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Abstract

Recently, diffusion-based blind super-resolution (SR)
methods have shown great ability to generate high-
resolution images with abundant high-frequency detail, but
the detail is often achieved at the expense of fidelity. Mean-
while, another line of research focusing on rectifying the re-
verse process of diffusion models (i.e., diffusion guidance),
has demonstrated the power to generate high-fidelity results
for non-blind SR. However, these methods rely on known
degradation kernels, making them difficult to apply to blind
SR. To address these issues, we introduce degradation-
aware models that can be integrated into the diffusion guid-
ance framework, eliminating the need to know degradation
kernels. Additionally, we propose two novel techniques—
input perturbation and guidance scalar—to further improve
our performance. Extensive experimental results show that
our proposed method has superior performance over state-
of-the-art methods on blind SR benchmarks.

1. Introduction

Single image blind super-resolution (blind-SR) aims to
recover a high-resolution (HR) image from a low-resolution
(LR) observation which undergoes an unknown degrada-
tion process, where the loss of high-frequency detail dur-
ing the unknown degradation primarily leads to the inher-
ent challenge in the task of blind-SR. Another well-known
challenge comes from having multiple potential solutions
of high-resolution images (i.e., multiple HR images would
yield the identical LR images), and thus making the ill-
posed nature of super-resolution problem. Although the
renaissance of deep learning techniques in recent decade
brings the magic leap to the task of super-resolution, es-
pecially the common practice stemmed from regression-
based methods [15, 18] excels in fidelity, they often suffer
from insufficient high-frequency image detail. This defi-
ciency highlights the need for generative models, where the
essence lies in drawing high-frequency detail from the im-
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age prior distribution captured by generative models. Previ-
ous approaches have turned to Generative Adversarial Net-
works (GANs) [11,31,38] for such purpose, yet there comes
other issues such as unstable training or mode collapse.

With the recent advances in diffusion-based genera-
tive models, some works [19, 26, 29, 34-36] have utilized
pretrained diffusion models to address the blind super-
resolution problem for better training stability, image syn-
thesis quality, and more flexible controls of generative pro-
cedure. Specifically, some works [19, 29, 36] propose to
directly guide the diffusion sampling with LR input, while
some works [34, 35] use additional prompts for guidance.
Though these methods can produce high-quality images,
they often fall short in terms of fidelity. Several non-blind
diffusion-based image restoration methods [14,32] have at-
tempted to address this challenge, demonstrating the ability
to produce high-fidelity results. However, these methods
have limitations in that the degradation operator must be
both known and linear, whereas degradation operators are
typically unknown in real-world scenarios.

In this work, we adopt the Denoising Diffusion Null-
Space Model (DDNM) [32], a representative non-blind
diffusion-based image restoration method, as our backbone
framework. In order to eliminate the need to know degra-
dation kernels in DDNM, we introduce several modifica-
tions. First, we use a deep neural network to approximate
the degradation process, eliminating the need to provide the
degradation operator. This network is called degradation
model. The degradation model not only addresses unknown
degradation kernels, but also potentially overcomes the lim-
itation of kernel linearity, enhancing the versatility and ef-
fectiveness of our proposed method. Second, for the inverse
matrix of the degradation operator in DDNM (noting that
since degradation operator in DDNM is represented as ma-
trix, its inverse is thus related to the degradation removal),
we replace it with a restoration model. During the sampling
process, the restoration model aims to recover an HR im-
age from an LR image generated by our degradation model
at each timestep. Last, to improve performance, both of
the degradation model and the restoration model are condi-
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tioned on the same degradation representations, which are
extracted from the LR input by an encoder model. As a
result, we call these two models degradation-aware models.

Moreover, we propose two additional techniques to en-
hance the capacity and performance of our method against
the prediction errors upon the degradation: 1) input pertur-
bation is introduced to reduce the performance drops as-
sociated with the inaccuracies in degradation estimation,
and thus contributing to model stability; 2) guidance scalar
is introduced to facilitate better integration between the
restoration model and the pretrained diffusion model as
combining the restoration model with diffusion sampling
guidance could alter the data distribution predefined by the
diffusion model, which leads to issues such as hallucina-
tions and artifacts. With all the above-mentioned compo-
nents, we present a robust method for the task of diffusion-
based blind super-resolution, and extensive experiments
demonstrate that our method has the capability to generate
realistic details without sacrificing the fidelity. Compared
to other state-of-the-art generative model-based blind-SR
methods, our approach excels in both fidelity and percep-
tual quality.

Our contributions are summarized as follows:

* We propose degradation-aware models, which con-
sists of a degradation model and a restoration model.
With these two models, we eliminate the need to know
degradation kernels in DDNM [32], making it applica-
ble to blind-SR.

e We propose input perturbation and guidance scalar,
which contribute to make our method more tolerant to-
wards the inaccuracies in degradation estimation.

» Extensive experiments demonstrate that our method
has superior performance over other state-of-the-art
generative model-based blind-SR methods, in terms of
both fidelity and perceptual quality.

2. Related Works
2.1. Image Super-Resolution

Image super-resolution (SR) aims to restore a high-
resolution (HR) image from its degraded low-resolution
(LR) observation. Early methods [3, &, 9, 18] usually as-
sume a predefined degradation operator such as bicubic
downsampling. These methods often fail in real-world data
while the degradation assumption is not accurate. There-
fore, recent works have shifted their focus towards blind-
SR, where the degradation is unknown. Some methods
[15,22,30,37,41] use unsupervised learning techniques to
learn degradation models, while others [21,31,38,40] aim
to synthesize LR-HR image pairs that resemble real-world
data. However, capturing diverse real-world degradations
remains challenging.

2.2. Diffusion-based Image Super-Resolution

Recent advances in diffusion models [13,24,26,28] have
shown promise in image synthesis tasks. Many image
restoration (IR) methods [5, 10, 14, 32] use diffusion mod-
els as an image prior. Some non-blind IR methods [14,32]
demonstrate the ability to produce high-fidelity results with
known degradation operators. Some works [5, 10] extend
non-blind IR to blind IR by estimating the degradation op-
erator, and thus knowing the degradation operator becomes
unnecessary. However, all of these methods require the
degradation operator to be linear, which should be over-
simplified in real-world scenarios.

Most diffusion-based blind super-resolution methods [4,

,29,34-36] do not need a known or estimated degrada-
tion operator. Instead, they usually use conditioning signals
to guide diffusion models during sampling. Stable-SR [29]
and Diff-BIR [19] utilize only the low-resolution observa-
tion as the conditioning signal. DASR [35] and SeeSR [34]
further incorporate semantic information as an extra con-
ditioning signal. All of these methods have shown highly
promising capabilities in generating realistic image detail.
However, they often fall short in terms of fidelity due to
the inherent diffusion hallucination. Achieving high-fidelity
results remains a significant challenge for most diffusion-
based blind-SR methods.

3. Preliminaries
3.1. Diffusion Models

We follow the diffusion model defined in DDPM [13].
Given a natural image xo ~ ¢(x), DDPM uses a forward
Markovian diffusion process ¢(x:|x:—1) to repeatedly add
Gaussian noise on it until ¢ = 7" by

Q(Xt|Xt—1) = N(Xt; vV1i- /tht—lvﬁt:[)v (D

where (3, is the pre-defined variance at timestep ¢. Note that
if T' is sufficiently large (e.g., 1000), we can have xp ~
N(0,1I). Based on the property of Markov chain, for any
intermediate timestep ¢t € {1,2,...,T}, the corresponding
noisy distribution has an analytic form:

q(x¢x0) = N (x¢; Vauxo, (1 — a)I)
= Vaixo + V1 — e, (2)

where a; = Hf(l — B;) and € ~ AN(0,I). The reverse
process aims at yielding the previous state x;_1 from x;
using the posterior distribution:

p(Xt71|Xt7X0\t) = N(Xt—l;ﬂt(xnxo\t)»afl)y (3)
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where eg(x¢, t) is the estimated noise € at timestep ¢. By it-
eratively sampling x; 1 from p(x;_1|x¢, Xo|¢), DDPM can
generate realistic image xg ~ ¢(x) from random noise
X7 ~ N(O, I)

3.2. Denoising Diffusion Null-Space Model

Denoising Diffusion Null-Space Model (DDNM) [32]
offers a zero-shot framework for solving a range of arbitrary
linear inverse problems. This innovative approach lever-
ages a pre-trained off-the-shelf diffusion model as a gen-
erative prior, requiring no additional training or modifica-
tions to existing networks. By focusing solely on refining
the null-space contents during the reverse diffusion process,
DDNM has the capability to generate diverse results that
satisfy both fidelity and perceptual quality.

Given a degraded image y € R%*! and a degradation
operator A € RI*D  we could have y = Ax, where
x € RP*1 is the ground-truth image. DDNM applies this
relationship to rectify the x|, in Eq. (6) as

Xt —V ]- - at€9(xtat)) 9 (6)

Xo|t =

Xope = Aly + (I— ATA)x, (N

where Xg|; can be seen as the composition of x; and y
through range-null space decomposition. Then, they substi-
tute the x|, in Eq. (4) by this rectified version and sample
x;_1 using Eq. (3).

The strength of DDNM lies in its ability to utilize the de-
noising diffusion model to fill in the null-space information,
ensuring that the output adheres to the notion of Realness.
This adherence is particularly effective in scenarios where
the degradation is linear and known, leading to perfect Con-
sistency due to the natural properties of the Range-Null
space. However, a notable limitation arises when the degra-
dation operator A must be both known and linear, which is
often not aligned with the complexities of real-world appli-
cations where degradations are typically unknown.

4. Method

We follow the Denoising Diffusion Null-Space Model
(DDNM) [32] framework, considering its capability to gen-
erate high-quality images while preserving high fidelity. To
run the DDNM algorithm, the first step involves obtaining

the degradation operator A and its corresponding pseudo
inverse Af. We investigate replacing the degradation op-
erator A and its corresponding pseudo-inverse Af with a
DNN-based degradation model and a DNN-based restora-
tion model, both of which are in a more general form. The
purpose of the degradation model is to imitate the degrada-
tion process. During sampling, the restoration model will
recover an HR image from an LR image generated by the
degradation model at each timestep. Furthermore, to im-
prove performance, both of the degradation model and the
restoration model will be conditioned on the same degra-
dation representations extracted from the LR input by an
encoder model. In Sec. 4.1, we give a detailed formulation
for all of these models. In Sec. 4.2, we present input pertur-
bation, which aims to mitigate performance drops caused
by inaccuracies in degradation estimation. In Sec. 4.3, we
present guidance scalar, which aims to facilitate better inte-
gration between the restoration model and DDNM to avoid
hallucinations and artifacts.

4.1. Degradation-Aware Models

Li et al. [15] introduce a method to encode latent degra-
dation representations from degraded images through the
joint learning of image degradation and restoration. The
process begins with employing an encoder E to encode
the degraded image y into the degradation representations
E(y). This representation is modeled as a multi-channel
latent map, capturing the 2D spatially varying degradation
in a latent space. Subsequently, the framework introduces
an image degradation model G4 and an image restoration
model G, to produce the degraded image y’ and the re-
stored image x’, respectively. The entire framework is
trained in an end-to-end manner.

In the context of our work, we replace the A and At
in DDNM with G4 and G,., with the aim of removing the
limitation on known and linear degradation kernels. If we
substitute the A and A in Eq. (7) by G4 and G,., we can
rewrite Eq. (7) as

Xojt = Xo|¢ + (G (¥) — Xgp1), ®)

where X/0|t = G(G4(xop¢)). Note that Eq. (8) can be inter-
preted as guiding x|, towards G.(y).

Notably, the supervision for G4 and G, in this frame-
work are separated, indicating the independence of these
two models. To ensure the pseudo-inverse relationship be-
tween G4 and G, we introduce a consistency loss during
the joint training of £, G4, G, as

L.=ly—GaG:(y, E(y)), E(y))l1- ©)

This additional loss term promotes stability and accelerates
convergence during training.

It is expected that replacing A and AT with neural net-
works could easily yield promising results. However, due
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Figure 1. Overview of our method. At each timestep ¢ of a reverse process, given the output of a pretrained diffusion model xq; and

a degraded image y, our degradation model G takes as input x|, and degradation representations E(y), and produces an estimated
degraded image y;. Then, our restoration model G- transforms y; into a restored image X{)‘t. We then rectify xq¢ to Xo¢ using xg‘t and
G (Yperturb)» Where Yperwrb s a perturbed degraded image, and add noise o€ to obtain x;—1 for the next timestep. Repeating this process,

we get the final restored image x¢ at timestep 0.

to the inherent estimation errors and the potential misalign-
ment between G4 and G, the Range-Null space decompo-
sition in DDNM may not perfectly hold. To address this is-
sue, we present input perturbation and guidance scalar in the
next sections. These refinements aim to further enhance the
synergy between DDNM and the degradation-aware mod-
els G4 and G, and thereby address potential issues caused
by degradation inconsistencies to improve the overall per-
formance of our method.

4.2. Input Perturbation

In Eq. (8), y represents the ground-truth degraded im-
age, which can be though of as obtained by y = G (x),
where Git is the ground-truth degradation operator and x is
the ground-truth high-resolution image. As a result, G,.(y)
and G (G4(xo|¢)) cooperate with different degradation op-
erators, and this mismatch could lead to failure cases. Intu-
itively, we attempt to perform a perturbation on y such that
it were also obtained by applying GG as the degradation op-
erator.

However, directly transforming y into G4(x) is infeasi-
ble due to the unknown ground-truth high-resolution image
x. To address this, we propose a perturbation approach us-
ing G4 and G, sequentially as

Yperturb = Gd(Gr (y)) (10)
If we substitute the y in Eq. (8) by ¥perturb, the degradation

operators in Eq. (8) become aligned. The choice of G, is
flexible and can be any off-the-shelf restoration model. In
our method, we can simply use the G- described in Sec. 4.1.
By applying yperwurs t0 Eq. (8), our method is expected to
become more robust.

4.3. Guidance Scalar

Note that G, (y) represents the output of a restoration
model. We observe that applying G, (y) to Eq. (8) sig-
nificantly accelerates the restoration process. This might
bring a negative effect on fidelity as the diffusion model
would take more time to hallucinate nonexistent contents.
To counteract this, it becomes imperative to reduce the in-
fluence of G, (y) in Eq. (8), slowing down the restoration
process to find an optimal balance. That is, we should be
able to control the restoration strength during the diffusion
process.

Recall that a characteristic of Eq. (8) is that it can be
viewed as guiding x|, towards G..(y). However, in this
case, the approximation error from G'4(xo;) will make the
update direction not correctly point towards G..(y). As a
result, how to determine an appropriate weighting of this
guidance is also important from this perspective.

To this end, we introduce a scalar & € [0, 1] to rewrite
Eq. (8) as

Xojt = Xo¢ + a(Gr(y) — Xgp1), (11)
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Metric | MsdiNet [15] BSRGAN [3§] Esl;eglz;N [31] LDL[16] DASR[17] FeMaSR[2] DDNM[32] LDM[26] ResShift[36] PASD[35] DiffBIR[19] SeeSR[34]  Ours
PSNR T 27.3933 22.0694 217337 23.1245  22.9961 20.2219 23.0214 21.7728 21.6208 227452 20.7647 21.8206  24.4681
SSIM 1 0.7276 0.5188 0.5179 0.5355 0.5369 0.4601 0.5459 0.5108 0.5101 0.5348 0.4422 0.5009  0.6208
LPIPS | 0.3486 0.3392 0.3486 0.3498 0.3682 0.3242 0.4814 0.3238 0.3097 0.412 0.4106 0.3399 0.3069
DISTS | 0.2558 0.2634 0.2681 0.2746 0.2824 0.2573 0.3182 0.2474 0.2543 0.2855 0.2866 0.2599 0.2393
FID | 91.772 92.604 91.3774 942726 102.948 94.2519 106.1603  83.9125 88.3887 90.0368 101.1623 86.939  82.2803

Table 1. Quantitative comparison of 4 x upsampling on DIV2K-Val. The best performance is in red while the second best is in blue.

4x 8%

Method PSNRT SSIMT LPIPS| DISTS|, FID| | PSNR1T SSIMT LPIPS| DISTS| FID|
DDNM [32] | 25.6975 0.8069  0.2074 0.1634  38.3359 | 20.1491 0.65 0.2469 0.2061  52.6844
SR3 [27] 26.0082 0.7392  0.1289 0.1209  19.4323 23.79 0.6995  0.1742 0.1505  25.6039
DiffBIR [19] | 22.9068 0.7098  0.1769 0.1793  66.8081 | 19.0676 0.5621 0.264 0.2102  67.7493
SeeSR [34] | 22.3977 0.7187  0.1808 0.1747  66.7649 | 19.2302 0.5827  0.2542 0.1974  67.6858
MsdiNet [15] | 28.8877  0.8317  0.2405 0.2048 59.757 | 25.2789  0.7527  0.3426 0.2555  76.6328
Ours 27.1513  0.7784  0.0913 0.1066  18.6689 | 22.8065 0.6893  0.1502 0.1399  23.9716

Table 2. Quantitative comparison on CelebA-Val. The best performance is in red while the second best is in blue.

where « is used to control the guidance weighting. Our
experiments show that setting o = 0.3 usually results in a
suitable fidelity without introducing too many hallucinated
contents.

5. Experiments

5.1. Experiment Settings

Data preparation. We evaluate our method on DIV2K un-
known degradation dataset [ | ] and CelebA-HQ dataset [20].
To train our degradation and restoration models, we gen-
erate LR-HR paired data as described in Supplementary.
For testing dataset, We use the official train, test split for
DIV2K, following SeeSR [34] we randomly crop 1K HR
patches (resolution: 256 x 256) and corresponding LR
patches (resolution: 64 x 64) from the DIV2K unknown
degradation validation set. We name this dataset as DIV2K-
Val. For the CelebA-HQ datasets, we randomly sample 1K
images as testing data and generate corresponding LR im-
ages using the same pipeline as that for generating training
data, naming this dataset CelebA-Val. We experiment on a
4x degradation scale on DIV2K-Val, as only 4x degraded
scale LR images are provided officially. For CelebA-Val, we
experiment with both 4 x and 8 x degraded scales.

Implementation details. For the DIV2K-Val testing set, we
use the 256 x 256 uncondition denoising model pretrained
on ImageNet by Dhariwal et al. [6]. For the CelebA-Val
testing set, we use 256 uncondition denoising model pre-
trained on CelebA release by Meng et al. [23]. For training
the degradation and restoration models, we follow the set-
tings of Li et al. [ 15] with the addition of a consistency loss,
where the learning rate of the consistency loss is set to 0.1 of
the pixel loss. During inference with the DDNM algorithm,
we use DDPM as the diffusion sampling formula and adopt

the spaced DDPM sampling [25] with 100 timesteps. The
guidance scalar is set to 0.3 throughout all the experiments.

Methods in comparison. We compare our method with
several state-of-the-art generative model-based blind super-
resolution (SR) methods. For the DIV2K-Val dataset, we
compare our approach with GAN-based methods, including
BSRGAN [38], Real-ESRGAN [31], LDL [16], FeMaSR
[2] and DASR [17]. We also compare with diffusion-based
methods, including LDM [26], ResShift [36], PASD [35],
DiffBIR [19] and SeeSR [34]. For the CelebA-Val dataset,
we compare with DiffBIR [19], SeeSR [34] and SR3 [27],
where SR3 is trained with the same training dataset we use
in this work. Since our method is strongly related to [32]
and MsdiNet [15], we also compare it with them. It is worth
mentioning that for blind-SR tasks, the ground truth degra-
dation kernel is unknown. Therefore, we use the default SR
settings in DDNM experiments, where A is set to average
pooling and AT is set to patch upsample. We use the pub-
licly released codes and pretrained models (except SR3) of
the competing methods for testing.

We employ several evaluation metrics to showcase our
model’s capability in terms of fidelity and perceptual qual-
ity. For fidelity measures, we use PSNR and SSIM [33].
For perceptual quality measures, we use LPIPS [39] and
DISTS [7]. Additionally, we use FID [12] to evaluate the
distance between the distributions of original and restored
images. These metrics provide a comprehensive evaluation
of our model’s performance.

5.2. Comparison with State-of-the-Arts

Quantitative comparisons. We first present the quantita-
tive comparison on DIV2K-Val in Tab. 1. The following
observations can be made: 1) Compared to DDNM, where
A is set to average pooling and At is set to patch up-

1241



LR LDM ResShift DiffBIR SeeSR MsdiNet Ours Ground Truth

Figure 2. Qualitative comparison of 4 x upsampling on DIV2K-Val. The magnified areas are indicated with red boxes.

Bicubic SR3 DiffBIR SeeSR DDNM MsdiNet Ours Groud Truth

Figure 3. Qualitative comparison of 4 x upsampling on CelebA-Val.

sample, our method excels in all metrics, showcasing the scalar. 2) Our method achieves the best scores on LPIPS,
effectiveness of G4, G,., input perturbation, and guidance DISTS, and FID metrics, indicating that we effectively uti-
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lize the capabilities of pretrained diffusion models to pro-
duce outputs with high perceptual quality. Additionally, we
achieve the best PSNR and SSIM scores compared to other
generative model-based blind-SR methods, successfully ad-
dressing the challenge of the fidelity weakness often asso-
ciated with generative model-based blind-SR methods. 3)
While MsdiNet has the best scores on fidelity metrics, it per-
forms poorly on perceptual measurements. This is due to its
DNN regression-based fidelity-focused learning objectives,
which fall short in striking a balance between fidelity and
perceptual quality.

We then present the quantitative comparison on CelebA-
Val in Tab. 2. Our method achieves the best scores in image
perceptual measurements. We believe our method strikes a
better balance between fidelity and perceptual quality com-
pared to DNN regression-based methods (MsdiNet) or other
generative model-based blind-SR methods. Overall, com-
pared with other generative-based blind-SR methods, our
method achieves better results not only in fidelity but also
in image perceptual measurements.

Qualitative comparisons. Fig. 2 presents qualitative com-
parisons between our method and other diffusion-based
blind-SR methods on DIV2K-Val dataset. ~LDM and
ResShift produce blurry results since they rely solely on
the condition of low-resolution observations. DiffBIR and
SeeSR can produce outputs with better image quality but
often generate incorrect textures due to hallucinations from
the diffusion prior. PASD results are blurry due to the chal-
lenge of correctly extracting semantic prompts from low-
resolution patches. In comparison, our method, with the
help of additional degradation and restoration models, can
produce outputs that excel in both fidelity and perceptual
quality.

Fig. 3 presents qualitative comparisons between our
method and other methods on the CelebA-Val dataset. SR3
generates excessive high-frequency information. DiffBIR
and SeeSR exhibit shortcomings in fidelity. DDNM, with-
out ground truth A AT, and MsdiNet struggle to generate
high-quality images. In contrast, our method, with the assis-
tance of degradation and restoration models, achieves high
fidelity and perceptual quality.

5.3. Ablation Studies

Effectiveness of input perturbation and guidance scalar.
To demonstrate the impact of input perturbation and the
guidance scalar, we conducted detailed ablation studies on
our proposed method using the DIV2K-Val dataset. The
results are presented quantitatively in Tab. 3 and qualita-
tively in Fig. 5, both of which highlight the impact of each
component. We compared the results of simply combin-
ing DDNM [32] with the extra degradation and restoration
models against incorporating input perturbation, the guid-
ance scalar, or both. In Tab. 3, the guidance scalar signifi-

Input Guidance
Perturbation Scalar PSNRT SSIMT  LPIPS |
v v 244681 0.6208  0.3069
- v 20.7559  0.5525 0.3544
v - 17.5641 0.3585  0.5147
- - 13.5803  0.2281 0.6269

Table 3. Ablation study on input perturbation and guidance

scalar.
Method | PSNR1 SSIM 1T LPIPS |
a=0.11]24.2709 0.5961 0.3892
a=0.3 ]| 244681 0.6208 0.3069
a=0.5| 22.387 0.5648 0.341
a=1.0 | 17.5641 0.3585 0.5147

Table 4. Ablation study on different values of guidance scalar.

cantly benefits both fidelity and perceptual quality, improv-
ing PSNR by 7.2 dB and LPIPS by 0.27. The input pertur-
bation also benefits fidelity and perceptual quality. Combin-
ing both techniques further amplifies these gains, highlight-
ing their effectiveness in improving our method’s perfor-
mance. Fig. 5 supports the same conclusion quantitatively.

Design choices of the degradation operator and its
pseudo-inverse. We conduct experiments using various ap-
proaches to model the degradation operator and its corre-
sponding pseudo-inverse. We train a DNN-based degrada-
tion model and a DNN-based restoration model to replace
the A and At in the DDNM [32] algorithm, providing a
more generalized approach to modeling the degradation and
its corresponding pseudo-inverse. In our ablation experi-
ments, we refer to this method as implicit, as the degrada-
tion representation is implicitly learned as a feature.
Another naive approach to modeling the degradation op-
erator and its pseudo-inverse is by defining A as a convolu-
tion with an explicit Gaussian kernel. This method assumes
A is linear and known, allowing A to be calculated us-
ing techniques like Singular Value Decomposition (SVD),
similar to what DDNM proposes. However, relying on the
assumption that A is a convolution operator limits its ex-
pressiveness compared to methods that learn the degrada-
tion implicitly or through more complex models. To con-
struct an experiment based on this approach, we trained an
explicit kernel estimator using the same training data de-
scribed in Sec. 5.1. Given a low-resolution input observa-
tion, the explicit kernel estimator predicts a corresponding
explicit linear degradation kernel. We define convolution
with the predicted kernel as A and calculate its correspond-
ing pseudo-inverse operator A using SVD. In our ablation
study, we refer to this method as explicit as it explicitly de-
fines the degradation process using a Gaussian kernel. To
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Figure 4. Ablation study on the speed of restoration process under different guidance scalar values.

Figure 5. Ablation study on input perturbation and guidance

scalar. (a) both off, (b) guidance scalar on, (c) input perturbation
on, (d) both on.

Method | PSNRT SSIM{ LPIPS |
implicit | 244681  0.6208  0.3069
explicit | 20955  0.3999  0.5985
combine | 224154 0531  0.4787

Table 5. Ablation study on various approaches to modeling

degradation. All of the experiments are conducted with 4 x scale.

further experiment with the design choices of the A and A
in the DDNM [32] algorithm, we also explore combining
the explicit version of A with the implicit version of A,
In our ablation study, we refer to this approach as combine.
More details of the explicit and combine approaches are de-
scribed in Supplementary.

We conduct the ablation study on DIV2K-Val dataset as
shown in Tab. 5, we observe that the implicit version of A
AT outperforms the combine and explicit approaches. This
superiority is attributed to the greater expressiveness of the
implicit degradation representation compared to convolu-
tion with a Gaussian kernel. Convolution with a Gaussian
kernel assumes a global degradation operator, which limits
its ability to capture variations in degradation that can occur
locally across the image in real-world scenarios. In contrast,
our implicit approach can capture the 2D spatially varying
degradation in a latent space.

Overall, the implicit setting of A and AT offers better
expressiveness in modeling degradation, which makes our
method more robust and reliable across diverse datasets and
real-world scenarios.

Ablation study on the value of guidance scalar. Note that

the guidance scalar « in Eq. (11) is a critical parameter. If «
is set too high, it accelerates the restoration process, leading
to a hallucination problem in the pretrained diffusion model.
Conversely, setting it too low reduces the influence of the
guidance, leading to low-fidelity results. Note that setting it
to zero equates to unconditional diffusion sampling.

We provide quantitative comparison in Tab. 4 and quali-
tative comparison in Fig. 4, both of which demonstrate the
speed of restoration process under different scalar values.
Both Tab. 4 and Fig. 4 show that by introducing the guid-
ance scalar, we effectively slow down the restoration pro-
cess, thereby mitigating the performance decrease caused
by restoration acceleration.

6. Conclusions

We have proposed a novel diffusion-based blind
super-resolution (SR) solution. By combining the the
degradation-aware models with DDNM, we boost diffusion
guidance to produce high quality images without sacrific-
ing the fidelity. We propose the use of a more flexible
and general form of the A and AT in DDNM, extending
their roles to not only degradation but also restoration. The
integration of input perturbation and guidance scalar fur-
ther enhances the performance of our method, reducing the
impact of degradation estimation errors and improving the
synergy between our models and DDNM. Through these
innovations, we demonstrate that our method excels in both
fidelity and perceptual quality compared to state-of-the-art
diffusion-based blind SR methods.
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