.1388 / 0.7029 26.5863 / 0.7188 26.1719 / 0.7036 26.6942 / 0.7240 26.9884 / 0.7322

Table 3. Quantitative results on RealSR version-3 dataset

×2 ×3 ×4
Scale PSNR / SSIM PSNR / SSIM PSNR / SSIM

MetaSR 29.664 / 0.869 27.973 / 0.822 26.881 / 0.786

LIIF 29.752 / 0.874 28.014 / 0.826 27.004 / 0.793

LTE 29.777 / 0.871 27.751 / 0.819 26.696 / 0.788

SRNO 30.110 / 0.870 28.068 / 0.815 26.841 / 0.784

Ours 31.644 / 0.890 28.773 / 0.823 27.393 / 0.789

Table 4. Ablation study upon the utilization of wavelet transform

in learning implicit degradation representations. The experiments

are based on validation set of DIV2K.

w/o wavelet w/ wavelet

scale PSNR / SSIM PSNR / SSIM

×2 30.094 / 0.821 30.538 / 0.837

×3 29.276 / 0.797 29.810 / 0.811

×4 28.478 / 0.766 28.796 / 0.777
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Figure 1. Qualitative results on RealSR version-3 dataset with ×2 and ×4 upsampling scales. The baseline methods produce more artifacts

in the super-resolution results.
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Figure 2. Qualitative results on historical images with ×4 upsampling scale.

Fixed s Fixed (𝜆1, 𝜆2, 𝜃) All random

Figure 3. The top row shows degradation representation training

with wavelet transform. The bottom row demonstrates the results

without wavelet transform. There are three schemed provided: the

downsampling scale is fixed at scale=4 and hyper-parameters are

randomly sampled (label as Fixed s), the blur kernel (λ1, λ2, θ) is

fixed at (1.1, 2.5, 65) (label as Fixed (λ1, λ2, θ)). The rest of col-

umn set all of hyper-parameters randomly (label as All random).
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Figure 4. The top row shows the ground truth kl. The middle and

the bottom rows shows the estimation results of explicit kernels,

respectively with adopting the RGB or wavelet spaces for learning

implicit degradation representations.
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Figure 5. Qualitative results on Set14 with various continuous upsampling scales. We can observe that our method restores clear edges for

all scale factors, particularly in the letter ”w”.
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