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Abstract

Single image super-resolution (SISR) for reconstructing

from a low-resolution (LR) input image its corresponding

high-resolution (HR) output is a widely-studied research

problem in the field of multimedia applications and com-

puter vision. Despite the magic leap brought by recent de-

velopment of deep neural networks for SISR, such problem

is still considered to be quite challenging and non-scalable

for the real-world data due to its ill-posed nature, where

the degradations happened to the input LR images are usu-

ally complex and even unknown (in which the degradations

in the test data could be unseen or different from the ones

shown in the training dataset). To this end, two branches of

SISR methods have emerged: blind super-resolution (blind-

SR) and arbitrary-scale super-resolution (ASSR), where the

former aims to reconstruct SR images under the unknown

degradations, while the latter improves the scalability via

learning to handle arbitrary up-sampling ratios. In this pa-

per, we propose a holistic framework to take both blind-

SR and ASSR tasks (accordingly named as arbitrary-scale

blind-SR) into consideration with two main designs: 1)

learning dual degradation representations where the im-

plicit and explicit representations of degradation are se-

quentially extracted from the input LR image, and 2) mod-

eling both upsampling (i.e. LR→HR) and downsampling

(i.e. HR→LR) processes at the same time, where they uti-

lize the implicit and explicit degradation representations re-

spectively, in order to enable the cycle-consistency objec-

tive and further improve the training. We conduct extensive

experiments on various datasets where the results well ver-

ify the effectiveness of our proposed framework in handling

complex degradations as well as its superiority with respect

to several state-of-the-art baselines.

1. Introduction

In recent years we have witnessed a large improvement

for addressing the task of single-image super-resolution (de-

Figure 1. Conceptual illustration of our proposed method for tack-

ling arbitrary-scale blind super-resolution problem, with highlight-

ing our two main designs: 1) utilizing both implicit degradation

representation and explicit degradation kernel, and 2) integrating

both upsampling and downsampling processes (shaded by light

brown color and light yellow color respectively) into a holistic

framework for enabling the training objective of cycle-consistency.

noted as SISR, which aims to recover a high-resolution im-

age from a low-resolution input) with the help of deep learn-

ing techniques to increase the model capacity. Nevertheless,

lots of early attempts have an assumption upon the degra-

dation process being bicubic downsampling (i.e. the low-

resolution image is made by applying bicubic downsam-

pling on its high-resolution counterpart) [12, 15, 16, 19, 34,

35], which leads to the first practical challenge while being

directly applied to real-world data: As real images often un-

dergo the degradations which are different and more com-

plex than the bicubic one, the mismatch upon degradation

process hence results in the performance drop for super-

resolution models. Another practical challenge comes from

the fact that most of these methods are typically designed

for performing super-resolution/upsampling with a specific

scale (or a set of fixed scales, usually integer ones), thus

limiting their applicability to arbitrary-scale upsampling.

Corresponding to the aforementioned two challenges,

two research problems of SISR have been proposed:

blind super-resolution (blind-SR) and arbitrary-scale super-

resolution (ASSR). For the blind-SR, it aims to recon-

struct high-resolution images under unknown degradations,

in which the model typically puts no prior assumption



on the type of degradations (mostly known as degrada-

tion/downsampling kernels) or can be adaptive to the degra-

dation kernel of the low-resolution input image [2, 13, 18,

20, 26, 29, 36]. Without loss of generality, blind-SR meth-

ods typically consist of two stages: a predictor firstly esti-

mates degradation kernels from the input LR images, fol-

lowed by a super-resolution module to take the estimated

kernel as prior information or a condition for performing

the upsampling. Particularly, the predictor plays a crucial

role and can be categorized into two categories according to

the form of its outputs: estimation of explicit degradation

kernels [2, 13, 20, 29] or estimation of implicit degradation

representations [18, 26, 36]. The former provides a more

direct way of using estimated degradation for the super-

resolution module (e.g. explicit and physically-meaningful

priors upon kernels can be easily applied for simpler uti-

lization in super-resolution [2]), but it may suffer the per-

formance drop when there is a mismatch between the esti-

mated kernels and the actual ones [33]; The latter in turns

learns to extract latent/implicit representation of degrada-

tions (instead of estimating the explicit kernels) in which

different degradations in the representation space should be

distinguishable. While the flexibility in the implicit rep-

resentations helps to alleviate the kernel mismatch prob-

lem, but how to ensure the discriminativeness among var-

ious degradation representations and their integration with

super-resolution module would be other concerned issues.

For arbitrary-scale super-resolution (ASSR), its main

goal is to enable the super-resolution model to handle ar-

bitrary upsampling scales (e.g. continuous scaling factors

instead of just integer ones). The seminal works of ASSR

(e.g. LIIF [6] and LTE [17]) typically learn to represent an

image as a continuous function (e.g. implicit neural repre-

sentation based on multi-layer perceptron) which can map

the queries of continuous image coordinate to their corre-

sponding RGB values, thus being able to produce outputs at

arbitrary scales as the coordinates are continuous.

In this paper, we propose to tackle both blind-SR

and ASSR problems at the same time (i.e. we name it

arbitrary-scale blind-SR task), which is the first of its

kind to the best of our knowledge. We argue that the direct

integration over existing blind-SR and ASSR techniques is

actually nontrivial, as most of the blind-SR works conduct

their studies under the fixed scaling factors while most of

ASSR works have prior assumption upon the degradation

process (cf. Table 1 for the inferior performance of their

direct combination, e.g. DCLS+LIIF or LTE). We take the

two blind-SR categories as examples here: For blind-SR

methods of estimating explicit kernels, given two LR im-

ages produced by applying the identical degradation kernel

on the same HR image but undergoing different downsam-

pling scales, the predictor should still output the same es-

timation for them. Hence, besides the difficulty stemming

from the potential mismatch between estimated kernels and

the actual ones (due to the ambiguity resulting from the

downsampling process [20]), the input images from differ-

ent downsampling scales bring another burden/ambiguity

for the model learning; While for the blind-SR method of

estimating the implicit degradation representations, the in-

troduction of different scaling factors (in addition to various

degradations) also further makes the learning of representa-

tions and ensuring discriminativeness more complicated.

Our proposed framework provides a feasible solution for

addressing blind-SR and ASSR simultaneously, where there

are several key design choices: 1) We adopt both implicit

and explicit degradation representations in our framework

for better leveraging their advantages, in which they are se-

quentially estimated from the input LR image (i.e. firstly

predicting implicit representation from LR input then in-

ferring the explicit kernel from the predicted implicit rep-

resentation). In particular, the LR input is projected into

the wavelet domain where the resultant high-frequency sub-

bands are used to extract distinctive implicit representations

via the predictor; 2) The predicted implicit degradation rep-

resentation is incorporated into the super-resolution mod-

ule/subnetwork which supports arbitrary-scale upsampling,

for achieving the adaptive ability of blind-SR. In addition to

the upsampling process, we convolve the super-resolution

result with the previously estimated explicit degradation

kernel for realizing the degradation/downsampling process

and reverting to the LR image. Moreover, super-resolution

result used in such downsampling process is actually with

the same image size as the original LR input image, thus

the ambiguity/uncertainty in terms of downsampling scale

is alleviated. The upsampling and downsampling processes

together form a closed-loop, which allows us to exploit the

cycle-consistency objective for further driving the model

optimization, and it is believed that jointly considering both

upsampling and downsampling in the model training ben-

efits the regularization against the ill-posed nature of the

super-resolution problem [9]. By holistically tackling the

arbitrary-scale blind-SR task, we demonstrate the effective-

ness of our proposed method through extensive experiments

and comparisons with respect to various baselines. Our con-

tributions are summarized as follows:

• To the best of our knowledge, we are the first work

proposing to explicitly address both blind-SR and

ASSR problems jointly.

• We utilize both implicit and explicit degradation repre-

sentations in which they are respectively incorporated

with the arbitrary-scale super-resolution module and

the degradation process to form our holistic framework

for the task of arbitrary-scale blind-SR.

• Both the upsampling and downsampling processes

are modeled in our framework to construct a closed-



loop which is experimentally shown to benefit over-

all model training (with noting that the downsampling

is achieved via inherent strengths of ASSR instead of

adopting separate downsampling module or relying on

bicubic downsampling as other approaches).

2. Related Works

Blind Super-resolution. Several pioneering works [7, 15,

16] have achieved promising results in SISR by using deep

networks with predefined degradation, such as bicubic sub-

sampling. However, these methods suffer from severe per-

formance drops when being applied to the real-world data

produced by unknown degradations (which are typically

different from the ones in the training set). To address this

issue, blind SISR methods have emerged, which aim to re-

construct high-resolution images from low-resolution im-

ages without knowing the degradation in advance. These

methods can be categorized into two groups: those that

explicitly estimate the degradation kernels [2, 13, 20, 29]

and those that implicitly derive the degradation embed-

dings [18, 26, 36]. In the former group (i.e. estimating

explicit degradation kernels), KernelGAN [2] estimates the

kernel by taking advantage of the internal cross-scale re-

currence property among images at different scales without

requiring additional training data. However, this approach

can be time-consuming due to the iterative kernel estima-

tion process, and it may suffer from kernel mismatch issues

when projecting the kernel from the low-resolution space to

the high-resolution space. To mitigate these issues, Kernel-

Net [29] and DCLS [20] ease the task into image deblurring.

KernelNet [29] first estimates the coarse kernel in the low-

resolution space and then refines it in the high-resolution

space using self-convolution techniques. DCLS [20] refor-

mulates the task as deblurring in the Fourier transform do-

main and derives a new low-resolution space degradation

kernel. In the latter group (i.e. estimating implicit degrada-

tion representations), DASR [26] and CDSR [36] learn to

distinguish different degradations in the feature space using

contrastive learning. This strategy helps to avoid the kernel

mismatch problem and enables adaptive use of the degra-

dation representations in the SISR model. Unlike previous

works that only utilize one of these strategies, our approach

leverages both explicit and implicit degradations to address

the blind SISR problem in a more holistic manner.

Arbitrary-scale Super-resolution. Previous SR research

mostly focuses on a fixed-scale or only integer scales, while

ASSR [6, 10, 17, 21, 24, 27, 30] is more realistic in real-

world scenarios to consider arbitrary or continuous scales.

MetaSR [10] is the first work to address ASSR by dynami-

cally predicting the weights for the upscaling convolution

modules. Inspired by the recent advance upon implicit

neural representations (INR) for 3D shape reconstruction,

LIIF [6] adopts a multi-layer perceptron (MLP) to learn a

continuous representation for images which takes the con-

tinuous image coordinate as well as the image features

around the coordinate as input and output the RGB value at

the given coordinate. However, MLPs are known to struggle

with learning high-frequency components [25]. LTE [17]

addresses this issue by encoding image textures in Fourier

space. While SRNO [27] introduces neural operator [14]

to capture global relationships thus avoiding the point-wise

limitation of MLP. ITSRN [30] and ITSRN++ [24] fur-

ther propose implicit transformers that fully utilize the INR

structure on screen image content. However, all these works

are limited to single degradations (i.e. being less adaptive to

other unseen/unknown degradations). In this work, we aim

to advance ASSR under unknown degradations.

Cycle-consistency Loss. Cycle-consistency loss [8, 9, 22,

31,37], which was originally introduced in CycleGAN [37],

has not only been widely adopted in image translation tasks

but also (conceptually) extended to the model designs for

various applications. In the context of SR, this loss has been

extended and applied in mapping relationships among dif-

ferent domains. For example, [22] uses cycle-consistency

loss across the domains of clean LR and LR images, while

DRN [9] frames it into a dual learning task among LR and

HR images. And CinCGAN [31] utilizes both cycles as [22]

and [9] into its optimization functions. Additionally, this

strategy is also applied to zero-shot SR [8] that learns an

image-specific mapping between LR and HR images. In

our work, our proposed method models both the upsam-

pling (i.e. LR→HR) and downsampling (i.e. HR→LR) pro-

cesses thus the cycle-consistency loss is enabled. This helps

to constrain the possible solution space of the arbitrary-

scale blind super-resolution model to those that are consis-

tent with the information provided by the input LR image,

hence benefiting our model training.

3. Proposed Method

Without loss of generality, the single image super-resolution

problem follows the following degradation model:

y = (x⊗ kh)↓
s

+ n (1)

where y represents the low-resolution (LR) image, x de-

notes the high-resolution (HR) image, kh represents the

degradation kernel applied to x, ↓s denotes the downsam-

pling operation with a scaling factor s, and ⊗ is the con-

volution operation. The term n typically denotes the white

Gaussian noise. In the subsequent sections, we conduct our

investigation mainly on the noise-free scenario (i.e. n = 0)

as following the common practice [2, 29], in which the

Equation 1 can thus be further reformulated as convolving

the HR image that is already downsampled to the LR space

(i.e. x↓
s

) with the degradation kernel kl in the LR space as

well [20]:

y = x↓
s

⊗ kl (2)



Figure 2. Overview of our proposed framework for the arbitrary-scale blind-SR task, in which it is composed of major components: (a)

implicit degradation predictor (cf. Section 3.1), (b) explicit kernel estimator (cf. Section 3.2), and (c) arbitrary-scale super-resolution

module (cf. Section 3.3). The input LR image is firstly gone through the implicit degradation predictor to derive the implicit degradation

representation, then the implicit representation is not only adopted to estimate the explicit degradation kernel in LR space by using the

explicit kernel estimator, but also taken as the condition for arbitrary-scale super-resolution module to output the super-resolution results,

in which the manner of integrating implicit representation into the arbitrary-scale super-resolution module is based on (d) the modulation

mechanism (noting that the residual groups in the image feature extractor of arbitrary-scale super-resolution module are built upon stacks

of residual blocks). Moreover, the super-resolution result with the same size as LR image is further convolved with the estimated explicit

kernel in LR space, where an upsampling-downsampling cycle (cf. Section 3.4) is therefore formed and it is experimentally shown to be

beneficial for the overall model training.

3.1. Implicit Degradation Predictor

Our proposed framework starts with estimating implicit

degradation representation from the input LR image. We

are firstly inspired by the prior work from DASR [26] to

learn the implicit representations for degradations, while

we need to further take the variety in terms of scaling fac-

tors into account. As the additional scaling variety increases

the overall complexity of learning implicit degradation rep-

resentations in the original image space (noting that the

original DASR only considers the images of the same/fixed

scale), we step forward to adopt the lesson learned from [28]

into our design for alleviating the complexity: it finds that

the high-frequency parts of the LR image patches contain

more important information of degradation (since the high-

frequency parts are typically suppressed during blurring and

downscaling, which results in different levels of degrada-

tion in different frequency bands for the same image), thus

the wavelet transform is utilized to firstly project the input

LR image into wavelet representations where the model is

then trained upon. Accordingly, we leverage such insight

to firstly employ the wavelet transform to the LR image

patches (where the Haar transform is adopted as the wavelet

basis) for deriving the low- and high-frequency components

(denoted as yL and yH , respectively), then take the high-

frequency subbands yH as the input to train our predictor of

implicit degradation representations.

The training of the predictor does follow the same prac-

tice as in DASR [26] and CDSR [36] to base on the con-

trastive learning. To be detailed, a training set composed

of HR-LR image pairs is firstly synthesized by follow-

ing Equation 1 being noise-free, where an HR image x

is randomly cropped to obtain two patches, and the same

degradation/blurring kernel and downsampling scale are ap-

plied to both patches to create two LR image patches y1

and y2 (in accordance with the common assumption that

the patches from the same image ideally should have the

same degradation). Subsequently, SimSiam [5] algorithm

is adopted to perform contrastive learning upon the high-

frequency subbands of y1 and y2, which are denoted as y1H
and y2H respectively. The SimSiam model consists of an en-

coder E and a prediction head G, in which the contrastive



objective Lcl is defined as follows:

Lcl =
1

2
D
(
E(y1H), G(E(y2H))

)
+
1

2
D
(
E(y2H), G(E(y1H))

)

(3)

where D(·) computes the negative cosine similarity [5]. The

resultant encoder E is then our predictor for estimating the

implicit degradation representation of input LR image.

3.2. Explicit Kernel Estimator

Our framework proceeds to construct the explicit degra-

dation kernel from the implicit representation estimated by

the predictor E, via the help of an explicit kernel estimator

M . The design of our explicit kernel estimator is similar to

the one in DCLS [20] but being simpler (i.e. the subnetwork

of the kernel estimator in DCLS) as our input for the estima-

tor is already the implicit degradation representation while

the estimator in DCLS needs to start from the LR input im-

age. The detailed architecture of our explicit kernel estima-

tor M is provided in the appendix A.2, so as the predictor

E. Basically, the input implicit degradation representation

is firstly projected to a lower dimension using two fully con-

nected layers, and further processed through four separately

fully connected layers before being reshaped into four cor-

responding convolution filters of size 11× 11, 7× 7, 5× 5,

and 1×1 respectively. Finally, these filters are convolved se-

quentially with an identity kernel (of size 41×41) to obtain

the estimation of explicit degradation kernel (of size 21×21,

the maximum kernel size used in our experiments). Such

manner of deriving explicit kernel is named degradation-

dependent deep linear convolution in our work, following

the same naming rules as DCLS [20].

Please particularly note that, the explicit kernel estimated

by our estimator M is actually aimed to be the degradation

kernel in the LR space (cf. Equation 2), thus being denoted

as k̂l. The reason behind our performing kernel estimation

in the LR space (i.e. refer to Equation 2 instead of Equa-

tion 1) is that the super-resolution of reconstructing x given

y needs to estimate the degradation kernel kh through the

uncertainty of downsampling scale s (cf. Equation 1) hence

leading to the potential mismatch of kernels. In contrast,

the scenario described in Equation 2 puts all components

(i.e. y, x↓
s

, and kl) in the same LR space, thus simplify-

ing the kernel estimation process (as well as alleviating the

issue of kernel mismatch).

Following the practice/derivation in DCLS [20], the ob-

jective Lk to drive the training of explicit kernel estimator

is based on the L1 error between k̂l and its corresponding

groundtruth kl, i.e.

∣∣∣k̂l − kl

∣∣∣
1

, in which kl is defined as fol-

lows for the purpose of ensuring numerical stability during

optimization:

kl = F−1

(
F(x↓s)

F(x↓s)F(x↓s) + ϵ
F((x⊗ kh)↓s)

)
(4)

where F denotes the Discrete Fourier Transform, F−1 is

the inverse of F , F(·) is the complex conjugate of F , and

ϵ is a small number to prevent the denominator from being

zero. Note that the small values in kl are zeroed out as in

[2, 20] for better numerical stability.

3.3. Adaptive Arbitraryscale SR Module

Once obtaining the degradation representation, our pro-

posed framework learns to integrate the degradation rep-

resentation into the arbitrary-scale super-resolution module

in order to realize the arbitrary-scale blind-SR (as now the

arbitrary-scale super-resolution module is adaptive to the

estimated degradation information). The architecture of our

arbitrary-scale super-resolution module is composed of the

image feature extractor and the implicit neural representa-

tion (INR), where EDSR [19] is exploited for implement-

ing the image feature extractor while the implementation of

INR follows the LTE [17] fashion (where the input is com-

posed of the continuous image coordinate, the cell size in-

dicating the size/shape of the query pixel, and the extracted

image features being projected into Fourier space, in which

the output is the predicted RGB value at the given image

coordinate) in our full model. And the implicit degrada-

tion representation provided by the predictor E is incor-

porated into the image feature extractor via a modulation

mechanism (similar to the one used in [26]): the feature

maps of the residual blocks in the image feature extractor

are weighted in a channel-wise manner by the coefficients

transformed from the degradation representation, where the

transformation is done by two fully-connected layers and a

sigmoid activation function. The training of such arbitrary-

scale super-resolution module, which being adaptive to the

implicit degradation representation, is driven by the L1 er-

ror between the groundtruth high-resolution image x and

the output image x̂ composed of the predicted pixel values

from our arbitrary-scale super-resolution module:

Lsuper = |x̂− x|
1
. (5)

3.4. CycleConsistency

As previously motivated in the introduction, with being

inspired by several related works [9, 31] which have shown

the benefit of modeling the dual paths between LR and

HR (i.e. upsampling in terms of LR→HR and downsam-

pling in terms of HR→LR) in a unified framework, here

in our proposed method we also adopt such idea to better

regularize the super-resolution output via enforcing its re-

verted/degraded version to be close to the original LR im-

age y. In particular, as now our super-resolution module

supports arbitrary upsampling scales, we can easily produce

x̂↓
s

with letting the upsampling scale of our arbitrary-scale

super-resolution module to be 1 (noting that the details of



setting query image coordinate and the cell size as the in-

put for LTE-based INR according to the desired upsampling

scale are provided in the appendix A.3), which provides an

estimation of x↓
s

(i.e. the HR image that is already down-

sampled to the LR space). Afterwards, with following the

process described in Equation 2, we convolve x̂↓
s

with k̂l
in which the result should be close to the original input LR

image y thus leading to the cycle-consistency objective:

Lcycle =
∣∣∣x̂↓

s

⊗ k̂l − y

∣∣∣
1

(6)

The overall optimization loss for training our arbitrary-scale

super-resolution module now becomes:

LSR = Lsuper + λLcycle (7)

where we empirically set λ to 0.1 in all our experiments.

3.5. Training Procedure

The training of our entire framework follows a two-stage

procedure, which comprises the degradation representation

training stage and the arbitrary-scale super-resolution train-

ing stage. In the first stage, the implicit degradation predic-

tor and explicit kernel estimator are jointly trained to im-

prove the representative power of the degradation represen-

tations, where the optimization objective is the summation

over the contrastive learning loss Lcl and the kernel estima-

tion loss Lk; While in the second stage, both the implicit

degradation predictor and the explicit kernel estimator are

fixed, and only the arbitrary-scale super-resolution module

is optimized with LSR. During inference, we only require

the implicit degradation predictor and the arbitrary-scale

super-resolution module to achieve the task of arbitrary-

scale blind-SR, in which our model supports upsampling

any input image to arbitrary scales without the need of prior

knowledge upon the degradation kernels. Please note that,

as the explicit kernel estimator is not used during inference,

the kernel mismatch problem is consequently prevented.

4. Experiments

Dataset. We adopt the DIV2K [1], which contains 800

high-resolution images, for training our proposed model as

well as other baselines, in which the corresponding low-

resolution images are synthesized according to Equation 1

with noise-free scenario. To be specific, in order to in-

crease the variety of degradations seen in training dataset,

we follow [26] to take the anisotropic Gaussian kernel as

our degradation kernel where the filter size of the kernel is

sampled from the odd numbers ∼ [7, 21], while the weights

in a kernel are determined by two random eigenvalues λ1,

λ2 ∼ U(0.2, 4) in a covariance matrix and a random rota-

tion angle θ ∼ U(0, π), in which U denotes the uniform

distribution. Moreover, there are three downsampling op-

erations being randomly selected to apply, i.e. bicubic, bi-

linear, and area interpolations, with the downscaling scale

s ∼ U(1, 4). The patch size of LR images (e.g. the con-

trastive objective for training our implicit predictor is based

on image patches) is set to 48 × 48 for all the training set-

tings. Five datasets are used for evaluation, i.e. Set5 [3],

Set14 [32], BSD100 [23], Urban100 [11] and the DIV2K

validation dataset, where each dataset is processed with un-

known degradations as the same procedure as the training

dataset generation.

Performance Evaluation. The evaluation metrics are

PSNR and SSIM, where both PSNR and SSIM are larger

the better. Both of them are evaluated under the Y channel

of YCbCr space, following the setting in [20, 36].

4.1. Quantitative and Qualitative Results

We evaluate the performance of our model with four

baseline arbitrary-scale super-resolution methods (includ-

ing MetaSR [10], LIIF [6], LTE [17] and SRNO [27])

under unknown degradations. Please note that, as our pro-

posed method aims to tackle the novel task of arbitrary-

scale blind-SR, which is the first of its kind, we thus have to

make comparison with either the ASSR methods or blind-

SR methods. However, blind-SR methods can’t general-

ize to various of scales. For fair comparison, we take the

state-of-the-art blind-SR methods, DCLS [20] with com-

bination to LIIF [6] and LTE [17] as the representative of

blind-SR baselines. We also include a naive baseline which

directly applies bicubic upsampling upon LR input to obtain

the super-resolution results, denoted as Bicubic. To demon-

strate the overall performances upon arbitrary upsampling

scales, we show both integer scales and continuous scales

in Table 1. Our method outperforms all the baselines on al-

most all benchmarks for both integer and continuous scales,

with being the second-best on only a few metrics or datasets

(i.e. in average our proposed method performs the best).

These results clearly demonstrate the effectiveness of our

method in handling unknown degradations under various

scales, and highlight its advantages over existing methods.

From the qualitative comparison in Figure 3, we show

the super-resolution images of all methods, under both inte-

ger and continuous scales. Our method outperforms all the

others in terms of showing sharp edges, preserving struc-

tural patterns (e.g. streak), and having less distortion.

4.2. Analysis and Discussions

Study – using kh instead of kl for explicit kernel? Here

we conduct an investigation on training our explicit kernel

estimator to estimate the degradation kernel in HR space

(cf. kh in Equation 1) instead of the one in LR space (cf. kl
in Equation 2). In Figure 4, there are images being blurred

with the same kh, which we set (λ1, λ2, θ) = (1.1, 2.5, 65),
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Figure 3. Qualitative comparison conducted on various upsampling scales. The image in the top row is from Set14, while the image in the

second and the last rows are from Urban100. The magnified areas are indicated with yellow boxes.

but downsampled with different scales, which are 2.2, 1.1,

3.0, 4.2, 6, 10. The top row indicates groundtruth kh while

the bottom row shows the estimated kh. We can observe

that the estimated kernels are highly affected by the scales

and deviate from the the groundtruth kh, which conclude

the infeasibility for the estimator to produce the same kh
under different scales.

Study – model designs. To verify the contribution of our

model designs, we conduct ablation studies on two vital fea-

tures: 1) arbitrary-scale super-resolution module with im-

plicit degradation representation and 2) a closed-loop with

the estimated explicit kernel in LR space (denoted as Im-

plicit degradation and Cycle respectively in Table 2). Note

that without implicit representation integrated to image fea-

ture extractor, it becomes the original EDSR [19]. Table 2

shows the results on DIV2K validation dataset with scale

set to 3. It shows that both designs improve performance

individually and perform the best when being combined.

k
h

E
s
ti
m
a
te

Figure 4. Experiments with the model variant of training explicit

kernel estimator to predict kh instead of kl. The top row is the

ground truth degradation kernels kh, and the bottom row is the

corresponding estimations produced by the estimator. It is shown

that when the same blur kernel is used but with different down-

sampling scales [2.2, 1.1, 3.0, 4.2, 6, 10], the estimated kernels are

inconsistent with the groundtruth.

Performance on real-world degradations. Here in Fig-

ure 5 we provide a qualitative comparison upon real-world

images obtained from the RealSR version-3 [4] dataset to

validate the robustness of our proposed method against real-



Table 1. Quantitative comparison on various datasets with various upsampling scales. The best performance is in red while the second best

is in blue. All models are trained with continuous scales randomly sampled from U(1, 4).

Dataset Set5 Set14 BSD100 Urban100

Scale Method PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic 27.6694 / 0.7655 24.8790 / 0.6265 25.4217 / 0.6134 22.3680 / 0.6059

DCLS [20]+LIIF [6] 27.4310 / 0.8231 24.2159 / 0.7032 24.7017 / 0.6798 22.1304 / 0.6924

DCLS [20]+LTE [17] 27.4674 / 0.8222 24.3413 / 0.7056 24.8001 / 0.6812 22.2755 / 0.6948

×3 MetaSR [10] 29.1847 / 0.8528 25.9156 / 0.7272 26.5609 / 0.7065 23.3855 / 0.6980

LIIF [6] 29.3787 / 0.8630 25.9210 / 0.7325 26.6672 / 0.7140 23.3933 / 0.7049

LTE [17] 29.4247 / 0.8644 25.8921 / 0.7327 26.6800 / 0.7145 23.3823 / 0.7057

SRNO [27] 29.2663 / 0.8635 25.8981 / 0.7391 26.5954 / 0.7196 23.2896 / 0.7078

Ours 29.5681 / 0.8696 25.9791 / 0.7423 26.8306 / 0.7242 23.5128 / 0.7131

Bicubic 27.0250 / 0.7263 24.7365 / 0.6700 24.7794 / 0.5804 21.7952 / 0.5680

DCLS [20]+LIIF [6] 27.0487 / 0.8141 24.6793 / 0.7101 23.8700 / 0.6448 21.2705 / 0.6439

DCLS [20]+LTE [17] 26.9578 / 0.8129 24.6589 / 0.7066 23.8323 / 0.6425 21.3129 / 0.6437

×3.6 MetaSR [10] 25.8354 / 0.7130 28.6290 / 0.8266 25.5168 / 0.6636 22.4664 / 0.6490

LIIF [6] 28.7843 / 0.8395 25.9306 / 0.7212 25.5267 / 0.6702 22.3859 / 0.6549

LTE [17] 28.8638 / 0.8435 25.9306 / 0.7219 25.5356 / 0.6707 22.3626 / 0.6551

SRNO [27] 28.4700 / 0.8371 25.8687 / 0.7245 25.4639 / 0.6751 22.3067 / 0.6564

Ours 29.1043 / 0.8475 25.9760 / 0.7275 25.5867 / 0.6763 22.4304 / 0.6614

Bicubic 26.7935 / 0.7173 25.0350 / 0.6174 24.9124 / 0.5868 22.0827 / 0.5763

DCLS [20]+LIIF [6] 26.4664 / 0.7894 24.3381 / 0.6823 23.9654 / 0.6458 21.9636 / 0.6673

DCLS [20]+LTE [17] 26.3301 / 0.7857 24.2402 / 0.6789 23.8380 / 0.6406 21.9944 / 0.6675

×4 MetaSR [10] 28.5168 / 0.8147 26.0609 / 0.7059 25.7275 / 0.6666 22.9445 / 0.6577

LIIF [6] 29.0035 / 0.8346 26.2131 / 0.7143 25.7439 / 0.6732 23.1839 / 0.6703

LTE [17] 29.2171 / 0.8402 26.3126 / 0.7173 25.7677 0/ .6741 23.0556 / 0.6765

SRNO [27] 28.8063 / 0.8329 26.1791 / 0.7193 25.6898 / 0.6774 23.0131 / 0.6720

Ours 29.3732 / 0.8440 26.4834 / 0.7243 25.8560 / 0.6811 23.2178 / 0.6804

Table 2. Ablation study based on DIV2K for our designs.

Implicit degradation Cycle PSNR / SSIM

✓ ✓ 29.8102 / 0.8312

- ✓ 29.6253 / 0.8293

✓ - 29.6870 / 0.8279

- - 29.5949 / 0.8246

world degradations (more are provided in the appendix).

Compared to the other ASSR baselines, our method clearly

generates the fences, which demonstrates that our proposed

scheme is better suited for capturing the details.

5. Conclusion

We introduce a holistic framework that addresses the

arbitrary-scale blind-SR problem. We propose to take ad-

vantage from both implicit and explicit degradations rep-

resentations as well as optimize the overall framework

with introducing the cycle formed by both upsampling

and downsampling processes. In particular, the implicit

degradation is adaptively integrated with the arbitrary-scale

super-resolution module while the explicit degradation ker-

nel is convolved with the super-resolution results to regular-

ize the model optimization. With comparable or even better

LR MetaSR LIIF

LTE OursSRNO

Figure 5. Qualitative results upon real-world degradations, where

the images are obtained from RealSR version-3 [4] dataset and the

upscaling factor is ×4.

quantitative and qualitative performance at arbitrary-scale

blind-SR compared to several baselines, we show the effec-

tiveness of our method in terms of both supporting arbitrary

upsampling scales and handling unknown degradations.
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