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1. More Results

1.1. Attention-level Prompts

We show ablation studies for attention-level prompts in
Figure 1 and Figure 2, which analyze the effect of prompt-
ing layers and prompt length respectively. The results are
similar to the study of input-level prompts as shown in Sec-
tion 4.3 of the main paper. In summary, the earlier prompt-
ing layers and more prompting layers improve the perfor-
mance more. In addition, even with fewer parameters (i.e.,
reducing the prompt length to 2), the performance is still
competitive.

1.2. More Results on All Datasets

In Figure 3, we provide more quantitative results on dif-
ferent datasets (i.e., MM-IMDb [1], UPMC Food-101 [7],
and Hateful Memes [3]) with different missing cases. The
experiments are conducted by training on the specific miss-
ing rate η% and testing with the same rate. The trends are
similar to the main results in Section 4.2 of the main paper.
The proposed missing-aware prompts are able to tackle gen-
eral missing modality cases without the need of finetuning
the entire model. Moreover, the input-level prompts further
show the favorable performance compared to the other two
methods in most of the cases.

Particularly, we have discussed the sensitivity of input-
level prompts to different datasets, which have slightly
worse performance on Hateful Memes due to the long
prompt length (i.e., prompt length is 16). Therefore, here
we reduce the prompt length of input-level prompts to 4 for
all experiments on Hateful Memes in Figure 3. As a result,
the input-level prompting has competitive results with the
attention-level prompting while consistently outperforming
the baseline.

1.3. More Analysis

Robustness to different missing rates. We provide com-
plete experiments of robustness to different missing rates
which are mentioned in Section 4.3 of the main paper, as

Figure 1. Ablation study on the location of prompting layers for
attention-level prompts.

Figure 2. Ablation study on different length LP of prompts for
attention-level prompts. The numbers above the red points are
the proportion of parameters in prompts, compared to the entire
model. We further conduct the new baseline with additional pa-
rameters with the same proportion (e.g., 0.2%) of the prompt size,
denoted as the orange solid line.

shown in Figure 4 and 5. With the similar trends as men-
tioned in the main paper, the results show that the input-
level prompting is more robust to modality-incomplete data,
while the performance of the other two methods depend on
the training data composition.
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To be detailed, we have three observations in Figure 5:
1) The baseline is always worse than our prompting

methods, and does not show obvious difference when train
with missing rates 10% and 70%. With training on more
modality-complete data (i.e., the 90% missing rate), it per-
forms a bit better on modality-incomplete data but de-
creases the performance when testing on a low missing rate.

2) The performance of attention-level prompting de-
pends on the training data composition. When training with
more modality-incomplete data, the attention-level prompt-
ing performs well on a high missing rate but cannot reach
the best performance on low missing rate.

3) The input-level prompts is more robust to the missing-
incomplete data and reaches better performance with a low
missing rate when training with more missing-complete
data.

According to these observations, we prefer the input-
level prompts more as its robustness to modality-incomplete
data and better performance on different testing settings.

Results with complete training data. The entire results
of training with modality-complete data are shown in Fig-
ure 6. We show that our method improves the baseline by
a large margin when the training data is modality-complete.
Moreover, the input-level prompts consistently improve the
performance with different testing missing rates, showing
that it is the more favorable prompting design on tackling
the missing-incomplete data during testing.

Additional experiments on different multimodal tasks.
To show the scalability of our proposed method, we eval-
uate our method on another audio-text sentiment analysis
task following the transformer-based method [2], as shown
in Table 1. We use the pre-trained model on the CMU-
MOSEI [9] dataset and evaluate it on the MELD [6] dataset.
Hence the scenario here becomes “adapting to different
datasets with missing modalities”. Even in such scenario,
our missing-aware prompts still improve the model perfor-
mance with missing modalities.

Methods Training Testing AccuracyAudio Text Audio Text
Baseline 65% 65% 65% 65% 46.66

Attention-level prompts (ours) 65% 65% 65% 65% 48.28
Input-level prompts (ours) 65% 65% 65% 65% 47.47

Table 1. Quantitative results on MELD dataset.

More comparisons with prompt-based methods.
Though many prompting techniques [5, 10] succeed in
learning with multimodal downstream tasks without fine-
tuning the model, they still suffer from the performance
drop caused by missing modalities. In contrast, our

proposed prompting method is modality-missing-aware,
so it provides better instructions for tuning pre-trained
backbone models in general modality missing scenarios.
To better demonstrate the strength of our method, we
perform additional experiments using PromptFuse and
BlindPrompt proposed in [5] in the general setting. The
results are shown in Table 2. We find that our method
is more robust to missing modality with much higher
F1-Macro performance.

Methods Training Testing F1-MacroImage Text Image Text

PromptFuse [5] 100% 100% 65% 65% 31.21
65% 65% 65% 65% 38.47

BlindPrompt [5] 100% 100% 65% 65% 33.16
65% 65% 65% 65% 36.57

Input-level prompts (ours) 65% 65% 65% 65% 42.66

Table 2. Comparison with prompt-based baselines, PromptFuse
and BlindPrompt, on the MM-IMDb dataset.

Efficiency and training speed. To demonstrate the ef-
ficiency of our proposed method, we evaluate the train-
ing speed on MM-IMDb including forward and backward
respectively. As shown in Table 3, our method is 4.1×
faster than standard finetuning during backward propaga-
tion, showing the efficiency of our missing-aware-prompts
learning. Note that the forward time should be similar since
the backbone model is the same.

Methods forward time (ms) backward time (ms) speed up
Finetune 88.69 116.80 1x

Attention-level prompts 87.47 28.05 4.16x
Input-level prompts 90.80 28.10 4.15x

Table 3. The speed of forward and backward process during train-
ing on MM-IMDb dataset.

Limitations and future works. Although our modality-
missing-aware prompting can largely increase the robust-
ness of the tuned backbone models, it does not recover the
missing information from the multimodal input. We expect
the cross-modal generative modeling can help further boost
the performance by generating missing information. Be-
sides, when facing the scenario of having more and more
modalities (i.e. increase in terms of number of modalities),
there could be quadratic growth on number of prompts. To
tackle this issue, we expect to adopt the prompt pool con-
cept in the recent L2P [8] work, where the prompting mech-
anism can query from a fixed number of prompts in a des-
ignated pool to avoid the quadratic growth.

2. More Ablation Studies
We further investigate the effect of different prompt con-

figurations with the same parameter size as well as the effect



Figure 3. Quantitative results on the MM-IMDb, UPMC Food-101, Hateful Memes dataset with different missing rates under different
missing-modality scenarios. Each data point on the figure represents that training and testing are with the same η% missing rate.

Figure 4. Ablation study on robustness to the testing missing rate in different scenarios on MM-IMDb. All models are trained on missing-
both case with 70% missing rate, and evaluated on different cases with different missing rates.

of the alternative dummy inputs of missing images, which
are shown in Table 4 and Table 5 respectively.

Fixed size of prompts. In the main paper, we have shown
that the model with prompt length equal to 16 and attached
prompts from the first layer to the sixth layer is the best
configuration empirically. Here we compare the different
configurations of prompts given a fixed size of parameters.

The results on MM-IMDb are shown in Table 4. Ei-
ther models with fewer layers and a longer prompt length

or models with more layers and shorter prompt length pro-
duce worse results. The missing-aware prompts attached to
the early half of layers of the multimodal transformer with
a suitable prompt length are the best choice for instructing
the model performance.

Input for missing images In general, multimodal trans-
former allows the absence of any modalities via just mask-
ing out the missing inputs, thanks for its self-attention



Figure 5. Ablation of different models trained on the missing-both cases with 10%, 70%, and 90% missing rates, which represent more
modality-complete data, balanced data, and less modality-complete data, respectively. Evaluation is on missing-both case with different
missing rates.

Figure 6. All models are trained with modality-complete data, where each data pair can be randomly assigned with different missing
modality at different training epochs (i.e., text-only, image-only, and modality-complete) to account for possible missing modalities during
testing. Evaluation is on missing-both case with different missing rates.

MM-IMDb [1] Parameter size # of layers Np Length Lp F1-Macro

Attention-level Prompting Np × Lp ×D

2N 1
2
L 40.02

4
3
N 3

4
L 40.85

N L 41.56
2
3
N 3

2
L 40.88

1
2
N 2L 40.30

Input-level Prompting Np × Lp ×D

4
3
N 3

4
L 41.21

2N 1
2
L 41.45

N L 42.66
2
3
N 3

2
L 41.89

1
2
N 2L 41.08

Table 4. Different prompt configurations of prompts given the
fixed size of parameters. The models are trained and tested on the
missing-both case with missing rate η% = 70% on MM-IMDb.
The default value of N , L, D is 6, 16, 768, respectively. Bold
numbers indicate the best performance.

mechanism to generate a holistic representation of all
modalities. Apart from masking, we also can generate a
dummy sample to represent the missing modalities. Here
we compare different ways to deal with the missing-image
case: masked image, all-one image, all-zero image, fixed
random image, instance-wise random images and iteration-
wise random images.

• Masked image: Mask out image tokens when the im-
age is missing.

• All-one image: A dummy image tensor with all one
values.

• All-zero image: A dummy image tensor with all zero
values.

• Fixed random image: A pre-defined dummy image
tensor with random samples from normal distribution
N(0, 1) in advance.

• Instance-wise random images: Assign a specific ran-
dom alternative image tensor sampled from N(0, 1)
for each data pair with missing image.

• Iteration-wise random images: Randomly generate
alternative images for pairs with missing-image cases
in each iteration during training.

The results are shown in Table 5. We find that the “masked
image” is the best way for the baseline model, since the
model can ignore the attention on missing values by masks
and eliminate the effect of missing modality. In contrast,
our prompt-based models perform better with “fixed ran-
dom image” and “all-one image”. This shows that with
instruction of prompts, the model can process the dummy
images effectively. We find that “all-one image” works well
in most cases and thereby set it as the default setting in our
experiments.



MM-IMDb [1] missing image inputs F1-Macro

Baseline (ViLT [4])

Masked image 36.28
All-one image 36.26
All-zero image 30.73

Fixed random image 34.95
Instance wise random images 36.18
Iteration-wise random images 35.35

Attention-level Prompting

Masked image 40.45
All-one image 41.56
All-zero image 40.06

Fixed random image 41.84
Instance wise random images 41.35
Iteration-wise random images 41.05

Input-level Prompting

Masked image 42.39
All-one image 42.66
All-zero image 41.42

Fixed random image 42.51
Instance wise random images 42.33
Iteration-wise random images 42.59

Table 5. Ablation study on the selection of alternative inputs for
missing images. Masked image: mask out image tokens when
the image is missing. All-one (all-zero) image: a dummy im-
age tensor with all one (zero) values. Fixed random image: a
pre-defined alternative image input randomly sampled from nor-
mal distribution. Instance-wise random images: assign random
alternative image input for each data pair. Iteration-wise random
images: randomly generate alternative images in each iteration
during training. Bold numbers indicate the best performance and
underlined numbers are the second best one.

Final output feature selection. By default, we follow
ViLT, which is also our pre-trained multimodal backbone,
to use the text-related task token as the final output feature.
In addition, we have evaluated different output features as
outputs. The text-related and image-related tokens are the
pre-trained tokens and kept frozen during training, while
the independent task token is another learnable token added
in front of the text-related token (i.e., the first token of en-
tire input sequence) and kept updated during training. As
shown in Table 6, we find the default setting (i.e., using the
text-related task token as in ViLT) works the best.

Methods Output features (task token)
Text-related Image-related Independent

Baseline 36.26 29.57 34.22
Attention-level prompts 41.56 37.93 39.39

Input-level prompts 42.66 41.23 41.74

Table 6. The ablation study of the choice on final output features.
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