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ABSTRACT

This paper proposes a transformer-based learned image com-
pression system. It is capable of achieving variable-rate com-
pression with a single model while supporting the region-
of-interest (ROI) functionality. Inspired by prompt tuning,
we introduce prompt generation networks to condition the
transformer-based autoencoder of compression. Our prompt
generation networks generate content-adaptive tokens accord-
ing to the input image, an ROI mask, and a rate parameter.
The separation of the ROI mask and the rate parameter al-
lows an intuitive way to achieve variable-rate and ROI coding
simultaneously. Extensive experiments validate the effective-
ness of our proposed method and confirm its superiority over
the other competing methods.

Index Terms— Transformer-based image compression,
variable-rate compression, region-of-interest, prompt tuning

1. INTRODUCTION

Transformers have recently emerged as an attractive alterna-
tive to convolutional neural networks (CNN) for construct-
ing learned image compression systems [1, 2]. The attention-
based convolution coupled with the shifted-windowing tech-
nique [3] offers both high compression performance and low
computational cost. To make learned image codecs practical,
much research has been devoted to the use of a single autoen-
coder for variable-rate compression. However, little work is
done on transformer-based codecs.

One common approach to variable-rate compression with
a single autoencoder is to adapt the feature distributions of
the autoencoder. For example, Yang et al. [4] channel-wisely
scale the feature maps of every convolutional layer in the
autoencoder according to a rate parameter. In contrast, Cui
et al. [5] perform channel-wise scaling for the image latents
only. Specifically, they first optimize the scaling factors for
a few distinctive rate points and then interpolate between
the resulting scaling factors for continuous rate adaptation.
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In a similar vein, Wang et al. [6] scale the value matrix
channel-wisely in each self-attention layer for transformer-
based codecs. In another direction, Song et al. [7] propose
a spatially adaptive rate adaptation scheme by introducing
spatial feature transform (SFT) [8] to convolutional layers for
an element-wise affine transformation of the feature maps.
In particular, the affine parameters are predicted by a condi-
tioning network that takes as input a quality map reflecting
the spatial importance of every image pixel. Notably, this
quality map can be adapted for multiple uses, such as rate
control, spatial bit allocation, region-of-interest (ROI) cod-
ing, and task-specific coding. However, how to determine the
quality map is non-trivial and may involve time-consuming
back-propagation at inference, especially when it is necessary
to combine some of these tasks, e.g. ROI coding subject to a
rate constraint.

In this work, we propose a transformer-based image
codec capable of achieving variable-rate compression while
supporting ROI functionality. Inspired by prompting tech-
niques [9, 10], we introduce prompt generation networks
to condition our transformer-based codec. Unlike ordinary
prompting [9, 10], which learns task-specific prompt tokens,
our prompt generation networks generate content-adaptive
tokens according to the input image, an ROI mask, and a
rate parameter. The separation of the ROI mask and the rate
parameter allows us to disentangle the rate and spatial quality
controls. Our contributions are threefold. (1) To our best
knowledge, this work is the first transformer-based image
codec that leverages network-generated prompts to achieve
variable-rate coding with ROI support. (2) Our scheme of-
fers an intuitive way to specify the ROI and rate parameters.
(3) Our scheme performs comparably to or better than the
baselines while having lower computational complexity.

2. PROPOSED METHOD

We propose a Swin-transformer-based image compression
system. It is capable of performing variable-rate compression
with a single model while offering spatially adaptive qual-
ity control for the ROI functionality. Fig. 1 illustrates our
overall architecture. It is built upon TIC (Transformer-based
Image Compression [1]) but without the context model for
entropy coding. The main autoencoder ga, gs and hyper-
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Fig. 1: The network architecture of the proposed transformer-based image codec. For simultaneous rate and spatial quality
control, the prompt generation networks pa, ps produce prompt tokens for the encoder ga and decoder gs, respectively.

prior autoencoder ha, hs are comprised of Swin-transformer
blocks (STB) interleaved with convolutional layers. The
details of STB can be found in [1]. To encode an input
image x ∈ R3×H×W , the encoder takes two additional
inputs, a lambda map Mλ ∈ R1×H×W and a ROI mask
MR ∈ R1×H×W . The lambda map Mλ is a uniform map
populated with the same rate parameter mλ ∈ [0, 1] that
controls the bit rate of the compressed bitstream. The ROI
mask MR specifies spatially the importance of individual
pixels in the image. Each element in the ROI mask is a real
value in [0, 1]. Both inputs serve as the conditioning signal
utilized to generate prompt tokens for adapting the main en-
coder ga (Section 2.1). In a similar way, the decoder gs is
adapted by taking as inputs the quantized image latent ŷ and a
downscaled lambda map M̂λ ∈ R1× H

16×
W
16 that matches the

spatial resolution of the latent ŷ. Unlike [7], which relies on
a (single) quality map for both rate and spatial quality con-
trol, our design has the striking feature of disentangling the
rate (i.e. Mλ) and spatial quality control (i.e. MR). In other
words, it treats them as two independent dimensions, offering
a more intuitive way to achieve simultaneous variable-rate
and ROI coding.

2.1. Prompt-based Conditioning

Inspired by [10], we propose to use learned parameters,
known as prompts, as the additional inputs to the Swin-
transformer layers, in order to achieve variable-rate and
ROI coding. The resulting STB is termed prompted Swin-
transformer block (P-STB). As shown in Fig. 1, the learned
prompts are produced by two generation networks pa, ps for
conditioning the encoder ga and decoder gs, respectively. pa
consists of several convolutional layers that match those of
the encoder ga, and it takes as input the concatenation of the
ROI mask MR, lambda map Mλ, and image x. The feature
maps of pa are fed into the corresponding P-STBs to generate

Fig. 2: Illustration of the prompted Swin-transformer block.

prompt tokens to be interacted with image tokens. ps follows
a similar architecture, replacing the convolutional layers with
the transposed convolutional layers for upsampling.

Fig. 2 further details P-STB, where Pi, Ii denote the
prompt and image tokens, respectively. They are fed into the
ith Swin-transformer layer Si for window-based attention to
arrive at Ii+1. Specifically, each window has its own image
and prompt tokens. We divide spatially the prompt tokens
in the same way as the image tokens. For multi-head self-
attention, the key K and value V matrices, initially composed
of only image tokens XI ∈ RSI×d, are augmented with the
prompt tokens XP ∈ RSP×d, where SI , SP are the numbers
of image and prompt tokens in a window, respectively, and d
is the dimension of each token. In symbols, we have

Q = XIWQ,

K = [XI ,XP ]WK ,

V = [XI ,XP ]WV ,

(1)

where [·] indicates concatenation along the token dimension,
WQ,WK ,WV ∈ Rd×d project their respective input matri-
ces into query Q ∈ RSI×d, key K ∈ R(SI+SP )×d, and value
V ∈ R(SI+SP )×d. Then, we have

Attention(Q,K, V ) = Softmax(QK⊤/
√
d+B)V, (2)



(a) (b) (c) (d)
Fig. 3: (a) Variable-rate coding without ROI on Kodak. (b) Variable-rate coding with ROI on COCO. The annotated num-
bers indicate the quality values of ROI for CNN+SFT and SWIN+SFT. (c) Variable-rate coding optimized for a given ROI
specification on 10 randomly selected images from COCO. (d) Rate-distortion plots by altering Mλ = λ and MR on COCO.

where B denotes the relative position bias. Due to the use
of an additional strided convolution in P-STB, the number of
the prompt tokens is only one fourth of that of the image to-
kens. This helps reduce the complexity. Our design differs
from [10], where all the non-overlapping windows in a Swin-
transformer layer share the same learned prompts. We argue
that this is not optimal for spatially adaptive quality control
such as ROI coding. With our design, an output image token
in Ii+1 aggregates information from the input image Ii and
prompt Pi tokens in the same window.

2.2. Loss Function

We design our loss function in such a way that the model will
respond to both the ROI mask MRi and the rate parameter
mλ properly. Specifically, it is given by a weighted sum of
the masked distortion and the bit rate:

Lrd(x) = λ ·
∑N

i=1

MRi · (xi − x′
i)

2

N
+R, (3)

where xi, x
′
i are the i-th pixel in the original and com-

pressed images, respectively, N is the total number of pixels
in the image, R denotes the bit rate in bits-per-pixel, and
λ = f(mλ) = exp((log λmax − log λmin) ·mλ + log λmin)
is a Lagrange multiplier, which is a function of the rate param-
eter mλ, with λmax and λmin being the highest and lowest
λ, respectively. In Eq. (3), the squared error of each pixel is
weighted by ROI mask MR to reflect its spatial importance,
and λ trades off the distortion against the bit rate.

3. EXPERIMENTS

Training Details. We train our model in three stages using
Flicker2W [11] and COCO 2017 [12] training sets. In each
training iteration, the input images are randomly cropped to
256× 256. We first pre-train a base codec (i.e. ga, gs, ha, hs)
without the prompt generation networks for the highest rate
point. We then train the whole model jointly for variable-
rate coding by sampling λ uniformly from λmin = 0.0018 to

λmax = 0.0932. In this stage, a uniform ROI mask filled with
1’s (i.e. every pixel is equally important) is applied. Lastly,
we follow [7] to produce 4 types of random ROI masks and
fine-tune the model for spatial quality control.
Evaluation. We evaluate our model for variable-rate coding
without and with ROI. In the absence of ROI, we evaluate our
model on Kodak [13] by having MR = 1. In the presence
of ROI, we adopt COCO 2017 [12] validation set for test-
ing. The image reconstruction quality is measured in terms of
weighted PSNR, for which the weighted mean-squared error
is evaluated by (αMSEROI+βMSENROI)/(αNROI+βNNROI),
where α, β are the weighting factors for the ROI and non-
ROI regions, respectively, MSEROI (respectively, MSENROI)
is the sum of the squared errors over ROI (respectively, non-
ROI), and NROI (respectively, NNROI) is the number of ROI
(respectively, non-ROI) pixels. Under this setting, the ROI
is specified by the union of all the foreground objects in the
ground-truth segmentation mask.
Baselines. For comparison, the baseline methods include
(1) training separate models for variable-rate coding with-
out pa, ps (i.e. separate models for different rates), denoted
as SWIN+FRC, and (2) the spatial feature transform (SFT)
method in [7] (i.e. CNN+SFT). To validate the effectiveness
of prompt tuning, we further construct (3) a model, denoted
as SWIN+SFT, that introduces a SFT layer after every STB
in our transformer-based codec for variable-rate ROI coding.

3.1. Variable-rate Compression

Fig. 3a compares the competing methods for variable-rate
compression without ROI. We see that our method with
prompt tuning (SWIN+PT) performs very close to the base-
line method with training separate models (SWIN+FRC). In
contrast, the variant SWIN+SFT incurs a slight rate-distortion
loss. These results suggest that prompt tuning is a more effec-
tive approach to variable-rate compression than SFT for our
transform-based codec. We also see that SWIN+PT performs
comparably to CNN+SFT while having lower computational
complexity (Section 3.2).



Fig. 4: Subjective quality comparison of our method and
CNN+SFT [7]. The corresponding rate and PSNR (full im-
age / ROI / non-ROI) are presented below each image.

Fig. 3b shows how these methods perform in terms of
variable-rate coding with ROI. For this experiment, we set
α = 1, β = 0 in evaluating the weighted PSNR; that is, we
focus only on the quality of the ROI region. Recall that our
scheme (SWIN+PT) separates the rate control Mλ from the
spatial quality control MR. For the present task, MR is cho-
sen to be the binary ground-truth ROI mask while several dis-
tinct Mλ values are used for variable-rate compression. With-
out the disentanglement of the rate and spatial quality control,
both CNN+SFT and SWIN+SFT have to rely on adjusting a
quality map. Specifically, we fix the quality value of the non-
ROI region at 0 and adjust that of the ROI region for rate con-
trol. In Fig. 3b, our scheme (SWIN+PT) consistently shows
higher weighted PSNR than the other baselines. Fig. 4 further
demonstrates that as compared to CNN+SFT [7], our method
(SWIN+PT) is more effective in blurring the background for
better foreground coding.

Taking one step further, Fig. 3c compares our SWIN+PT
with CNN+SFT [7] under a more general setting, where the
ROI and non-ROI quality is weighted by 0.8 and 0.2, respec-
tively. For SWIN+PT, we simply set MR to be 0.8 and 0.2
for the ROI and non-ROI regions, respectively, while adjust-
ing Mλ for variable-rate compression. To achieve the same
effect with CNN+SFT, we back-propagate an input-specific
rate-distortion loss, λ × (0.8MSEROI + 0.2MSENROI) + R,
to the input quality map because there is no straightfor-
ward way to determine its values for simultaneous rate and
spatial quality control. In Fig. 3c, our feed-forward-based ap-
proach achieves nearly identical rate-distortion performance
to the more complicated back-prop-based optimization for
CNN+SFT (with 3 and 5 update steps).

3.2. Analyses of Prompt-based Conditioning

Rate and Spatial Quality Disentanglement. Fig. 3d demon-
strates the effectiveness of our disentanglement of the rate and

Fig. 5: Visualization of the attention map in S0 of each P-STB
in ga with a fixed binary MR at λ = 0.013.

Table 1: Comparison of the kMACs/pixel and model size.

kMACs/pixel Params (M)
SWIN+FRC 718.50 17.66
CNN+SFT [7] 1480.16 27.56
SWIN+SFT 1915.80 21.71

Ours 1070.68 32.7

spatial quality control. The rate-distortion segments of differ-
ent colors correspond to different choices of Mλ. The rate-
distortion points of the same colored segment are obtained by
setting MR in the ROI region to 0.25, 0.5, 0.75, and 1 (and
to 0 otherwise). We see that Mλ determines where the major
rate point is while MR contributes to local bit-rate variations.
Attention Maps. Fig. 5 visualizes the attention maps for im-
age tokens in different P-STB blocks of the encoder. Each
attention map reveals how the prompt tokens attend collec-
tively to every image token. That is, for every image token,
we visualize the weighting factors summed over all prompt
tokens in the same window. We see that the prompt tokens
contribute more distinctively to the ROI and non-ROI regions
in the P-STB blocks closer to the input image. In the deeper
layers, the distinction between the ROI and non-ROI regions
becomes less obvious.
Complexity Comparison. Table 1 compares the multiply-
accumulate-operations per pixel (kMACs/pixel) and model
size of different methods. Even though our model is larger
than CNN+SFT [7] and SWIN+SFT due to the higher number
of channels in pa, ps, it has lower kMACs/pixel. This is be-
cause we process the conditioning signal in lower-resolution
feature maps due to a smaller number of prompt tokens,
while [7] needs to generate affine parameters in the same
resolution as the input image. Note that our variable-rate
model can be more cost-effective than SWIN+FRC, for which
separate models must be trained for different bit rates. That
is, its effective model size is a multiple of 17.66M depending
on the number of supported rate points.

4. CONCLUSION

This work proposes a transformer-based image compression
system. It features prompt generation networks to adapt the
autoencoder for simultaneous variable-rate and ROI coding.
The major finding is that our content-adaptive prompt tuning
is more effective than spatial feature transform (SFT) in terms
of adapting the transformer-based autoencoder. It also incurs
lower kMACs/pixel than SFT.
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