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ABSTRACT

Blind image inpainting aims at recovering the content from a
corrupted image in which the mask indicating the corrupted
regions is not available in inference time. Inspired that most
existing methods for inpainting suffer from complex contam-
ination, we propose a model that explicitly predicts the real-
valued alpha mask and contaminant to eliminate the contami-
nation from the corrupted image, thus improving the inpaint-
ing performance. To enhance the overall semantic consis-
tency, the attention mechanism of transformers is exploited
and integrated into our inpainting network. We conduct ex-
tensive experiments to verify our method against blind and
non-blind inpainting models and demonstrate its effectiveness
and generalizability to different sources of contaminant.

Index Terms— Blind image inpainting, Transformer

1. INTRODUCTION

Image inpainting as the task of recovering the missing regions
in a corrupted image has wide applications such as image
restoration and editing. While there exists numerous prior
works [3, 15, 13, 7, 9, 16, 20, 17, 6] being capable of filling
the missing regions by predicting the image content consis-
tent with the context (i.e. uncorrupted regions), they generally
require the user to provide the mask indicating the missing re-
gions, and such a mask is typically restricted to be binary (i.e.
pixels are either corrupted or uncorrupted). The requirement
of manually labeling the mask is time-consuming to fulfill,
and the mask in binary form actually disregards the real-world
cases of having some pixels half-corrupted (e.g. the contami-
nation on the original image could be translucent) thus mak-
ing their settings less practical.

To tackle the aforementioned issues for the classical im-
age inpainting problem, the task of blind image inpainting
emerges where the mask indicating missing regions is not
required during inference, which implies that an inpainting
model needs to identify where to paint as well as what to
paint. While the early works of this task [1, 8] have the
oversimplified assumption that the corrupted regions are filled
with constant color (mostly black) or Gaussian noise thus
being unrealistic, VCNet [12], as a seminal work and state-
of-the-art method for blind image inpainting, recommends

Our source code and more details can be found in https://
lcy0307.github.io/Decontamination_Transformer.

a more practical but challenging problem scenario together
with proposing an effective model to tackle it. The new sce-
nario assumes that the image that we would like to recover is
corrupted by contaminants. Such contaminants are generated
by random strokes filled with natural textures thus being more
complicated than the simple black or noisy pixels.

According to this problem scenario, VCNet proposes a
generative procedure of synthesizing data, where the contam-
inant is sampled from real-world images followed by generat-
ing the corrupted image via alpha blending between the con-
taminant and original image, in which the alpha mask is built
by iterative Gaussian smoothing on a binary free-form mask.
VCNet explicitly predicts the mask and performs inpainting
via two subnetworks in a stage-wise manner, where a discrim-
inative subnetwork takes the corrupted image to estimate the
area of contamination by pixel-wise binary classification, and
the inpainting subnetwork treats the estimated mask as a con-
dition to guide inpainting. The inpainting subnetwork follows
a convolutional autoencoder structure and the mask condition
is injected into the subnetwork layers via spatial normaliza-
tion blocks.

Although VCNet [12] shows reasonable performance on
blind image inpainting, there are still several issues in its de-
sign. In this work, we particularly advance to tackle these
issues for achieving better and more robust inpainting results:
1) In previous methods, e.g. VCNet and [11], the predicted
mask is typically binary to separate the contamination from
the uncorrupted regions, in which the pixels blended between
the contaminant and the original images are not well handled
thus the information related to the original image in these
pixels are regrettably wasted. By contrast, the mask predic-
tion network (MPN) in our proposed method outputs the real-
valued mask; 2) In addition to discovering the blended pix-
els, our method differs from prior works [12, 11, 19] to have
a contaminant prediction network (CPN) for estimating the
content/appearance of contaminant, in which knowing what
(i.e. the contaminant) is blended with the original image and
how do they blend (i.e. the real-valued mask) would signifi-
cantly facilitate inpainting the original image; 3) While pre-
vious methods mostly use convolutional neural networks to
perform inpainting where the limited receptive fields in in-
dividual layers make it difficult to maintain long-range se-
mantic consistency between the inpainted and uncorrupted
regions, we integrate the transformer-based architecture into
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Fig. 1. Our De-Contamination Model consists of three main network components: mask prediction network (MPN), contam-
inant prediction network (CPN), and image inpainting network (IIN). Please refer to Sec. 2 for the detailed description.

our image inpainting network (IIN) for explicitly consider-
ing the global relationships among image regions, where the
features of the estimated contaminant and predicted mask are
utilized to realize inpainting. Extensive experimental results
show that our model outperforms the state-of-the-arts.

2. METHOD

Training Data Generation. As motivated previously, we aim
to tackle the same practical but challenging problem scenario
proposed by VCNet [12] for blind image inpainting, and we
follow their procedure similarly for training data generation:

Icorrupted = Igt ⊙ (1−Mg) +N⊙Mg, (1)

where a corrupted image Icorrupted is synthesized by alpha
blending between the original image Igt and a contaminant
N (e.g. another real-world image). ⊙ denotes the Hadmard
product operator, and the alpha mask Mg is made by itera-
tive Gaussian smoothing on a binary mask of random strokes
(with value 1 and 0 indicating corrupted and uncorrupted re-
gions respectively). In this paper, we adopt numerous Gaus-
sian kernels for the smoothing operations during building
masks in order to increase the variance of training data.
De-Contamination Model. As shown in Fig. 1, our proposed
method for blind image inpainting is composed of three com-
ponents: mask prediction network (MPN), contaminant pre-
diction network (CPN), and image inpainting network (IIN).
These components are detailed as follows.

Our mask prediction network (MPN) takes the corrupted
image Icorrupted as input and predicts the alpha mask Mpred,
in which we drive its training by minimizing its errors with
respect to the ground-truth mask Mg with the objective:

Lmask = ∥Mpred −Mg∥2. (2)

Note that our predicted mask is with real-valued pixels
(i.e. Mpred(i, j) ∈ [0, 1]) to particularly take the alpha blend-
ing weights between the original image and contaminant into

consideration, while VCNet [12] adopts binary pixel-wise
classification for mask prediction thus neglecting the rich
information hidden behind the blended pixels. The architec-
ture of our MPN is an encoder-decoder structure where both
encoder and decoder are built by residual CNN blocks with
the bottleneck composed of dilated convolutions to increase
the receptive fields, noting that our MPN is similar to the one
in [12] but additionally equipped with batch normalization at
each residual block for better training stability.

As the blended pixels (with real-valued blending weights
∈ [0, 1]) in the corrupted image Icorrupted contain the appear-
ance from contaminant N, and the semantic inconsistency be-
tween the contaminant and original image is the key to sepa-
rate them for further recovering the original image (especially
on the regions of blended pixels, i.e. the boundary between
corrupted and uncorrupted regions), reconstructing the con-
tent/appearance of the contaminant is thus considered help-
ful for inpainting the corrupted input. Our contaminant pre-
diction network (CPN) realizes such an idea by taking the
corrupted image Icorrupted and the alpha mask Mpred pre-
dicted by MPN as the input to reconstruct the contaminant
N. The architecture of CPN is similar to MPN but it partic-
ularly adopts gated convolutions [16] on the encoder and the
decoder to focus on the corrupted regions (including blended
pixels) with the guidance of Mpred. Moreover, the skip con-
nections are used across the encoder and the decoder to better
preserve the image details.

As the main focus of CPN is to estimate the appearance of
contaminant N on the corrupted regions, a binary contamina-
tion mask MCon is built with value 1 indicating the partially
or fully contaminated pixels and 0 for uncorrupted ones, the
objective function for training CPN is then defined by

Lcont = ∥MCon ⊙ (Npred −N)∥1, (3)

where Npred denotes the contaminant predicted by our CPN.



After having both Npred and Mpred estimated (i.e. what
is blended with and how it is blended with the original im-
age, respectively), our image inpainting network (IIN) lever-
ages them for inpainting on the corrupted input Icorrupted to
produce the final inpainting result Ipred. While VCNet only
predicts the binary blending mask and does not estimate the
contaminant, and its inpainting network is overloaded to si-
multaneously remove the contamination and perform inpaint-
ing on corrupted regions, our proposed model can firstly adopt
Npred (thanks to our CPN) and Mpred to erase the contam-
inant from Icorrupted. Hence, our IIN is able to concentrate
on filling the missing regions (i.e. where inpainting should
apply) and finally achieves better inpainting performance.

Erasing contaminant from Icorrupted is realized with the
help of our contaminant processing module (cf. the green
rectangle in Fig. 1). The feature map of contaminant Npred

is weighted by Mpred as the conditional input for IIN (not-
ing that the combination of Npred and Mpred by this module
happens in the feature space and we adopt a few convolu-
tion blocks to align their dimensions), subtracting such con-
ditional input from the the features of Icorrupted extracted by
the first block of IIN’s encoder then achieves the contaminant
erasing, where the following network blocks of IIN take over
to perform the further inpainting operations.

Our IIN is also an encoder-decoder structure with sev-
eral important model designs: 1) As the input to IIN is the
concatenation of Icorrupted and Mpred (where the real-valued
Mpred provides guidance on “where” and “how much” to
inpaint), the encoder and decoder are constructed by gated
convolution blocks. Moreover, the skip connections are used
across the symmetric blocks between the encoder and the de-
coder; 2) For maximally maintaining the overall content con-
sistency of Ipred (particularly among inpainted and uncor-
rupted regions) and tackling the restricted receptive field of
convolutions, we propose to adopt transformer blocks in the
bottleneck of IIN between the encoder and decoder. Specif-
ically, to handle the common issues of being large computa-
tional costly and memory demanding for typical transformers,
we are inspired by the fast and efficient hybrid architecture
proposed in Stripformer [10] and use the intra/inter attention
blocks for building our transformer module.

The inpainting output Ipred is trained to be as close to
the ground truth Igt as possible, where three objectives from
different perspectives are adopted to achieve so: 1) L1 recon-
struction loss Lrecons = ∥Ipred − Igt∥1 in the pixel space, 2)
perceptual loss Lper in the pretrained VGG-16 feature space,
and 3) local adversarial loss Ladv between distributions of
Ipred ⊙ Mg + Igt ⊙ (1 − Mg) and Igt (noting that we skip
the detailed description on Lper and Ladv due to the lim-
ited space, as their formulations are identical to those in [12],
where the only slight modification is to use non-saturating
loss for Ladv instead of WGAN-GP for more stable training).

We will release our source code, learnt models, and all the
experimental/implementation details once paper acceptance.

Dataset Method PSNR↑ SSIM↑ LPIPS↓

FFHQ

PEN-Net + Mg 21.17 0.6852 0.2486
RFR + Mg 23.21 0.8209 0.1087
VCNet 21.28 0.7544 0.1706
Our proposed model 23.70 0.8417 0.0889

Places2

PEN-Net + Mg 19.11 0.5740 0.4546
RFR + Mg 21.69 0.7720 0.2190
VCNet 20.29 0.7204 0.2244
Our proposed model 22.74 0.7999 0.1742

ImageNet

PEN-Net + Mg 18.77 0.5224 0.5124
RFR + Mg 20.87 0.7442 0.2210
VCNet 19.58 0.6690 0.2287
Our proposed model 22.23 0.7820 0.1713

Table 1. Quantitative comparison among our method, state-
of-the-art blind inpainting method VCnet [12], and two rep-
resentative non-blind inpainting approaches (i.e. RFR [6] and
PEN-Net [17], where the groundtruth alpha blending mask
Mg are provided for their training and testing).

3. EXPERIMENTS

Datasets & Metrics. Experiments are conducted on the
FFHQ [5], CelebA-HQ [4], Places2 [21], and ImageNet [2]
datasets. All training images are of size 256×256, where im-
ages in FFHQ (Places2/ImageNet, respectively) are resized
(center-cropped and zero-padded, respectively) to fit such
a requirement. While experimenting on FFHQ with 68000
training and 1000 testing images, the contaminant is sampled
from the CelebA-HQ and ImageNet datasets. For experi-
menting on the Places2 and ImageNet datasets (both with
1000 testing images), they mutually server as the source of
drawing contaminant samples for each other. For evaluation,
PSNR, SSIM [14], and LPIPS [18] are adopted to measure
the qualities of the blind image inpainting results.
Quantitative Evaluation. We compare our proposed model
with the state-of-the-art blind image inpainting method VC-
net [12] as well as two representative non-blind inpainting
methods (i.e. RFR [6] and PEN-Net [17]) with the ground-
truth alpha blending mask Mg being provided in their train-
ing and testing. The quantitative results are summarized in
Table 1. It can be clearly seen that our proposed method
not only outperforms VCNet by a significant margin across
all the datasets but also consistently achieves superior re-
sults in comparison to the non-blind inpainting baselines (i.e.
RFR and PEN-Net) even when they are provided with the
groundtruth alpha masks, thus verifying the efficacy of our
proposed method for blind image inpainting.
Qualitative Evaluation. In Fig. 2, we provide several ex-
ample qualitative results, in which we can observe better re-
sults produced by our proposed method in comparison to VC-
Net [12]. For instance in the first row, though the eyes in-
painted by VCNet look realistic, their appearance seems to be
inconsistent with the whole face, while our model inpaints the
eyes that are more visually coherent with the girl’s face. Sim-
ilar observation can be found in the fourth row (e.g. the eyes



Table 2. Ablation study for
our model designs based on
Places2 dataset (in which Im-
ageNet dataset is used as the
source of contaminant). “Trans.
blocks” denotes the usage of
transformer blocks in IIN.

MPN CPN
Trans.
blocks

binary mask for Mg real-valued mask for Mg

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
23.08 0.8009 0.1574 21.08 0.7487 0.2275
24.45 0.8436 0.1220 21.90 0.7798 0.2119
24.65 0.8483 0.1146 22.20 0.7877 0.1966
25.12 0.8531 0.1081 22.69 0.7952 0.1816
25.22 0.8572 0.0998 22.74 0.7999 0.1742

Igt Icorrupted VCNet [12] Ours Mg

Fig. 2. Examples of qualitative results.

and the skin of the dog). Moreover, in the second row, we
can see that our proposed model provides more structurally-
reasonable inpainting result (e.g. straight pillars of the build-
ing) than VCNet. Overall, our model shows superior perfor-
mance in recovering the corrupted regions while maintaining
the holistic consistency with the uncorrupted regions.

Test of Generalizability. We further experiment to verify the
generalizability of our proposed model: Inferring on the test
samples generated by using different sources of contaminant
(i.e. different from the one used to generate the training set
for model learning). For instance, N is sampled from CelebA
during training but turns to be sampled from Places2 during
testing. Example results are shown in Fig. 3 where we can ob-
serve that our proposed model is still able to provide plausi-
ble estimates for Npred and reasonable inpainting result Ipred,
thus validating the generalizability of our method.

Ablation Study. We use the Places2 dataset (in which the
source of contaminant is the ImageNet dataset) to perform
ablation studies on several model designs, including mask
prediction network (MPN), contaminant prediction network
(CPN), and adopting transformer blocks in the bottleneck of
image inpainting network (IIN). Note that the model variant

Icorrupted Npred Ipred Igt

Fig. 3. Example results of the generalizability test.

with removing all these designs from our proposed method
coincides with the coarse network of [16]. The results sum-
marized in Table 2 reveal several contributions of our pro-
posed model: 1) The mask Mpred predicted by MPN is ef-
fective to guide the inpainting; 2) Our explicit estimate of
contaminant (i.e. Npred) further benefits the performance
by making IIN more concentrate on inpainting (no matter
whether the transformer blocks are adopted for IIN); 3) Intro-
ducing transformer blocks into IIN maintains the long-range
semantic consistency between uncorrupted and corrupted re-
gions and contributes to achieve the significant improvement.
Moreover, we also experiment our model on using binary
or real-valued mask for Mg during data generation, where
the results demonstrate a trend consistent with the aforemen-
tioned observations.

4. CONCLUSION

We propose a carefully-designed de-contamination model for
the task of blind image inpainting in this work. The explicit
estimate of the contaminant and its blending mask with the
original image help eliminating the interference to the in-
painting procedure, while the introduction of the transformer
blocks further enhances the overall semantic consistency of
the inpainted output. The extensive experiments not only
verify the superiority of our method against both blind and
non-blind inpainting methods, but also demonstrate its gener-
alizability with respect to unknown sources of contaminant.
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