
Data Efficient Incremental Learning via Attentive Knowledge Replay

Yi-Lun Lee† Dian-Shan Chen† Chen-Yu Lee‡ Yi-Hsuan Tsai‡ Wei-Chen Chiu†
†Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan ‡Google

†{yilunlee850704.cs09, dianshan14.c, walon}@nycu.edu.tw
‡{chenyulee260, wasidennis}@google.com

Abstract— Class-incremental learning (CIL) tackles the prob-
lem of continuously optimizing a classification model to support
growing number of classes, where the data of novel classes
arrive in streams. Recent works propose to use representative
exemplars of learnt classes, and replay the knowledge of them
afterward under certain memory constraints. However, training
on a fixed set of exemplars with an imbalanced proportion to the
new data leads to strong biases in the trained models. In this
paper, we propose an attentive knowledge replay framework
to refresh the knowledge of previously learnt classes during
incremental learning, which generates virtual training samples
by blending between pairs of data. Particularly, we design an
attention module that learns to predict the adaptive blending
weights in accordance with their relative importance to the
overall objective, where the importance is derived from the
change of the image features over incremental phases. Our
strategy of attentive knowledge replay encourages the model
to learn smoother decision boundaries and thus improves its
generalization beyond memorizing the exemplars. We validate
our design in a standard class-incremental learning setup and
demonstrate its flexibility in various settings.

I. INTRODUCTION

The ability of incrementally learning new knowledge is
essential for real-world learning agents. In recent years, we
have witnessed the great capacity of deep networks with their
learning abilities being driven by large-scale training data.
However, most deep networks still suffer from the issue of
“catastrophic forgetting” – the knowledge learnt from new
classes tends to override the old one learnt from previously
seen classes due to the lack of access to the old data, leading
to performance decrease of old classes.

To mitigate the forgetting, many works have been pro-
posed [1], [2], [3], [4], [5], [6] lately: LwF [1] adopts knowl-
edge distillation to retain the posterior distributions of old
classes while learning the new classes; iCaRL [2] proposes to
explicitly set up a replay buffer which stores subsets of data
from learnt classes as exemplars to preserve the previously
acquired knowledge. Such a scheme can largely alleviate the
forgetting issue, by equipping a replay buffer that updates
the classification model on both the exemplars and the data
samples of novel classes, in which it becomes a widely-used
protocol for class-incremental learning nowadays.

However, as the replay buffer is with limited size in
practice, it would inevitably result in the imbalance on the
number of training samples between new and old classes,
causing the trained classifier to have biased weights among
classes and prone to over-memorize exemplars stored in
the buffer. Here we perform a simple case study to better
illustrate the data imbalance issue, as shown in Figure 1.

We follow the iCaRL [2] approach to build a base model,
and then we evaluate the top-1 accuracy on exemplars and
testing data of an old class in each incremental phase (i.e.,
when novel classes arrive), as well as the average L2 norm
of classifier weights of the final model (cf. Figure 1 (a)
and (c) respectively). As a reference, we also include the
performance of the base model trained with full training
data as the upper bound for comparison. As the training
proceeds along the incremental phases, the model is able
to perform extremely well on the exemplars stored in the
buffer, which are used as training samples in all phases
during incremental learning. Nevertheless, due to the extreme
imbalance between the exemplars and the data of new
classes (see Figure 1 (b)), the classifier is biased to new
classes and tends to forget old classes. As a result, the
model has a significant performance decrease on the test
set for the old classes. The phenomenon indicates that the
common exemplars replay is not sufficient for the model to
preserve knowledge of old classes. Therefore, how to replay
exemplars both efficiently and effectively, which avoids over-
memorizing exemplars and the biased classifier, is the main
issue we address in this paper.

To this end, we propose a simple yet effective attentive
knowledge replay framework that linearly performs blending
between exemplars, or the ones across exemplars and newly
arriving training samples to better retain the knowledge
of learnt classes. Instead of randomly sampling weights
for blending, we design a novel attention module to learn
suitable blending weights of the given pairs of data. By
leveraging the change of image features extracted by the
old model (trained in the previous incremental phase) and
the current model, our attention module learns to estimate
the proper blending weights for the image pair according to
their relative importance to the objective of class-incremental
learning. The mechanism of dynamically replaying exem-
plars helps the classification model learn smoother decision
boundaries to avoid over-memorizing the stored exemplars.
Moreover, our proposed framework is able to benefit the
classification performance under different settings of class-
incremental learning, showing the efficacy and applicability
of our method.

II. RELATED WORK

We group class-incremental learning methods into follow-
ing three categories and review them briefly:
Parameter restriction methods [7], [8] estimate the im-
portance of model parameters for different classes. While



(a) (b) (c)

Fig. 1: Study for the issue of over-memorizing exemplars. (a) shows the incremental accuracy of an old class which is learnt at the
beginning. The dashed and solid lines represent the accuracy on the exemplars and testing data (-test) respectively. The line in black color
is for the base model which follows the similar model design of iCaRL, while the one in red color is for our method. The line in blue
color is the base model which is trained with all the training data of old class instead of using only exemplars. (b) shows that as the size of
replay buffer is limited, the number of exemplars for each class decreases along the incremental phases from 500 images in the beginning
to 22 images at the end. (c) compares the average L2 norm of the classification weight vectors for old and new classes after training. We
see that the base model suffers from memorizing the exemplars and results in large performance gap between the exemplars and testing
data, while our proposed method (i.e. equipping base model with our attentive knowledge replay framework) can better alleviate such
issue and have smaller performance gap.

some parameters are identified as important ones to the
previously learnt classes, a relatively large penalty is imposed
on the change of those parameters when learning new classes.
On the other hand, the other parameters would receive
more flexibility to be updated to support new classes. The
difference among this line of work is the way to identify
the parameter importance for classes. For instance, EWC [7]
adopts the Fisher information matrix, while MAS [8] uses
the gradients of the l2 norm of model outputs with respect to
the parameters. However, the computation of identifying im-
portant parameters and performing regularization is typically
costly.

Experience replay methods [2], [4], [6], [3], [5] train the
model by simultaneously leveraging the exemplars of old
classes and the training samples of new classes to replay the
previous experience and learn the novel concept respectively,
where the exemplars are maintained in a replay buffer with
limited size. For instance, iCaRL [2] proposes to use herding
algorithm for selecting exemplars and adopt the knowledge
distillation to retain the previously learnt knowledge. Instead
of having image-level exemplars, Memory-Efficient [9] pro-
poses to preserve feature-level exemplars for reducing the
memory footprint. Moreover, Mnemonics [6] advance to turn
the exemplars learnable, where the model learning and ex-
emplars updating are formulated into a bi-level optimization
program, thus resulting in more informative exemplars and
further boosting the performance. Nevertheless, as the exis-
tence of data imbalance between the exemplars of old classes
and the training samples of new classes, the classification
models typically would have biased weights among classes
(i.e. tending to predict the test samples as new classes). It is
worth noting that, another group of methods [10], [11], [12]
shares the similar high-level idea as experience replay but
with different ways to realize it: these works adopt generative
models (e.g. GANs) to train the generators for each learnt
class, such that the experience replay is achieved by using
generated samples of old classes as the exemplars. However,

the efforts for keeping generators usually cost more than
using the replay buffer.
Class balance methods [3], [5] mainly tackle the issue of
biased classifier stemming from data imbalance. For instance,
BiC [3] splits a small validation set from the training set to
train an additional bias correction layer, while WA [5] aligns
the norm of the weight vectors in the final fully connected
layer between new classes. However, as the data imbalance
affects the entire model which includes both the classifier and
the feature extractor, these class balance methods which only
focus on correcting the bias on the classifier would poten-
tially leave the whole model still suffering from forgetting.

Being parallel with incremental learning, data augmenta-
tion is one of popular techniques for dealing with limited
amount of training data, in which it also helps to improve
the generalizability of the models. Lately, Mixup [13] is
proposed to generate augmented data by mixing pairs of
training examples and their corresponding labels, which
alleviates the issues of memorization and sensitivity to adver-
sarial examples. This easy-to-implement yet effective method
rapidly receives a lot of attention. Different variations are
further proposed [14], [15], [16], e.g., Manifold Mixup [14]
performs feature-level mixup, while CutMix [15] combines
the idea of Cutout [16] and Mixup to synthesize augmented
data.

Inspired by data augmentation, we propose an atten-
tive knowledge replay framework to effectively refresh the
knowledge of previously learnt classes and ease the catas-
trophic forgetting. The attentive module dynamically blends
two training samples optimized over the incremental learning
loss.

III. PROPOSED METHOD

A. A Base CIL Framework

The training data in the class-incremental learning (CIL)
setting comes in as a stream, where different classes arrive
at different time steps (i.e. incremental phases), and the



training samples of a class arrive as a pack. Assume there are
N incremental phases and the training data arriving at the
respective phases is denoted as {D1, · · · , DN}. In the n-th
incremental phase, model is expected to learn the new classes
Cn

new in Dn and meanwhile preserve the knowledge of the
old classes Cn

old in {D1, · · · , Dn−1}. To be more specific,
we denote the new training data as Xn

new ∈ Dn and the old
ones as Xn

old ∈ {D1, · · · , Dn−1}. Due to the limited size of
replay buffer, the model can not access all the old data Xn

old

for training but only the exemplars Xn
exp, which are selected

from old data via the herding algorithm in the previous n−1
phases. Thus, the available training data Xn

all = Xn
new∪Xn

exp

is used to update the model in the the n-th incremental phase.
The model takes a training sample xi ∈ Xn

all as input and
predicts the posterior σ(xi) = {σ0(xi), · · · , σc(xi)}, where
c denotes the number of all the seen classes up to the current
phase. Our method is built upon a base model, following the
similar design as iCaRL [2] to have two typical losses.
Classification loss Lcls. We adopt the binary cross entropy
as our classification objective, where the base model is
encouraged to learn to classify the new classes as well as
the old classes at the same time:

Lcls(xi) = −
Cn

all∑
c=1

(δc=yi log σc(xi) + δc̸=yi log(1− σc(xi))),

(1)
where yi is the groundtruth label of xi. We follow recent CIL
methods [4], [3], [5] that consider all the classes in Lcls(xi).
Distillation loss Ldist. For encouraging our base model to
preserve the knowledge of old classes Cn

old, we utilize the
knowledge distillation technique as [2], [3], [4], [5], [6], [9]
to perform the regularization on the base model, such that
given an input xi, the prediction σ(xi) of the current model
should be similar to the prediction q(xi) of the previous
model (i.e. learnt at the previous incremental phase).

Ldist(xi) = −
Cn

old∑
c=1

[
qc(xi) log σc(xi)

+ (1− qc(xi)) log(1− σc(xi))
]
.

(2)

Limitation of base CIL framework. Even though the
replay buffer is able to help the model to preserve knowledge
of old classes, the limited size would cause the data imbal-
ance between the exemplars of old classes and the training
samples of new classes. Especially, such imbalance becomes
severe along the incremental learning phases, making it more
and more difficult for model to retain the performance on the
old classes and eventually lead to catastrophic forgetting.
Moreover, the base CIL model tends to over-memorize
the exemplars as demonstrated in Figure 1. The exemplars
are perfectly classified in each incremental phase, but the
classification accuracy on the testing data of old classes keeps
decreasing. Therefore, we propose an attentive knowledge
replay framework which addresses the forgetting issue in the
base CIL framework. The proposed attention module learns
to enlarge the training exemplars and replay them efficiently
in each incremental phases, thus alleviating the forgetting of
old classes. The details are presented in the next section.

B. Attentive Knowledge Replay

To replay exemplars in a simple yet efficient fashion, we
propose an attentive knowledge replay framework (cf. Fig-
ure 2), which generates numerous virtual training samples via
the linear interpolation between training pairs (sampled from
Xn

all at the n-th incremental phase) and their labels. These
virtual training samples encourage the classification model
to learn smooth decision boundaries among all classes, and
thus improve its generalizability. Over incremental phases,
the model refreshes the knowledge of old classes via mixing
exemplars with the training data of new classes, and also
learns to recognize new classes via mixing among their
training samples.

In order to blend a pair of data effectively, giving proper
blending weights plays a critical role in our framework.
We design an attention module, which is composed of
importance estimation sub-networks S and a normalization
layer, learning to predict the weights for blending a given
pair of data (xi, xj). The importance estimation sub-network
S aims to estimate the importance of the input sample
according to the change of its feature representations over
the incremental phases, as shown in Figure 3. To be specific,
given a sample xi, the normalized feature difference f diff

i

between its features fp
i extracted by the old classification

model (learnt in the previous incremental phase) and f c
i

extracted by the model at the current phase is leveraged to
predict the importance score si of xi via a multiple-layer
perceptron MLP, where

si = MLP(f diff
i ) and f diff

i =
f c
i

|f c
i |

− fp
i

|fp
i |
. (3)

The importance scores si and sj of the image pair (xi, xj)
are then considered jointly to obtain the blending weights ai
and aj respectively: ai = si/(si + sj), aj = sj/(si + sj).

The virtual training sample x̃ and its corresponding label
ỹ are then generated by the following linear combination:

x̃ = aixi + ajxj , ỹ = aiyi + ajyj . (4)

As the virtual training samples generated by our attentive
knowledge replay framework are involved in the overall
incremental learning scheme, the attention module would
be automatically optimized to weigh the important training
samples more in order to boost the performance of the target
classification model (for both old or new classes). That is,
our attention module learns to predict the adaptive blending
weights according to the relative importance of the given pair
of training samples for the incremental learning objective.

The objectives for jointly learning the proposed attentive
knowledge replay module and our target classifier include:
Blending Classification loss Lblend

cls . Different from the
classification loss in our base model (see Section III-A),
the blending loss here is composed of two binary cross
entropy losses, as the label of the virtual sample x̃ is the
linear combination over yi and yj , with weights ai and aj



Fig. 2: Overview of our Attentive Knowledge Replay. During training, a pair of training samples xi and xj are fed into the attention
module simultaneously to estimate their attentive blending weights ai and aj respectively, where ai+aj = 1. The training samples (xi, xj)
and their labels (yi, yj) are blended accordingly by the weights ai and aj to produce the virtual training data, which is further utilized
for training the classification model via incremental-learning objectives. The symbol of red cross denotes the multiplication operation.

Fig. 3: Importance estimation sub-network S used in the attention
module. Image features fp

i and fc
i of the sample xi are first

extracted from the old and current classification models respectively,
where their normalized difference f diff

i is then passed through a
multiple-layer perceptron to predict the importance si of the input
sample xi.

respectively. The blending loss Lblend
cls is thus defined as:

Lblend
cls (x̃) = −ai

Cn
all∑

c=1

(δc=yi log σc(x̃) + δc ̸=yi log(1− σc(x̃)))

− aj

Cn
all∑

c=1

(δc=yj log σc(x̃) + δc̸=yj log(1− σc(x̃))).

(5)
Blending Distillation loss Lblend

dist . The distillation loss here
is similar to the one used in the base model, but now the
training samples are instead the virtual ones x̃ generated
by the attention module. Given the virtual samples x̃, the
prediction σ(x̃) of current model should be similar to the
prediction q(x̃) of the previous model. Blending distillation
loss Lblend

cls is:

Lblend
dist (x̃) = −

Cn
old∑

c=1

[
qc(x̃) log σc(x̃) + (1− qc(x̃)) log(1− σc(x̃))

]
.

(6)
Original Loss Lorg. To stabilize the training of the attention
module, we follow Peng et al. [17] to keep the original
objective in the base model (i.e. samples are utilized without
blending) as a regularization term in our final objective.
The original objective Lorg consists of the classification and
distillation losses described in Section III-A: Lorg = Lcls +
λLdist. Finally, the overall objective of our incremental

learning Ltotal is defined as:

Ltotal = (1− λr)(Lblend
cls + λLblend

dist ) + λrLorg, (7)

where λ is used to control the weight of the distillation-
related losses and λr is the weight of the regularization
term (i.e. original loss Lorg). In our experiments, we follow
Peng et al. [17] to set the λr to 0.25, and the setting of λ is
described later in Section IV.

IV. EXPERIMENTAL RESULTS

Dataset. Our experiments are based on CIFAR-100 and
ImageNet [18] datasets, which are widely used for the
evaluation of class-incremental learning methods. CIFAR-
100 contains 60,000 color images of size 32× 32× 3 from
100 different classes, where each class has 500 images for
training and 100 images for testing. ImageNet is a large-
scale dataset with 1000 classes, which consists of around
1.2 millions color images of size 224× 224× 3 for training
and another 50,000 for testing. We follow the setting as [2]
to sample 100 classes from ImageNet in our experiments,
denoted as ImageNet-subset. The total size of the replay
buffer is set to support 2,000 images (hence the number
of exemplars per old class decreases gradually). We apply
the herding algorithm from iCaRL [2] to determine which
images to be kept in exemplars.
Experimental Settings. There are several settings adopted
in the prior works [2], [3], [4], [6], [5] of class-incremental
learning for evaluation, which can be grouped into two main
schemes: (1) Training from scratch, and (2) Training form
half.
– Training from scratch: The classification model is learnt
from scratch, i.e. no pre-training. We divide all classes into
N incremental phases, where each phase has equal number
of new classes to be learned. iCaRL [2], BiC [3] and WA [5]
are originally proposed and evaluated under this scheme.
– Training from half: Half of the total classes are used to pre-
train the model first, while the remaining half is divided into
N incremental phases, where each phase has equal number
of new classes. LUCIR [4] and Mnemonics [6] are originally
proposed under this setting. As pre-training is performed, the
model starts the incremental learning with already having



TABLE I: Average incremental accuracy on CIFAR-100 under two training schemes with different incremental phases, i.e. N=5, 10, 20
for training from scratch (TFS) and N=5, 10, 25 for training from half (TFH). “Origin-Set” represents the original training scheme of
baselines. Bold number indicates the best performance and underlined number represents the second best one.

CIFAR-100 Origin-Set Traing From Scratch Traing From Half
TFS TFH N=5 10 20 5 10 25

iCaRL [2] ✓ 61.45 56.57 53.77 61.93 59.22 55.48
BiC [3] ✓ 66.70 61.90 60.32 62.15 58.84 53.82

LUCIR [4] ✓ 64.82 60.26 57.97 62.18 60.22 57.73
WA [5] ✓ 70.00 67.25 64.33 63.28 55.29 41.47

Mnemonics [6] ✓ 60.78 56.18 54.03 63.38 63.89 64.68
Base ✓ ✓ 67.24 63.53 59.14 61.88 57.84 53.57

Mixup ✓ ✓ 69.96 68.14 66.04 66.97 63.84 59.68
Ours ✓ ✓ 70.38 69.11 67.40 67.73 65.15 60.38

a strong and discriminative feature extractor; these methods
however tend to not perform well while training from scratch.

We follow the standard CIL evaluation metrics in [2]
to compare the proposed approach with recent competing
methods using the incremental accuracy and the average
incremental accuracy. Incremental accuracy is the accuracy
for classifying all the seen classes at the end of each incre-
mental phase. Average incremental accuracy is the average
of incremental accuracy from the first phase to the last phase.

A. Implementation Details

A proper training procedure matters a lot in incremental
learning, while most off-the-shelf methods ignore it. We
point out the problem of using the same learning procedure
for each incremental phase and adjust the overall incremental
learning framework with three important training techniques:
warm up, phase-wise learning rate decay, and adjusted
weight of distillation-related loss.
Warm up (WP). The change between incremental phases
is large. The new data in the previous phase is reduced to
a few exemplars and meanwhile a relatively large amount
of samples of new classes are added in. In results, a large
learning rate at the beginning of training would make the
model learn the new data quickly and destroy the decision
boundary of previous classes. Moreover, as we proposed an
attentive module to predict meaningful weights for blending
images, the model could face an unstable training state when
using the same learning rate at first. Thus, we apply gradual
warmup [19] before model training with the given learning
rate to avoid dramatic changes of previous knowledge. For
each phase, we add additional 20 epochs to warm up the
learning rate. The learning rate starts with 1/20 of the given
learning rate and increases gradually to it in 20 epochs.
Phase-wise learning rate decay (LRD). Most incremental
learning works apply the same initial learning rate for each
incremental phase. However, having the initial learning rate
for later incremental phase as large as the one used in
the early incremental phase would cause a strong alteration
of model parameters, especially when the data imbalance
becomes more severe in the later phases. Thus, we design
a phase-wise learning rate decay strategy to alleviate the
large change of the model. We first denote the number of
base classes as Nbase, in which its is the number of classes
used for pre-training for the setting of training from half,

and is the number of classes learnt in the first incremental
phase for the setting of training from scratch. With denoting
the number of new classes in each incremental phase as
Nnew, for the i-th phase, its initial learning rate lri is set
as lr0 ∗

√
Nnew/(Nbase · i). As we gradually decrease the

initial learning rate for each incremental phase, the model
would not change dramatically along the phases and keep
more knowledge of old data consequently.
Adjusted weight of distillation-related losses (AD). We set
a hyper-parameter λ to weigh the importance of distillation-
related losses (cf. Equation 7). As we expect that our method
should perform well under both training schemes, this weight
λ is used to increase the importance of preserving old
knowledge in the setting of training from half, and defined
as λ =

√
(Nbase)/(Nnew). When training from scratch, the

weight is equal to 1 since Nbase = Nnew.
Our models are implemented with Pytorch [20]. We follow

the iCaRL [2] to adopt a 32-layer ResNet [21] for CIFAR-
100 and a 18-layer ResNet for ImageNet-subset. We use SGD
optimizer to train the model and set the initial learning rate to
2 for all the settings. For CIFAR-100, each incremental phase
has 90 epochs, which consist of 20 epochs at the beginning
for gradual warm up. Within each incremental phase, the
learning rate reduces to 1/5 of the previous learning rate
after 70 and 84 epochs. The weight decay is set to 0.00001
and the batch size is 128. While for ImageNet-subset, each
incremental phase has 120 (respectively, 110) epochs, with
learning rate being reduced to 1/5 of the previous learning
rate after 50, 80, and 100 (respectively, 50 and 80), and
the batch size set to 256 (respectively, 128) for the setting
of training from scratch (respectively, training from half),
where the first 20 epochs are for gradual warm up and the
weight decay is set to 0.00001. where the first 20 epochs
are for gradual warm up. Within each incremental phase,
the learning rate reduces to 1/5 of the previous learning rate
after 50, 60, and 100 (50 and 80) epochs. The weight decay
is set to 0.00001 and the batch size is 256 (128). For all the
settings, we also apply random cropping, horizontal flip, and
normalization to augment training images.

B. Quantitative Results

We compare our method with several baselines [2], [3],
[4], [6], [5] on CIFAR-100 under two training schemes with
different amounts of incremental phases. For simplicity, we



TABLE II: Average incremental accuracy on ImageNet-subset under two training schemes with different total incremental phases (N=5,
10, 20 for training from scratch and N=5, 10, 25 for training from half).

ImageNet-subset Origin-Set Traing From Scratch Traing From Half
TFS TFH N=5 10 20 5 10 25

iCaRL [2] ✓ 73.96 69.10 63.40 68.03 59.44 50.35
BiC [3] ✓ 72.48 66.42 61.24 65.42 57.82 46.33

LUCIR [4] ✓ 66.26 59.45 54.64 70.78 68.62 66.48
WA [5] ✓ 71.50 67.93 62.15 70.15 63.44 64.64

Mnemonics [6] ✓ 59.96 51.88 44.98 70.63 70.24 70.45
Base ✓ ✓ 78.88 73.32 65.07 72.55 66.82 61.00

Mixup ✓ ✓ 78.54 72.75 65.50 73.43 68.71 63.88
Ours ✓ ✓ 79.04 74.53 67.37 74.75 70.85 65.11

TABLE III: Ablation study for the learning rate policy with and
without our attentive knowledge replay, conducted on the CIFAR-
100 dataset, where the performance gain of our method is due to
the attentive knowledge replay instead of the learning rate policy.

TFS, N=10 TFH, N=10
WP LRD Base Ours Base Ours

56.50 61.48 54.50 61.49
✓ 55.74 60.16 54.78 63.65

✓ 64.03 69.20 55.94 61.40
✓ ✓ 63.53 69.11 56.21 63.75

denote “training from scratch” as “TFS” and ”training from
half” as “TFH” in the following. All the baseline methods are
reproduced by following their own implementation details.

The results of quantitative comparison of our method with
other works on CIFAR-100 are provided in Table I. Here
we compare our proposed method with two base models:
Base is our base model (see Section III-A); Mixup is
the base model with replaying the examplars via the mixup
technique [13], where the blending weight λ is sampled from
the prior Beta distribution Beta(α, α) with α set to 1.0;
Ours is the model with our proposed framework of atten-
tive exemplars replay. The results show that, the baselines
which are originally proposed under the setting of training
from half (TFH) (i.e. Mnemonics [6] and LUCIR [4]) do
have good performance, but instead have significantly worse
performance while being trained from scratch (TFS). On
the contrary, the baselines which are originally proposed
under the setting of training from scratch (i.e. iCaRL [2],
BiC [3], and WA [5]) outperform other two TFH baselines
on the TFS scheme, but are worse when being training from
half. In comparison to the baselines which have the issue of
generalization across training schemes, our methods utilizing
exemplars in a data-efficient manner via blending training
samples (i.e. Mixup and Ours) focus on alleviating the over-
memorization issue, thus leading to better or comparable
performance with respect to the baselines on both TFS and
TFH schemes. In particular, with the attentive knowledge
replay which predicts the proper weight for blending training
samples according to the incremental learning objective, our
proposed method on average reaches the best performance.

The experimental results on ImageNet-subset are provided
in Table II. We observe that the issue of having poor gener-
alization across training schemes becomes more significant
for baselines. For example, under the TFS scheme, Mnemon-

TABLE IV: Comparison with baselines which apply our training
techniques (cf. Section IV-A). Obviously, the training tricks some-
what improve the baselines, but our method still outperforms them.

CIFAR-100 Traing From Scratch Traing From Half
N=5 10 20 5 10 25

BiC 66.70 61.90 60.32 62.15 58.84 53.82
BiC+WP/LRD/AD 67.76 64.93 60.44 61.93 58.63 48.40

WA 70.00 67.25 64.33 63.28 55.29 41.47
WA+WP/LRD/AD 70.18 68.09 64.23 63.47 55.87 43.64

Ours 70.38 69.11 67.40 67.73 65.15 60.38

ics [6] and LUCIR [4] only have 44.98% and 54.64% average
incremental accuracy as N=20, while other methods are all
above 60%. This evidence reveals that these methods [6],
[4] cannot generalize to the training scheme of training from
scratch as they need a stronger model pre-trained on half of
classes to start with. In contrast, our method outperforms the
baselines in most of the settings, showing the generalization
ability under different training schemes, especially for the
large gains in the TFS scheme. However, in the TFH settings
with N set to 25, our method does not perform better than
Mnemonics. The reason is that in such a setting, there are
only 2 new classes in each incremental phase, consequently
less training data than exemplars, which causes the model to
overfit on old classes rather than learning new classes.

In Table III, we show that our performance gain mainly
results from the proposed attentive knowledge replay frame-
work, while the learning rate policy is used to help training
the incremental learning models more effectively. In the
experiments, we follow [22] to design our learning rate
policy to include learning rate decay (LRD) and warmup
(WP), which are essential for successful attention module
training. LRD is mainly designed for the Train-from-half
(TFH) setting since there is a robust base model pre-trained
on half classes and needs not such large learning rate for
model training in the following incremental phases. Experi-
mental results in Table III show that the main improvement
is due to our attentive knowledge replay framework over
the baseline method (Base, a variation of iCaRL [2]), and
the learning rate policy provides a corresponding suitable
training scheme to reach the convergence. Note that the
technique of adjusted weights of distillation loss (AD) is
not applied here for clear comparisons.

Besides, we also apply our training techniques to other
baselines (e.g. BiC [3] and WA [5] here), as shown in



TABLE V: Ablation study of training techniques (cf. Section IV-A)
on CIFAR-100 under the scheme of training from scratch (TFS).
Note that, as λ for weighting the distillation-related losses is equal
to 1 under TFS scheme, here only the techniques of warm up (WP)
and phase-wise learning decay (LRD) are investigated.

WP LRD N=5 10 20
67.00 61.48 59.68

✓ 66.90 60.16 55.10
✓ 70.62 69.20 67.44
✓ ✓ 70.38 69.11 67.40

TABLE VI: Ablation study of training techniques (cf. Section IV-
A), i.e. warm up (WP), phase-wise learning decay (LRD), and
adjusted weight of distillation-related losses (AD), on CIFAR-100
under the scheme of training from half (TFH).

WP LRD AD N=5 10 25
65.98 61.49 56.60

✓ 66.60 63.65 60.11
✓ 66.53 63.37 58.38

✓ ✓ 67.13 64.34 59.90
✓ 65.97 61.40 56.31
✓ ✓ 66.83 63.75 60.09
✓ ✓ 66.55 63.52 58.65
✓ ✓ ✓ 67.73 65.15 60.38

Table IV. Obviously, the training techniques indeed boost
the performance of baselines, but the improvement is not
significant. The reason is that the training techniques are
specifically designed to stable our attentive module train-
ing, and may not bring the same improvement to other
baselines. Moreover, these baselines also have their own
training tricks to reach the best performance, such as having
different designs of weighting the distillation loss [3], [5].
Such experiment in Table IV also help to verify that our
performance gain is not solely stemmed from the training
techniques, but clearly contributed by our proposed attentive
knowledge replay mechanism.

C. Ablation Study

Effects of warm up (WP): We observe that there is a
significant performance drop without the warmup process
in the TFS scheme (shown in Table V). This reveals the
importance of using a smaller learning rate at the beginning
of each incremental phase to ease up the change of decision
boundary and preserve more previous knowledge. Besides, a
dramatic performance drop occurs under the TFS scheme
with the number of incremental phases N = 20, when
warmup is not adopted. This phenomenon is caused by a
failure on learning attentive weights. At the beginning of
each incremental phase, the attention module would face
a large amount of new data. If the learning rate is large,
it would be quickly occupied by the new data and fail
to consider the exemplars. Therefore, a warmup process is
crucial in our methods to provide a buffer time for models
to learn with new data.
Effects of phase-wise learning rate decay (LRD): We can
see that in the TFH scheme (shown in Table VI), the methods
with LRD can boost the performance by about 1∼3% under
different settings of N , while in the TFS scheme (shown

TABLE VII: Ablation study on different design choices for rep-
resenting the feature changes f diff

i of a given sample xi, over
the incremental phases (please refer to the second paragraph of
Section IV-C for more details). Experiments are conducted on the
CIFAR-100 dataset. In most of experimental settings, the design of
using subtraction, as what we have now in our attention module,
reaches the best performance.

CIFAR-100 Traing From Scratch Traing From Half
N=5 10 20 5 10 25

Subtraction 70.38 69.11 67.40 67.73 65.15 60.38
L1 Distance 70.16 69.58 68.11 67.13 64.99 59.65

Schur Product 70.22 69.31 67.89 67.17 65.13 59.53
Concatenation 69.76 69.56 67.55 67.65 65.12 60.13

in Table V) the methods with LRD may not have such
improvement. The reason is that, in the TFH scheme, the
model learns much robust features with half of the dataset at
first, and it only needs a small learning rate in the following
incremental phases to fine-tune the model with new data.
However, in the TFS scheme, the model is trained from
scratch and is not strong enough at the beginning. Then,
turning into a small learning rate does not gain such a
significant benefit.
Effects of adjusted weight of distillation-related loss
(AD): The design of the adjusted weight λ of distillation-
related loss is to tackle the gap between the base classes
(i.e. Nbase) and new classes (i.e. Nnew) in the first incremental
phase. Please note that, as in the TFS scheme λ = 1, we only
perform study in the TFH scheme. As shown in Table VI, the
methods with AD are better than those without AD by about
1∼4% under different numbers of incremental phases N .
In particular, when N is increased, the performance boost
brought by AD also increases. This phenomenon indicates
that the importance of distillation-related loss becomes larger
when the ratio between Nbase and Nnew is increased. Our AD
technique is a simple way to adjust the weight of distillation-
related loss, and we believe there could exist a more effective
adjustment and leave it as future work.
Design choices for predicting the importance score. Re-
garding our current model design of predicting the impor-
tance score si for a given sample xi in the attention module,
we adopt the simple subtraction between the normalized fp

i

and f c
i (cf. Equation 3), which are extracted by the old and

new classification models respectively, to indicate the feature
changes f diff

i of xi over the incremental phases. Here we
conduct an ablation study to experiment different designs for
representing such feature changes, including the L1 distance,
the Schur product, and the concatenation between the
normalized fp

i and f c
i . The results of different design choices

are provided in Table VII. We can see that the performance
differences among these designs are not that large (only
about 1% at most in terms of average incremental accuracy),
while our current design of using subtraction reaches the best
performance in most of the experimental settings.
Effects of different blending strategies. As the training
samples include new data and exemplars (old data), there
are three kinds of pairs being blended to generate virtual
training sample: new-versus-new, old-versus-old, and new-



TABLE VIII: Ablation study of blending strategies on CIFAR-100.
Base: base model without blending; Intra-Blend: blending with
new-versus-new and old-versus-old pairs. Inter-Blend: blending
with new-versus-old pairs. Ours: using both Intra-Blend and Inter-
Blend.

CIFAR-100 Traing From Scratch Traing From Half
N=5 10 20 5 10 25

Base 67.24 63.53 59.14 61.88 57.84 53.57
Intra-Blend 66.68 65.73 63.43 66.87 64.41 59.45
Inter-Blend 67.92 66.50 65.40 64.92 62.13 55.92

Ours 70.38 69.11 67.40 67.73 65.15 60.38

TABLE IX: The experimental results of applying our attentive
knowledge replay framework on other CIL methods, conducted on
the CIFAR-100 dataset. Our attentive knowledge replay is able to
consistently benefit the performance of other CIL methods under
both Train-from-scratch (TFS) and Train-from-half (TFH) settings.

CIFAR-100 Traing From Scratch Traing From Half
N=5 10 20 5 10 25

BiC 66.70 61.90 60.32 62.15 58.84 53.82
BiC+Ours 70.36 68.71 65.12 62.72 59.03 53.88

WA 70.00 67.25 64.33 63.28 55.29 41.47
WA+Ours 70.78 68.79 66.84 63.37 59.35 52.39

versus-old. We divide them into two strategies: intra-blend
and inter-blend, where the former consists of new-versus-new
and old-versus-old pairs while the latter consists of new-
versus-old pairs. To analyze the effect of different blend-
ing strategies, we conduct the ablation study of blending
strategies in Table VIII. Results show that having intra-
blend or inter-blend strategy individually can already boost
the performance. While further jointly using both intra-blend
and inter-blend strategies, our full model achieves the best
average incremental accuracy. The improvement indicates
that both inter-blend and intra-blend strategies are essential
for effective exemplars replay.
Applications of attentive knowledge replay on other CIL
methods. As our framework can be easily integrated into
other CIL methods, we also provide its application on other
two CIL methods: BiC [3] and WA [5]. In Table IX, our
attentive knowledge replay consistently brings improvements
to these two CIL methods. However, these improvements are
not as large as the base model (similar to iCaRL [2]) has. The
reason is that our attentive knowledge replay contributes to
alleviate the influence of imbalance amount of new and old
data, while other CIL methods also propose some designs to
tackle this issue (e.g. bias correction in BiC [3] and weight
alignment in WA [5]). Therefore, applying our attentive
knowledge replay to other methods may not have such
significant improvement as applying to iCaRL. However, our
method still brings improvement to other CIL methods in
most of settings, showing the efficacy and complementary
property of our method.

V. CONCLUSIONS

In this work, we introduce a simple yet effective data-
efficient method to refresh the knowledge of previously
experienced classes during class-incremental learning. We
show that our Attentive Knowledge Replay framework can
adaptively blend pairs of data coming from the exemplar

buffer and new classes, in order to obtain high performance
for old and new classes. In addition, our method performs
favorably against state-of-the-art methods in different CIL
settings, as well as improving upon existing CIL pipelines.
Acknowledgement This work is supported by NSTC 111-
2628-EA49-018-MY4 and NSTC 111-2636-E-A49-003.

REFERENCES

[1] Zhizhong Li and Derek Hoiem, “Learning without forgetting,” IEEE
T-PAMI, 2017.

[2] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H Lampert, “icarl: Incremental classifier and representation
learning,” in CVPR, 2017.

[3] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, and Yun Fu, “Large scale incremental learning,” in
CVPR, 2019.

[4] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua
Lin, “Learning a unified classifier incrementally via rebalancing,” in
CVPR, 2019.

[5] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia,
“Maintaining discrimination and fairness in class incremental learn-
ing,” in CVPR, 2020.

[6] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru
Sun, “Mnemonics training: Multi-class incremental learning without
forgetting,” in CVPR, 2020.

[7] James Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” PNAS, 2017.

[8] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus
Rohrbach, and Tinne Tuytelaars, “Memory aware synapses: Learning
what (not) to forget,” in ECCV, 2018.

[9] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid,
“Memory-efficient incremental learning through feature adaptation,” in
ECCV, 2020.

[10] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim, “Contin-
ual learning with deep generative replay,” in NeurIPS, 2017.

[11] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, Zhengyou Zhang, and Yun Fu, “Incremental classifier
learning with generative adversarial networks,” ArXiv:1802.00853,
2018.

[12] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen,
and Moin Nabi, “Learning to remember: A synaptic plasticity driven
framework for continual learning,” in CVPR, 2019.

[13] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-
Paz, “mixup: Beyond empirical risk minimization,” in ICLR, 2018.

[14] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis
Mitliagkas, David Lopez-Paz, and Yoshua Bengio, “Manifold mixup:
Better representations by interpolating hidden states,” in ICML, 2019.

[15] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun,
Junsuk Choe, and Youngjoon Yoo, “Cutmix: Regularization strategy
to train strong classifiers with localizable features,” in ICCV, 2019.

[16] Terrance DeVries and Graham W Taylor, “Improved regularization of
convolutional neural networks with cutout,” ArXiv:1708.04552, 2017.

[17] Xiaojiang Peng, Kai Wang, Zhaoyang Zeng, Qing Li, Jianfei Yang,
and Yu Qiao, “Suppressing mislabeled data via grouping and self-
attention,” in ECCV, 2020.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al., “Imagenet large scale visual recognition
challenge,” IJCV, 2015.

[19] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-
ing He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,”
arXiv preprint arXiv:1706.02677, 2017.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer, “Automatic differentiation in pytorch,” 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in CVPR, 2016.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, “Atten-
tion is all you need,” in NeurIPS, 2017.


