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Here, we provide 1) the details of training data prepara-
tion, 2) methodology of the explicit kernel estimator used
in our ablation study for both the explicit and combine ex-
periments, and 3) more qualitative results.

1. Training Data Preparation
To train our degradation and restoration models, we need

to generate LR-HR paired data. For the DIV2K dataset with
unknown degradation, the LR-HR paired images have been
provided, and we just randomly crop HR patches of res-
olution 256 × 256 and their corresponding LR patches of
resolution 64× 64 during training.

For the CelebA-HQ dataset, which only consists of HR
images, we generate LR images by performing convolu-
tion with random anti-isotropic Gaussian kernels, where the
stride is equal to the degradation scale. Following Wang et
al. [2], we diversify these kernels by sampling some ad-
ditional parameters. Specifically, the filter size is sampled
from the odd numbers in the range of [7, 21]. The weights
are determined by two eigenvalues λ1 and λ2 of a covari-
ance matrix, both of which are sampled from a uniform dis-
tribution U(0.2, 4). We also apply rotation to these kernels
with an angle θ ∼ U(0, π).

2. Explicit Kernel Estimator
Both of our explicit and combine approaches involve

integrating an explicit kernel estimator into DDNM [3].
Given a degraded image y, the estimator E predicts the cor-
responding degradation kernel. Following the architecture
proposed by Lian et al. [1], we train the estimator using the
ground truth kernel as supervision. The training objective
aims to minimize the L1 loss between the estimated kernel
and the ground truth kernel k as

Lk = ∥k− E(y; θe)∥1. (1)

After obtaining the predicted kernel, we turn the convo-
lution with this kernel into a matrix multiplication with a

matrix A. Furthermore, we can compute its pseudo-inverse
A† using SVD, and directly plug A and A† into DDNM.
However, this explicit kernel estimator assumes the degra-
dation is a convolution with kernel, which might lead to
over-simplification. Therefore, our implicit method shows
better performance than explicit and combine methods in
the ablation study.

Note that we do not have ground-truth kernels for the
DIV2K dataset with unknown degradation, which are nec-
essary to train the estimator E . As a result, we adopt the
pipeline used for generating training data to sample ker-
nels, and use them to not only generate LR-HR pairs but
also train the estimator E .

3. More Qualitative Results
We provide more qualitative results on the ImageNet-Val

and CelebA-Val datasets in Figs. 1–3.
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Figure 1. Qualitative comparison of 4× upsampling on ImageNet-Val.
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Figure 2. Qualitative comparison of 4× upsampling on CelebA-Val.
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Figure 3. Qualitative comparison of 8× upsampling on CelebA-Val.
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