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Figure 1. The “Bobcat” was correctly classified by our MCPNet but incorrectly classified as a “Fox” by PIP-Net [15]. On the right
side, we provide an illustration of using our proposed Multi-level Concept Prototype (MCP) distribution to classify and explain the input
image. In particular, our concept prototypes are extracted from multiple layers of the classification model (thus having low-level to high-
level concepts). In comparison with a recent state-of-the-art baseline, PIP-Net [15] shown on the left side which only adopts single-level
explanations (symbolized as colorful boxes on the bottom portion, they are usually extracted from the last model layer), our proposed
MCPNet provides more comprehensive explanations as well as better classification performance.

Abstract
Recent advancements in post-hoc and inherently inter-

pretable methods have markedly enhanced the explana-
tions of black box classifier models. These methods op-
erate either through post-analysis or by integrating con-
cept learning during model training. Although being effec-
tive in bridging the semantic gap between a model’s latent
space and human interpretation, these explanation methods
only partially reveal the model’s decision-making process.
The outcome is typically limited to high-level semantics de-
rived from the last feature map. We argue that the expla-
nations lacking insights into the decision processes at low
and mid-level features are neither fully faithful nor useful.
Addressing this gap, we introduce the Multi-Level Concept
Prototypes Classifier (MCPNet), an inherently interpretable
model. MCPNet autonomously learns meaningful concept
prototypes across multiple feature map levels using Cen-
tered Kernel Alignment (CKA) loss and an energy-based
weighted PCA mechanism, and it does so without reliance
on predefined concept labels. Further, we propose a novel

*Equal advising

classifier paradigm that learns and aligns multi-level con-
cept prototype distributions for classification purposes via
Class-aware Concept Distribution (CCD) loss. Our experi-
ments reveal that our proposed MCPNet while being adapt-
able to various model architectures, offers comprehensive
multi-level explanations while maintaining classification
accuracy. Additionally, its concept distribution-based clas-
sification approach shows improved generalization capa-
bilities in few-shot classification scenarios. Project link
is available at https://eddie221.github.io/
MCPNet/

1. Introduction
The rapid integration of deep learning across various do-

mains has brought to the forefront a critical question: what
underlying mechanisms drive the decisions of these mod-
els? This query has led to the emergence of Explainable
Artificial Intelligence (XAI), a field dedicated to demysti-
fying the operations of opaque ’black box’ models.

In XAI, numerous methods have been developed, ad-
dressing different aspects of model interpretability [4, 5, 7–
9, 13, 15, 16, 27, 31]. These methods generally fall into



MCPNet (Ours) ProtoPNet [1, 2, 15] Concept Bottleneck [9] TCAV [7] CRAFT [4]

Explanation Type Inherently Inherently Inherently Post-hoc Post-hoc
Explanation Scale Multi-Level Single-Level Single-Level Single-Level Single-Level
w/o Concept Labels ✓ ✓ ✗ ✗* ✓
w/o Modifying Models ✓ ✗ ✗ ✓ ✓**

Table 1. We compare our method with four distinct lines of explainable approaches. Our MCPNet inherently offers multi-level explanations
without the need for model modifications or concept labels, making it competitive compared to methods that achieve only partial properties.
*It’s noteworthy that TCAV requires dataset preparation both with and without specific concepts. **Only for non-negative features due to
the limitation of Non-Negative Matrix Factorization.

two categories: 1) post-hoc methods, and 2) inherently in-
terpretive methods. Post-hoc methods focus on elucidat-
ing model behaviours either locally [16] or globally [13],
offering explanations for predictions without necessitating
model retraining. While being valuable, these methods of-
ten provide explanations that lack coherence with the mod-
els’ decision-making processes, leading to potential issues
of unfaithfulness in interpretation [17].

To address the limitations of unfaithfulness in post-hoc
methods, there has been a growing emphasis on inherently
interpretable models featuring built-in, case-based reason-
ing processes. In contrast to post-hoc methods, these mod-
els generate explanations that are integral to the classifica-
tion process. As one of the pioneering work, Concept Bot-
tleneck Model (CBM) [9] which first translates an image
into features signifying the presence or absence of prede-
fined concepts, and then bases its decision-making on these
conceptual representations. Recognizing the challenge of
acquiring pre-defined concept labels, subsequent research
has shifted towards the autonomous identification of con-
cepts during training. Notable among these are ProtoP-
Net [1] and its derivatives [2, 14, 15, 18, 19, 28, 29], which
build inherently interpretable classifier models with a pre-
determined number of prototypical (concept) parts that are
learned automatically during the training process.

While recent advancements in inherently interpretable
methods have significantly improved explanations of black
box classifier models, a common limitation persists: these
methods typically derive explanations from a single part
of the model. Most of the previous studies (e.g., Pro-
toPNet series) have concentrated on extracting human-
understandable concepts from the last feature map, just be-
fore the fully connected (FC) layer, to elucidate model be-
havior (noting that here we take the classification models
as the representative example, without loss of generality).
This line of approaches transform features into explanations
to inform outcomes, yielding understandable concepts but
only illuminating the last model layer with high-level se-
mantics, leaving much still obscured as a ’black box’.

In this paper, we present MCPNet, a novel hierarchi-
cal explainable classifier designed for more comprehen-
sive multi-level model explanations. By eliminating the
FC layer, MCPNet encourages learning of more distinc-

tive features across various model layers. Unlike previ-
ous methods that used entire channels to represent concept
features, often facing challenges in establishing orthogo-
nality among similar concepts [3], MCPNet partitions fea-
ture maps into distinct segments. Each segment focuses
on learning unique concepts, facilitated by our proposed
Centered Kernel Alignment (CKA) loss. These segments
are further differentiated using a weighted Principal Com-
ponent Analysis (PCA), which prioritizes pixel importance
in extracting the concept prototype (CP). For each image,
MCPNet calculates the concept response using the CP and
its corresponding concept segment, forming what we term
the Multi-level Concept Prototype distribution (MCP distri-
bution). Additionally, we introduce the Class-aware Con-
cept Distribution (CCD) loss. This loss function enhances
the distinction of the MCP distribution between different
classes while minimizing it within the same class. To
classify images without the conventional FC layer, MCP-
Net compares the image’s MCP distribution with the class-
specific centroid MCP distribution, which is an average of
the MCP distributions across instances in the same category,
to identify the most similar class. The primary contributions
of our work are outlined as follows:
• We introduce a novel hierarchical explainable classifier

MCPNet that offers in-depth, multi-level explanations of
model behavior. This advancement marks a significant
shift from traditional models, which primarily focus on
high-level semantics, to a more comprehensive approach
that includes insights from various layers of the model.

• The proposed inherently multi-level interpretable
paradigm can be seamlessly integrated with multiple
convolution-based model architectures without addi-
tional modules or trainable parameters while maintaining
comparable classification performance.

• Evaluation on several benchmark datasets verifies that our
method can provide richer concept-based explanations
across low-to-high semantic levels and exhibit better gen-
eralization ability towards unseen categories.

2. Related Works
Post-hoc Interpretation Methods In the realm of post-
hoc explanations, a variety of methods have been devel-
oped to elucidate model behaviors without necessitating



retraining. These approaches predominantly utilize ex-
tracted features from specific instances. A notable cate-
gory within this field is attribution methods which are ini-
tially proposed by [21] and subsequently inspiring further
research [20, 22, 24]. These methods primarily generate
heatmaps to highlight the impact of individual pixels on
model outcomes.

Alternatively, concept-based methods aim to derive
human-understandable concepts from model features. By
using the predefined concept, TCAV [7] measures the con-
cept impact on models’ outputs. A recent advancement
in this area is CRAFT [4], which employs Non-Negative
Matrix Factorization (NMF) to deconstruct target features
and iteratively clarify ambiguous concepts from lower-layer
features. Model-agnostic methods also play a pivotal role,
with LIME [16] introducing a local explanation technique
that assesses the influence of feature presence or absence
on model results through input perturbation. In contrast,
SHAP [13] utilizes Shapley values from game theory to pro-
vide individual prediction explanations on a global scale.
Despite their utility, these methods have significant limita-
tions, primarily in providing explanations that may not align
with model predictions. This discordance raises concerns
about the reliability of explanations, as it becomes challeng-
ing to discern whether inaccuracies lie in the explanation or
stem from reliance on spurious data in predicting outcomes.

Inherently Interpretable Methods Inherently inter-
pretable methods, which learn explanations during the train-
ing process, result in outcomes more closely aligned with
the model’s decision-making process due to these integrated
explanations being more faithful and reliable. The Concept
Bottleneck Model (CBM) [9] exemplifies this by mapping
images to features that represent the presence or absence of
predefined concepts, subsequently utilizing these concepts
for decision-making. However, this method’s reliance on
predefined concept labels restricts its ability to discriminate
concepts not explicitly provided in the data.

Alternatively, ProtoPNet [1] learns class-specific proto-
types, akin to concepts, with a set number per class. It clas-
sifies by calculating responses from each class’s prototype
and summarizing these responses using a fully connected
layer. Explanations are derived as a weighted sum of all pro-
totypes. Deformable ProtoPNet [2] enhances this approach
by training the prototypes to be orthogonal, aiding in clar-
ity of interpretation. Similarly, TesNet [29] incorporates an
additional module to separate prototypes on the Grassmann
manifold.

To optimize the number of prototypes, ProtoPShare [18]
merges similar prototypes, while ProtoPool [19] adopts
a soft-assignment approach for prototype sharing across
classes. ProtoTree [14] utilizes a binary decision tree, al-
lowing prototypes to be shared across all classes, thereby
reducing their number. This process resembles traditional

decision trees, where image features traverse the tree, ag-
gregating logits at leaf nodes and considering probabilities
from the root to the leaves. More recent approaches, such as
PIP-Net [15], strive for prototypes that align more closely
with human perception by bridging the gap between latent
and pixel spaces. ST-ProtoPNet [28] introduces support
prototypes that position near the classification boundary to
enhance discriminative capabilities.

Despite these methods significantly enhancing explana-
tions for black-box models, their focus on high-level fea-
tures leaves the behaviors of low and mid-layer features
largely opaque. Our proposed MCPNet addresses this gap
by providing explanations via multi-level concept proto-
types. Table 1 compares our MCPNet with four represen-
tative lines of approaches, which summarizes the difference
in multiple critical aspects.

3. Method
3.1. Overall Framework

As motivated previously, in this paper we introduce
an inherently interpretable framework named MCPNet
to reveal multi-level global concepts throughout different
model layers. This marks a departure from previous ap-
proaches which usually provide only single-level explana-
tions. Moreover, our framework has the capability to clas-
sify images via adopting the distribution of multi-level con-
cept prototypes instead of relying on the typical fully con-
nected (FC) classifier, in which it ensures the model to con-
sider not only the features from the last layer but also from
mid- and even low-layers, thus providing better general-
izability towards unseen categories. In the following we
sequentially detail the main components and important de-
signs of our proposed MCPNet framework.

3.2. Centered Kernel Alignment (CKA) Loss

Given a feature map Fl ∈ RB×Cl×Hl×Wl of dimen-
sion (width Hl× height Wl× channels Cl) and batch size
B obtained from the l-th layer of a deep model, as the
general architecture design of deep neural networks by na-
ture extracts different characteristics of the input data into
the features placed along the channels (i.e. each channel
stands for a certain data characteristic), we now would like
to partition the feature map Fl along the channel dimen-
sion into several distinct segments where each segment of
size RB×C′

l×Hl×Wl groups C ′
l channels to form a more

semantic-meaningful component (representing a specific
combination of data characteristics), termed as “concept”.
These concepts in results serve as a bridge/proxy to provide
more interpretable explanations upon the input data samples
towards their corresponding categories/classes. Moreover,
the concepts ideally should be diverse and discriminative
from each other in order to describe the data from differ-
ent aspects, forming a more concise but representative basis
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Figure 2. The overall workflow of our MCPNet. To classify the image, we first calculate the class-specific MCP distribution (yellow
box) by averaging the MCP distributions from instances of specific classes in the training set (red box). Utilizing the class-specific MCP
distribution, images are classified by identifying the most similar class via calculating the Jensen-Shannon (JS) divergence (brown box).

of interpretation. To this end, we introduce Centered Ker-
nel Alignment (CKA) loss LCKA, which leverages CKA
metric [10] to measure the similarity among segments and
its minimization brings the distinct concepts (i.e. the con-
cepts are learned to be dissimilar and independent from each
other).

Basically, given two concept segments X and Y , their
CKA similarity CKA(X ,Y) is defined as:

CKA(X ,Y) =
H(X ,Y)√

H(X ,Y)
√
H(YY)

, (1)

where operator H stands for the unbiased Hilbert-Schmidt
independence criterion proposed by [23] in which H(X ,Y)
is formulated as:

1

B(B − 3)
(tr(K̃L̃) +

1T K̃11T L̃1

(B − 1)(B − 2)
− 2

B − 2
1T K̃L̃1)

(2)
where K̃ and L̃ are stemmed from the kernerl matrices of
X and Y respectively with having K̃i,j = (1 − 1i=j)Kij

and L̃i,j = (1− 1i=j)Lij . Noting that here the variable B
stands for the number of samples involved into the computa-
tion of H, which is exactly the batch size in our application.

Based on the CKA similarities between segments from
Fl, the CKA loss LCKA of the l-th layer is defined as:

LCKA(Sl) =
2

Ml(Ml − 1)

Ml∑
i=1

Ml∑
j=i

CKA(Sl,i,Sl,i), (3)
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Figure 3. Visualization of CKA similarities for each pair of seg-
ments from different model layers (model backbone: ResNet50;
dataset: AWA2 [30]). The average for the upper triangular portion
of each CKA similarity matrix is also provided accordingly. With
apply our proposed CKA loss, the similarities between segments
are clearly reduced, i.e. leading to more distinct concept segments.

where Sl,i and Ml = Cl/C
′
l denotes the i-th concept seg-

ment and the total number of segments of l-th layer respec-
tively. In Figure 3 we visualize the CKA similarities be-
tween segments for different layers, highlighting the notice-
able decrease in terms of CKA similarity brought by apply-
ing our proposed CKA loss.

3.3. Multi-level Concept Prototype Extraction

For a single input data (i.e. B = 1), each concept seg-
ment Sl,i in the l-th layer contains Hl · Wl feature vectors
of length C ′

l . When it comes to the entire dataset of hav-
ing N data samples, there will be in total N · Hl · Wl fea-
ture vectors for Sl,i, and every feature vector serves as an



instance of the corresponding semantic behind the concept
segment. In order to better outline such semantic globally
behind Sl,i, we propose to identify the principal direction
of all these feature vectors (i.e. analogous to the common
ground among the feature vectors) by using the weighted
Principal Component Analysis technique (where we weight
each feature vector according to its L2-norm to account for
the degree of importance).

The resultant principal direction (i.e. the eigenvector
corresponding to the largest eigenvalue of the covariance
matrix built upon N · Hl · Wl feature vectors of length C ′

l

for Sl,i) is termed as the concept prototype. Please note
that the concept prototype is globally defined and shared
within the entire dataset, while the concept segments in turn
act more likely as the sample-wise or batch-wise instantia-
tion of the corresponding semantic. Hence, we can further
compute the prototype response of a concept segment Sl,i

(which is based on the input of a single sample or a batch
of samples) with respect to the corresponding concept pro-
totype Pl,i, following a simple procedure: Firstly the re-
sponse map which records the cosine similarities of Pl,i

at each position on Sl,i is computed, then the max-pooling
is applied on the response map to obtain the prototype re-
sponse. Such prototype response stands for the degree of
agreement between concept segments and the concept pro-
totype, hence signifies how likely the input sample(s) con-
tributing to the concept segments would own the particular
semantic of the target concept prototype. It is worth not-
ing that, while the numerical range of original prototype
response is [−1.0, 1.0], we linearly map it to the range of
[0.0, 1.0] for better usage in the later computation.

The extraction of concept prototypes is thoroughly ap-
plied on all the concept segments from all the model lay-
ers, leading to multi-level concept prototypes, in which it
is one of the key factors differentiating our MCPNet from
the others (where most previous works only provide single-
level explanation, typically extracted from the last layer).

3.4. Class-aware Concept Distribution Loss
From cognitive perspective, the samples belonging to the

same class ideally should have similar combination of con-
cepts. Hence, we build upon such idea to propose the Class-
aware Concept Distribution (CCD) loss, which encourages
the samples of the same class to have similar distribution
of concept prototypes (i.e. the distribution upon the pro-
totype responses with respect to all the multi-level concept
prototypes) while enlarging the distribution distance across
different classes. In other words, such loss helps to real-
ize the classification via leveraging our Multi-level Con-
cept Prototype distribution (named as MCP distribution),
while forsaking typical fully-connected-layer-based classi-
fier with even providing better interpretability.

Basically, with denoting the MCP distribution of an input
sample/image xi as Di and the class label of xi as y(xi), we

first compute the class-specific centroid MCP distribution
Dc via averaging Di of all the samples xi belonging to the
same class c = y(xi). Then our CCD loss is defined as:

LCCD(xi) = J(Di, D
c=y(xi))

+
∑

c′ ̸=y(xi)

max(m− J(Di, D
c′
), 0), (4)

where J stands for the Jensen-Shannon divergence (a com-
mon metric used for evaluating the distance between distri-
butions), while m is the margin such that J(Di, D

c′
) con-

tributes to the loss only if it is smaller than m, and it helps
avoiding a collapsed solution (which is a typical technique
used the contrastive loss of metric learning).

The overall objective function L to train our model is
basically the combination of both CKA and CCD losses:

L =

L∑
l=1

LCKA(Sl) + λCCD

∑
xi∈X

LCCD(xi), (5)

where L denotes the number of layers in our model, X de-
notes the training dataset, and λCCD denotes the weight
of CCD loss. It is worth noting that all the concept proto-
types and all the class-specific centroid MCP distributions
are updated after every epoch on the training set to reflect
the newest features learned by the model.

3.5. Multi-Level Concept Prototypes Classifier

As mentioned in the previous subsection, our MCPNet
does not require the FC layer attached to the model end for
performing classification. Instead, our MCPNet is able to
classify the input sample xi simply via searching for the
closest class-specific centroid MCP distribution to Di:

ỹ(xi) = argmin
c

J(Di, D
c). (6)

4. Experiments
Datasets. Three datasets are adopted for our evaluation:
• AWA2 [30] is dataset which was originally proposed for

evaluating the zero-shot classification task. It consists of
37322 images with 50 categories, each is additionally an-
notated with 85 attributes. We split a quarter of the entire
dataset as the test set, while the rest is taken as the train-
ing set. Please note that the attribute labels are not used
in our model training.

• Caltech101 [11] is a classification dataset that has 9146
images from 101 distinct categories, in which each class
has roughly 40 to 800 images. We randomly draw a quar-
ter of images of each class to form the test set, while the
rest becomes the training set.

• CUB 200 2011 [26] is a fine-grained image classifica-
tion dataset that contains 11788 images of 200 bird
classes/species (and additional has 312 binary labels of



Backbone Methods Explanation Accuracy
AWA2 Caltech101 CUB 200 2011

ResNet50

Baseline N/A 94.92% 94.21% 77.94%
ProtoTree [14] Single-Scale 90.60% 72.19% 18.00%†

Deformable ProtoPNet [2] Single-Scale 85.51% 93.88% 73.42%†

ST-ProtoPNet [28] Single-Scale 93.76% 95.95% 76.34%†

PIP-Net [15] Single-Scale 85.99% 87.86% 70.99%†

MCPNet (Ours) Multi-Scale 93.92% 93.88% 80.15%

Inception V3

Baseline N/A 95.47% 96.42% 79.43%
ProtoTree [14] Single-Scale 92.29% 86.02% 13.03%

Deformable ProtoPNet [2] Single-Scale 92.68% 97.22% 72.99%
ST-ProtoPNet [28] Single-Scale 93.60% 96.99% 75.25%

PIP-Net [15] Single-Scale 43.82% 45.04% 6.76%
MCPNet (Ours) Multi-Scale 94.62% 95.76% 78.94%

ConvNeXt-tiny

Baseline N/A 96.55% 96.56% 84.55%
ProtoTree [14] Single-Scale 94.00% 78.82% 21.57%

Deformable ProtoPNet [2] Single-Scale 91.94% 93.65% 35.05%
ST-ProtoPNet [28] Single-Scale 94.22% 97.17% 81.84%

PIP-Net [15] Single-Scale 93.80% 96.61% 82.74%
MCPNet (Ours) Multi-Scale 95.61% 95.95% 83.45%

Table 2. The classification performance evaluation on AWA2, Caltech101, and CUB 200 2011 benchmarks with different backbone
choices. The baseline represents the typical classification without any explanation capability. †The discrepancies with respect to the
accuracies reported in their original papers are caused by using different pretrained weights (here we adopt the pertaining on ImageNet).

attributes), where 5,994 images are used for training
while the other 5,794 images are for testing. Please note
that, we only use the training images and correspond-
ing class/species labels for performing our model training
without using the additional attribute annotations.

4.1. Implementation Details

Layer Selections. We adopt three off-the-shelf models,
ResNet50 [6], and Inception v3 [25], ConvNeXt-tiny [12]
to do the experiments. The layers selected for each model
are shown in the supplementary.

Training hyper-parameters. We conduct training for
ResNet50 and InceptionNet V3 over 100 epochs, using
Adam optimization with a weight decay set to 1e-4. The
learning rate follows a decay rate of 10 every 40 epochs,
beginning at 1e-4. For ConvNeXt-tiny, we utilized the of-
ficial training code with 100 epochs. The dimension for
concept segments, denoted as C ′, is set to 32 for ResNet50
and InceptionNet v3 and 16 for ConvNeXt-tiny. The Class-
aware Concept Distribution (CCD) loss margin is set to 0.01
for ResNet50 and InceptionNet v3 and 0.05 for ConvNeXt-
tiny. As the original numerical range of CCD loss is way
smaller than that of CKA loss, we set λCCD to 100 to bal-
ance between these two loss functions.

4.2. Quantitative Results

This section explains how MCPNet provides explana-
tions at multiple levels without compromising performance,

comparing to the typical training paradigm coupled with a
fully connected (FC) classifier. Basically, the conventional
approach trains the model using cross-entropy loss, focus-
ing the model’s learning on features in the final layer for im-
age differentiation – a technique widely used in prior meth-
ods. In contrast, MCPNet classifies images based on the
distribution formed by the response of multi-level concept
prototypes, considering concepts of various scales.

In Table 2, we present the primary quantitative out-
comes across three classification datasets, comparing MCP-
Net with the baseline and other methods in the ProtoPNet
series. MCPNet matches or surpasses their performance
by categorizing images through alignment with the nearest
class-specific MCP distribution and delivers explanations
across multiple levels. Conversely, alternative methods of-
fer explanations at a single scale, primarily concentrating
on the model’s final layer to produce object-centric expla-
nations. The findings further demonstrate MCPNet’s ver-
satility, as it can be integrated into diverse models to yield
robust performance and multi-level explanations.

5-shot Classification. In the 5-shot experiments, the
datasets are divided into seen and unseen sets. The model is
trained on the seen set, from which we derive global concept
prototypes. Within the unseen set, 5 images from each cate-
gory are randomly selected to create the class-specific MCP
distributions for classes in the unseen set. The remaining
images are utilized to assess the model’s efficacy in 5-shot
classification.
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Figure 4. Concept prototype examples from MCPNet and PIP-Net [15]. We show the top-5 responses for the sampled concept prototypes.
For MCPNet, the concept prototype from various layers generates explanations in different scales, e.g. color-like explanations in low-layer
and object-like explanations in high-layer. On the contrary, PIP-Net [15] only provides single-scale patch-level explanations.

Dataset Method Accuracy

AWA2

Baseline 60.55%
ProtoTree [14] 33.68%

Deformable ProtoPNet [2] 19.71%
ST-ProtoPNet [28] 30.15%

PIP-Net [15] 26.17%
MCPNet (Ours) 73.79%

Table 3. The 5-shot classification performance with ResNet50
backbone on AWA2 datasets. The baseline represents the typi-
cal classification without any explanation capability.

We evaluate the accuracy of our approach against the
baseline and methods from the ProtoPNet series. For the
baseline, we apply the same classification mechanism used
in MCPNet to images in the unseen set. For the ProtoPNet
series methods, the model was trained on the seen set using
default settings, followed by a single epoch of training on
the images which are arranged similarly to those used for
creating the MCPNet’s class MCP distribution. This one-
epoch training is chosen to align with MCPNet for its pro-
cessing the images in a single pass.

In Table 3, we demonstrate our method achieves com-
petitive outcomes in the 5-shot experiments. This indicates
that the concepts we extract are sufficiently generalized to
discern between classes, including those not involved in the
concept extraction process.

4.3. Qualitative Results.

In this section, we introduce how we recognize the mean-
ing of concept prototypes and how MCPNet explains the
images or even the classes with the MCP distributions.
Concept Prototype meanings. To intuitively grasp each
concept prototype’s essence, we visually depict them
through images that elicit the highest top-5 responses for
a given concept within the dataset. By overlaying these im-

ages with the response map described in Section 3.3, the
visible regions help us identify the features highlighted by
the concept prototype. Our findings are contrasted with
those from PIP-Net [15] in Figure 4 – unlike PIP-Net [15]
where the explanations are typically tied to specific object
parts, MCPNet offers explanations on multiple levels de-
rived from various layers of the model. These explanations
range from high-level concepts, such as parts of an object,
to low-level attributes, such as color. Additional examples
are provided in Figure 5 and in the supplementary material.

MCP distribution explanations. Here we provide expla-
nation upon how our MCP distribution is used to interpret
the model’s classification of images. For each image, we
obtain the corresponding MCP distribution by evaluating
the interactions between the extracted concept prototype
and its related concept segment, which shows the concepts
contained in the image. As depicted in Figure 1, we de-
termine the image’s classification by comparing its distri-
bution to the class-specific MCP distribution. This process
involves identifying concept responses that show a high de-
gree of similarity to a particular category, suggesting that
the image’s concepts resemble those of the target category.
This forms the basis of our explanation for why an image is
categorized into a specific class. For each class, the class-
specific MCP distribution – which averages the MCP dis-
tributions of images within that class – highlights prevalent
concept responses, with higher responses denoting concepts
frequently associated with that class.

4.4. Ablation Study
The effect of the different losses. Table 4 shows the per-
formance impacts of including or excluding each proposed
loss. While the CKA loss is dedicated to disentangling con-
cept segments, its singular use results in performance that
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Figure 5. The sampled multi-level concept prototypes learnt by our proposed MCPNet. (Backbone : ResNet50)
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Figure 6. Showing the multi-level concept prototypes learnt by
MCPNet variant with only the CCD loss, in which there are more
duplicate prototypes than the ones learnt by the full MCPNet (i.e.
the CKA loss is also adopted).

CKA loss CCD loss Accuracy

✓ 44.85%
✓ 94.21%

✓ ✓ 93.88%

Table 4. Ablation study on the effect of CKA loss and CCD loss.
It shows the MCPNet classification accuracy on Caltech101 with
ResNet50 backbone.

falls below the baseline, as it lacks the capability to classify
images effectively. The integration of the proposed CCD
loss, on the other hand, leads to an improvement in accu-
racy over the baseline. However, without the CKA loss,
there is an observed increase in similarity among concept
segments, leading to duplicated concept prototypes, a phe-
nomenon depicted in Figure 6. The combined application
of CCD and CKA losses outperforms the exclusive use of
CCD loss, achieving more distinct concept prototypes with
only a slight compromise in performance.

The effect of channel size. Table 5 presents the im-
pact of different channel sizes on the performance of our

Dataset Channel Accuracy

AWA2
32 93.92%
16 93.95%
8 93.58%

Caltech101
32 93.88%
16 93.79%
8 93.51%

CUB 200 2011
32 80.15%
16 80.19%
8 81.22%

Table 5. The ablation study with different channel sizes of the
concept segments (Backbone: ResNet50).

model, with a comparison among 32, 16, and 8 channels.
The model with 32 channels offers half the concept seg-
ments of the 16-channel setup and a quarter of those in the
8-channel configuration. On coarse-grained datasets like
AWA2 and Caltech101, the performances of models with
32 and 8 channels are comparable, indicating that the num-
ber of concept segments with 32 channels suffice for cap-
turing class distinctions in these scenarios. In contrast, the
8-channel setup shows enhanced performance on the fine-
grained CUB dataset, likely attributable to the higher num-
ber of concept segments that better capture the nuanced dif-
ferences within the dataset.

5. Conclusion
In this paper, we propose Multi-Level Concept Prototype
Classifier (MCPNet), an inherently interpretable method
which learns multi-layer concept prototypes without re-
liance on predefined concept labels. In addition to having
more comprehensive multi-level model explanations, our
MCPNet is experimentally shown to provide a classification
paradigm which is able to achieve comparable performance
as the typical fully-connected-layer-based classifier while
achieving better generalizability upon unseen classes.
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Thomas Serre. Craft: Concept recursive activation factoriza-
tion for explainability. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2711–2721, 2023. 1, 2, 3

[5] Jindong Gu, Rui Zhao, and Volker Tresp. Semantics for
global and local interpretation of deep convolutional neural
networks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2021. 1

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 6

[7] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,
James Wexler, Fernanda Viegas, et al. Interpretability be-
yond feature attribution: Quantitative testing with concept
activation vectors (tcav). In International conference on ma-
chine learning, pages 2668–2677. PMLR, 2018. 1, 2, 3

[8] Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung
Do, and Tara Taghavi. Grounding counterfactual explanation
of image classifiers to textual concept space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10942–10950, 2023.

[9] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy Liang.
Concept bottleneck models. In International conference on
machine learning, pages 5338–5348. PMLR, 2020. 1, 2, 3

[10] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-
tations revisited. In International conference on machine
learning, pages 3519–3529. PMLR, 2019. 4

[11] Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and
Pietro Perona. Caltech 101, 2022. 5

[12] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,
2022. 6

[13] Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. Advances in neural informa-
tion processing systems, 30, 2017. 1, 2, 3

[14] Meike Nauta, Ron Van Bree, and Christin Seifert. Neural
prototype trees for interpretable fine-grained image recogni-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14933–14943,
2021. 2, 3, 6, 7

[15] Meike Nauta, Jörg Schlötterer, Maurice van Keulen, and
Christin Seifert. Pip-net: Patch-based intuitive prototypes
for interpretable image classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2744–2753, 2023. 1, 2, 3, 6, 7

[16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
” why should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
pages 1135–1144, 2016. 1, 2, 3

[17] Cynthia Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature machine intelligence, 1(5):206–215,
2019. 2

[18] Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz
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