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Abstract— Optical flow estimation is crucial for various
applications in vision and robotics. As the difficulty of collecting
ground truth optical flow in real-world scenarios, most of the
existing methods of learning optical flow still adopt synthetic
dataset for supervised training or utilize photometric consis-
tency across temporally adjacent video frames to drive the
unsupervised learning, where the former typically has issues of
generalizability while the latter usually performs worse than
the supervised ones. To tackle such challenges, we propose
to leverage the geometric connection between optical flow
estimation and stereo matching (based on the similarity upon
finding pixel correspondences across images) to unify various
real-world depth estimation datasets for generating supervised
training data upon optical flow. Specifically, we turn the monoc-
ular depth datasets into stereo ones via synthesizing virtual
disparity, thus leading to the flows along the horizontal direc-
tion; moreover, we introduce virtual camera motion into stereo
data to produce additional flows along the vertical direction.
Furthermore, we propose applying geometric augmentations
on one image of an optical flow pair, encouraging the optical
flow estimator to learn from more challenging cases. Lastly, as
the optical flow maps under different geometric augmentations
actually exhibit distinct characteristics, an auxiliary classifier
which trains to identify the type of augmentation from the
appearance of the flow map is utilized to further enhance the
learning of the optical flow estimator. Our proposed method is
general and is not tied to any particular flow estimator, where
extensive experiments based on various datasets and optical
flow estimation models verify its efficacy and superiority.

I. INTRODUCTION

Optical flow estimation plays an important role across
plenty applications such as robotics, augmented reality, and
autonomous vehicles. Although there exist many traditional
approaches [1]–[4] which attempt to model such a problem
of finding dense pixel-wise displacement across images from
different perspectives, their optimization objectives are typi-
cally hand-crafted thus being hard to handle various corner
cases. Along with the recent advance of deep learning tech-
niques, we have witnessed the magic leap on performance
for optical flow estimation brought by deep neural networks
(e.g. FlowNet [5] as the seminal work and many others [6]–
[10]). While most of these works heavily rely on large-scale
datasets with groundtruth annotations (i.e. optical flow maps)
to perform the supervised learning, collecting such super-
vised datasets is highly challenging and expensive in the real
world (as there exists no sensor which can directly measure
the pixel-wise correspondence between views). To address
this problem, many research works [6], [7], [11], [12] have
utilized a pre-training approach on large synthetic datasets
[11], [13], followed by fine-tuning on limited target datasets
[14]–[16]. However, such an approach is still hampered by

Fig. 1: We unify various depth estimation datasets into su-
pervised data of learning optical flow, via the introduction of
virtual disparity and virtual camera motion (i.e. ego-motion)
to produce the horizontal and vertical flows. Moreover, the
geometric augmentations are applied to not only generate
more challenging data samples but also enable an auxiliary
classifier to improve the training of optical flow estimator.

a lack of groundtruth in the real world (for performing fine-
tuning) and suffers from poor generalizability due to the
domain shift (i.e. different distributions between synthetic
and real-world data). Although there exist several recent
attempts to explore the unsupervised learning scenario [17]–
[20] (where the photometric consistency is usually adopted
to evaluate pixel correspondences across images, and joint
learning with other tasks such as depth estimation or camera
pose estimation would come into play), their performances
are mostly still inferior to those supervised ones.

To strike a better balance among aforementioned chal-
lenges (e.g., lack of real-world supervised dataset, domain
shift, and inferior performance for unsupervised learning),
[21] recently proposed a novel method to generate an image
pair with its optical flow annotations from a single real-world
input image. Basically, given the input image, its correspond-
ing 3D point cloud is firstly built with the help of depth
estimation (i.e. projecting each pixel in the input image back
to 3D space), then a 3D motion (composed of rotation and
translation) is applied to the virtual camera of the input image
to synthesize a novel view, where the pixel correspondence
(i.e. optical flow map) between the original input image and
the novel view is naturally available as the entire geometric
transformation and projection procedure is under manual



control. In the results, the real-world supervised dataset can
be constructed for training the optical flow estimator.

Inspired by [21], we come up with two further considera-
tions: 1) While the accuracy of depth estimation is critical to
the quality of synthesized novel views in [21], the monocular
depth estimation datasets which contain groundtruth depth
maps for their images seem to be a feasible alternative to
bypass the uncertainty stemmed from depth estimation; 2)
As optical flow estimation has a close relative, i.e. stereo
matching, in terms of finding correspondences, the stereo
depth estimation datasets ideally ought to be helpful as well
for learning optical flow. Moreover, as collecting groundtruth
depth maps in real-world scenarios is typically more achiev-
able than the optical flow ones due to the popularity of
depth cameras, we are therefore motivated to bring up the
following question: Can optical flow estimation be learned
from both monocular and stereo depth datasets, and can the
relationship between stereo matching and optical flow be
explored beyond treating depth as an intermediate product?

To this end, we propose a framework to unify both monoc-
ular and stereo depth datasets, followed by transforming
them into a collection of annotated optical flow data: For
an image in the monocular depth dataset, we first translate
its groundtruth depth map into the disparity map (named
virtual disparity), which is used to warp the original image
into a novel view, where the original image and the warped
one together become a stereo image pair. It is worth noting
that the pixel correspondence in such stereo image pair only
has the horizontal offset, which can be treated as horizontal
optical flow; while for a stereo image pair (obtained from
the stereo depth dataset or produced by the previous step),
we can apply the same procedure as [21] to employ virtual
camera motion (also named as virtual ego-motion) on one
image of such pair, in which its resultant novel view together
with the other image of the stereo pair finally form an optical
flow pair containing groundtruth annotation.

Furthermore, as data augmentation has become a widely
adopted training strategy to increase the quantity and diver-
sity of training data for further improving the performance
of deep models, most works of optical flow estimation also
employ data augmentation, in which the used augmentation
operations can be categorized into two classes: 1) pho-
tometric augmentations, which mainly modify the pixel
appearance (e.g. contrast, sharpness, brightness, and colors)
while preserving the spatial structure, where such property
allows them to be applied independently to each image; 2)
geometric augmentations, which would affect the scene
structure (e.g. flipping, cropping, rotating, and scaling), thus
they should be applied to both images in a pair and the
corresponding optical flow map simultaneously.

In this work, we step further to discover that, once we
only perform the geometric augmentations on one image
in a pair, its resultant pixel correspondence with respect to
another image (i.e. optical flow map) will undergo a drastic
distortion and becomes more challenging for the optical flow
estimator to predict, thus including such data samples into
training would benefit the learning of optical flow estimation

model. Moreover, we have another observation that applying
different geometric augmentations on only one image in a
pair would lead to optical flow maps with distinct charac-
teristics. In the results, we propose to pretrain an auxiliary
classifier which takes the optical flow map as input and
predicts the type of geometric augmentation being applied,
where such a classifier can be later utilized to construct a
novel objective for providing additional supervision signals
in training optical flow estimator. In summary, our full
method is composed of all the designs above (i.e. unification
over various depth estimation datasets to create a supervised
optical flow dataset, including challenging training samples
via applying geometric augmentations on only one image
in an optical flow pair, and using the pretrained auxiliary
classifier to boost the optical flow learning), in which it
can be employed on training any optical flow estimator thus
being quite flexible and general.

II. RELATED WORK

In recent years, there has been a growing interest in
leveraging the geometric relationship between stereo match-
ing (or depth estimation) and optical flow estimation to
jointly learn spatial correspondence and improve flow ac-
curacy [18], [20], [22], [23]. For instance, [20] finds that
the optical flow estimation and stereo matching tasks co-
exist in the temporally adjacent stereo pairs (i.e., stereo
video) thus proposes to bridge both tasks via photometric
reconstruction in such data format for learning a unified
model of finding pixel correspondence across images. Instead
of jointly learning optical flow and depth estimation, some
works propose to use depth estimation as an intermediate
step to generate the training data for learning estimation of
pixel correspondence (e.g. stereo matching or optical flow
estimation). For instance, [24] and [21] adopt the estimated
depth of the input image to perform novel view synthesis
for, respectively, constructing the annotated stereo or optical
flow pairs. Our proposed framework follows the similar idea
as [21] but directly takes the advantage of using groundtruth
depth in the supervised depth estimation datasets. Moreover,
as our framework has the feature of unifying various depth
datasets, it is also conceptually related to [25], in which [25]
allows the mixture of multiple datasets with various formats
of depth annotations during training the depth estimator.
Nevertheless, our target scenario is quite different from [25].

III. METHODOLOGY

A. Create Annotated Flow via Unifying Depth Datasets

Producing horizontal optical flow. As previously motivated,
we would like to unify various real-world depth estima-
tion datasets with groundtruth annotations, regardless of the
monocular or stereo ones, for synthesizing the supervised
dataset for learning optical flow estimation. We denote an
optical flow training sample as a tuple (I0, I1, F0→1), where
I0 and I1 form an image pair, while F0→1 represents the
optical flow map between I0 and I1.

Given an image Im
0 and its corresponding groundtruth

depth map Zm
0 obtained from a monocular depth dataset,



Fig. 2: Overview of general flow generation (left figure, cf. Section III-A)
and lateral geometric augmentation (right figure, cf. Section III-B. In general
flow generation, virtual disparity is firstly adopted to turn an image from the
monocular depth dataset into a stereo pair, then the virtual ego-motion is applied
on one image of each stereo pair (regardless from monocular or stereo datasets)
to include vertical flows, finally we can produce the optical flow training sample
with general flow map (i.e. having both horizontal and vertical flows); our lateral
geometric augmentation applies geometric augmentation on only one image of
a training pair to produce more challenging optical flow cases.

Fig. 3: Examples of distinct optical flow
characteristics from various lateral ge-
ometric augmentations (cf. Section III-
B). From top to bottom (zoom in for better
view), the rightmost flows are generated by
applying flipping, rotation, and shearing
operations on the leftmost source flows
(following Eq. (14) and (15)).

we start by converting Zm
0 into the disparity map d̃m via

d̃m = Bf
Zm

0
where B and f denote the baseline and focal

length, respectively. Following the practice in [24], in order
to have a wide range of baselines and focal lengths, we set
Bf = sc in which such a scaling factor sc is randomly drawn
from a uniform distribution. As the disparity represents the
pixel-wise displacement along the horizontal direction, we
can easily translate it into the form of an optical flow map by〈
d̃m,∅

〉
, where ⟨·⟩ denotes the channel-wise concatenation

operation, and ∅ is a zero map of the same size as d̃m. In
particular, we can treat

〈
d̃m,∅

〉
as a horizontal optical flow

Fm
0→1. We can now construct a stereo pair {Im

0 , Ĩm
1 } via

Ĩm
1 = W(Im

0 , si · Fm
0→1) (1)

Z̃m
1 = W(Zm

0 , si · Fm
0→1) (2)

where W(α, β) defines the warping function in which α is
warped according to β, si is randomly set to either 1 or −1
to simulate the respective case where Im

0 is on the left- or
right-hand side, and Z̃m

1 is the depth map for Ĩm
1 .

Next, we consider an image pair {Is
0 , Is

1} obtained from a
stereo dataset, where the corresponding groundtruth disparity
map is ds. The depth map Z̃s

0 of Is
0 can be simply computed

by Z̃s
0 = Bf

ds
where Bf is set to a constant as ds contains

actual disparity values. And the depth map Z̃s
1 of Is

1 is:

Z̃s
1 = W(Z̃s

0 , F
s
0→1), where F s

0→1 = ⟨ds,∅⟩ . (3)

Synthesizing general optical flow. Since Fm
0→1 or F s

0→1

only have horizontal displacement, now we advance to utilise
virtual camera motion (i.e. virtual ego-motion) as [21] to
produce more general flow maps (i.e. having both horizontal
and vertical displacements). Given the stereo pair {Is

0 , Is
1}

and the corresponding flow map F s
0→1, we aim to create

a plausible optical flow F s
1→2 that at least has vertical

displacement. This operation will enable synthesizing a novel
view Ĩs

2 , its corresponding depth map Z̃s
2 , and the target

general optical flow F s
0→2 (i.e. the flow map from Is

0 to Ĩs
2 ).

Basically, we first hypothesize an intrinsic matrix K in
which its inverse K−1 will be used to project the pixels in
Is
1 back into the 3D space, following the common practice

of previous approaches [20], [23], [26]. Then we randomly
sample a plausible rotation R1→2 and translation t1→2 to
obtain a transformation matrix T1→2 = [R1→2 | t1→2].
Subsequently, we project each pixel p1 ∈ Is

1 back into 3D
space to form a point cloud, perform camera ego-motion, and
finally project the 3D point cloud onto the 2D image plane
to derive the optical flow map F s

1→2. With such an optical
flow map F s

1→2, we can then synthesize the novel view Ĩs
2

and its corresponding depth map Z̃s
2 .

The overall procedure to reach F s
0→2 is summarized as:

F s
1→2 = KT1→2Z̃

s
1(p1)K

−1p1 − p1 (4)

Ĩs
2 = W(Is

1 , F
s
1→2), Z̃

s
2 = W(Z̃s

1 , F
s
1→2) (5)

F s
0→2 = F s

0→1 +W−1(F s
0→1, F

s
1→2) (6)

where W−1(α, β) is a specific warping function to support
the backward warping that W−1(α, β) = β(x + α(x)) and
x denote all pixel locations. Note that we can apply the
same procedure to the stereo pair {Im

0 , Ĩm
1 } derived from

the monocular dataset to obtain Fm
0→2.

Finally, we collect all the produced image pairs and their
corresponding groundtruth optical flow maps, in which they
are represented as tuples: (Im

0 , Ĩm
1 , Fm

0→1), (Ĩm
1 , Ĩm

2 , Fm
1→2),

(Im
0 , Ĩm

2 , Fm
0→2), (Is

0 , Is
1 , F

s
0→1), (Is

1 , Ĩs
2 , F

s
1→2) and

(Is
0 , Ĩs

2 , F
s
0→2). The left portion of Figure 2 shows the

entire aforementioned procedure to create optical flow
training samples, which is named general flow generation.

We would like to emphasise that, although the afore-
mentioned procedure of producing horizontal optical flow
seems to be redundant when we have monocular depth data
(i.e. in which we can directly go for synthesising horizontal
and optical flow instead of getting the disparity first, as
what [21] does), we intend to have such way of description
for putting both stereo and monocular dataset cases into the
same framework, and highlighting the common ground (i.e.



Fig. 4: Our framework for learning optical flow estimator. Given an image pair {Is, It}, we firstly apply lateral geometric
augmentation on It to obtain I ′

t, where the resultant groundtruth optical flow Fs→t′ between Is and I ′
t can be easily obtained

via the computation in Section III-B. Our flow estimator P which takes {Is, I ′
t} as input is trained to output the flow map fp

that ideally should be identical to Fs→t′ , where the objective LP evaluates the difference between Fs→t′ and fp. Moreover,
the auxiliary classifier C, which is trained to identify the type of augmentation used in the lateral geometric augmentation
of the appearance of input flow, contributes to define another objective LC (cf. Section III-C) to increase the learning of P .

finding correspondence) between optical flow and disparity.
Moreover, with respect to [21], in addition to the contribution
of our unifying various depth datasets to generate general
flows, our framework has novelties from lateral geometric
augmentation and the auxiliary classifier as described below
(the model variant ablating all our designs, cf. the first row
of Table III, reproduces [21] and performs worse than ours).

B. Lateral Geometric Augmentation

In addition to typical augmentation strategies (i.e. applying
photometric augmentation on each image independently,
or applying the same geometric augmentation on the two
images of a training pair), we propose to conduct lateral
geometric augmentation, where the geometric augmenta-
tion is applied on only one image of each training pair to
produce more challenging cases to learn the optical flow
estimation. Three three geometric augmentation operations
are adopted and sequentially introduced in the following.
Flipping operation. Both horizontal and vertical flipping
operations are adopted. After applying the horizontal flipping
operation, we use the equations below, which are derived
from the symmetric attribution of the flipped coordinates.

(x0 + x1)/2 = H/2, y0 = y1 (7)

where p0 = (x0, y0) and p1 = (x1, y1) represent the
original and flipped pixel coordinates, respectively, and H
is the height of the image, we reach the per-pixel flow
fhf
p0→p1

= (H−2x0, 0) for horizontal flipping augmentation.
Similarly, for the vertical flipping operation, we obtain the
per-pixel flow fvf

p0→p1
= (0,W − 2y0) where W is the

width of the image. When collecting all the per-pixel flow,
we can obtain the special flow Fhf

a and F vf
a related to

horizontal and vertical flipping augmentations, respectively.
In particular, the backward flow B resulting from the flipping
augmentation is the same as the forward flow F , so we have
Bhf

a = Fhf
a and Bvf

a = F vf
a .

Rotation operation. We apply rotation operations to images
by randomly sampling a Euler angle θa and adding a sign
factor si uniformly sampled from {−1, 1} to simulate clock-
wise and counterclockwise rotations. The rotation matrix
R(θa) is then calculated by:

R(siθa) =

[
cos(siθa) −sin(siθa)
sin(siθa) cos(siθa)

]
(8)

Next, we randomly sample a center point c0 and rotate every
pixel coordinate p0 about c0 by applying the rotation matrix.
This yields the special flow F r

a and the backward flow Br
a

resulting from the rotation augmentation:

F r
a = R(siθa)(p0 − c0) + c0 − p0 (9)

Br
a = R(−siθa)(p0 − c0) + c0 − p0 (10)

Shearing operation. We introduce shearing operations to
images along horizontal or vertical directions by randomly
sampling a shearing magnitude factor λa and a sign factor si
that is sampled uniformly from {−1, 1} to simulate different
directions of shearing stress. This creates horizontal and ver-
tical shearing matrices Shs(λa) and Svs(λa), respectively:

Shs(λa) =

[
1 siλa

0 1

]
, Svs(λa) =

[
1 0

siλa 1

]
(11)

We then apply these horizontal or vertical shearing matrices
to every pixel coordinate p0 to obtain new coordinates p1.
To obtain the forward flows {Fhs

a , F vs
a } and backward flows

{Bhs
a , Bvs

a } stemmed from shearing augmentation, we use:

Fhs
a = Shs(λa)p0 − p0, Bhs

a = Shs(−λa)p0 − p0 (12)
F vs
a = Svs(λa)p0 − p0, Bvs

a = Svs(−λa)p0 − p0 (13)

Lateral geometric augmentation. Given a tuple of training
data (Is, It, Fs→t) which can be mapped to any tuple
produced by general flow generation (cf. Section III-A), we
can apply geometric augmentation to either the source Is
or target image It to obtain I ′

s = A(Is) or I ′
t = A(It),

where A(·) is the augmentation operator. We refer to the
forward flow resulting from flipping, rotation, or shearing
augmentation as Fa (also named as special flow), which is
used to warp Is to I ′

s, and the backward flow as Ba, which
is used to warp I ′

t to It. We then use the warping operator
W−1 to compute the challenging flow cases:

Fs→t′ = Fs→t +W−1(Fs→t, Fa) (14)

Fs′→t = Ba +W−1(Ba, Fs→t) (15)

The resulting tuples of (Is, I ′
t, Fs→t′) and (I ′

s, It, Fs′→t),
generated by lateral geometric augmentation, are more chal-
lenging and allow us to train the optical flow estimation
network more effectively. The right portion of Figure 2 shows
an overview of our lateral geometric augmentation.



C. Auxiliary Classifier

Optical flow features from different augmentations. As
shown by Eq. (14) and (15), both optical flow maps Fs→t′

and Fs′→t contain the augmentation-dependent components
of forward flow Fa and backward flow Ba, it is thus believed
that we should be able to infer the type of augmentation
(flipping, rotation, or shearing) being applied for the lateral
geometric augmentation. We achieve this by training an aux-
iliary classifier C that can identify the type of augmentation
used in lateral geometric augmentation from the appearance
of the input optical flow map. The classifier takes an optical
flow F as input and produces a real-valued vector Tp =
C(F ) composed of four elements, where Tp passed through
softmax represents the posterior of four augmentation types
(i.e. flipping, rotation, shearing, and none of the above). Our
classifier C comprises a feature extractor, an average pooling
layer, and a fully connected layer. The feature extractor is
based on the small encoder of the RAFT [8] model with
input channels set to 2 to support the optical flow input.
Training optical flow estimator with auxiliary classifier.
With the auxiliary classifier C pretrained on annotated opti-
cal flow data (produced by general flow generation and later
geometric augmentation), we can further use it to increase
the learning of the flow estimator P , as shown in Figure 4
– noting that such design is stemmed from the motivation of
introducing an additional learning task, which is easier than
optical flow estimation but closely related to it, to further
boost the training of optical flow estimator via providing
more supervision signal. Given an optical flow training pair
{Is, It}, we apply lateral geometric augmentation on It with
the augmentation type Ta to produce I ′

t. When the flow
estimator P takes {Is, I ′

t} as input, its prediction fp should
not only align with the groundtruth flow map Fs→t′ (where
the L1 error between fp and Fs→t′ defines the objective LP ),
but also to be correctly classified by C to match Ta. The
classification difference in terms of cross entropy between
C(fp) and Ta thus forms a novel objective LC where the
gradients are backpropagated to update P . The idea here is
that since our classifier C is pretrained and frozen during
the training of flow estimator P , if the optical flow map fp
predicted by P is not accurate enough for the classifier C
to distinguish the type of augmentation being applied on I ′

t

then the error is all attributed to the model P . The overall
loss L to train the flow estimator P is formulated as:

L = LP (fp, Fs→t′) + λCLC(C(fp), Ta) (16)

where the hyperparameter λC balances between LP and LC .

IV. EXPERIMENTS

A. Datasets

Our approach enables the generation of annotated optical
flow data via unifying a variety of depth estimation datasets,
where two real-world depth datasets are used in our exper-
iments: ReDWeb [27] (a monocular dataset, denoted as R)
and DIML (a stereo dataset, denoted as D). For detailedness,
RebWeb R is an RGB-D dataset composed of 3600 images

and their corresponding depth maps, moreover, it contains
highly diverse indoor and outdoor scenes; DIML D focuses
on outdoor scenes, in which it is composed of 1505 stereo
pairs and the corresponding disparity maps.

Moreover, as the synthetic datasets, which have
groundtruth optical flow maps to enable supervised
learning of optical flow estimation, are actually compatible
with our proposed framework (cf. Figure 4), we therefore
also consider them in our experiments: FlyingChairs
(denoted as C) and FlyingThings3D (denoted as T), where
T offers more complex motion patterns than those in C.

Based on the four aforementioned datasets, we come up
with several settings to leverage them for our training:

• C where the flow estimator P is trained on C only.
• C→T where the flow estimator P is firstly trained on C

then finetuned on the more complex dataset T.
• R+D where the flow estimator P is trained on the real-

world annotated optical flow dataset, which is produced
by unifying/mixing across R and D datasets via our
general flow generation procedure (cf. Section III-A).

• C→T→R+D where the flow estimator P is sequentially
trained/fine-tuned on dataset C, dataset T, and our mixed
real-world dataset R+D.

Furthermore, as our proposed framework for learning optical
flow has the flexibility to support arbitrary backbones of flow
estimator, here we adopt two well-known optical flow models
for P in our experiments: RAFT [8] and GMFlow [10].

One synthetic and one real-world datasets are adopted for
our evaluation: Sintel [14] and KITTI [15], [16], where both
are popular and challenging benchmarks for optical flow
estimation. Sintel is generated from a 3D animated short
film, which offers two render passes: “clean” and “final”,
where the latter additionally includes visual variations (e.g.
blurring and atmospheric effects); KITTI is collected from
real-world street views, where we use both versions of it,
namely “KITTI-12” and “KITTI-15”. Regarding the evalu-
ation metrics, we adopt EPE and F1-all, where the former
refers to the average endpoint error while the latter refers to
the percentage of optical flow outliers over all pixels.

B. Experimental Results

The experimental results of learning flow estimators (i.e.
RAFT or GMFlow) upon four training settings are summa-
rized in Table I (for using RAFT model as flow estimator)
and Table II (for using GMFlow as flow estimator) respec-
tively. From these results we draw several observations:
1) Regarding the evaluation upon real-world scenarios (i.e.
KITTI-12 and KITTI-15), training using real-world datasets
R+D (where the optical flow annotations in R+D are produced
by our proposed general flow generation), either only using
R+D or starting from synthetics ones C→T then finetuning
on R+D (i.e. last two rows in both tables), provide better
performance than those using only synthetic datasets (i.e. C
and C→T), showing our main contribution of providing real-
world supervised dataset for optical flow estimation;
2) Leveraging synthetic dataset that has precise optical flows
of groundtruth to warm start the training (i.e. C→T→R+D)



Fig. 5: Example Results on KITTI-15: (1) reference frame, (2) groundtruth flow, and flow maps produced by the RAFT
models respectively trained on (3) FlyingChairs (C), (4) FlyingChairs→FlyingThings3D (C→T), (5) our real-world dataset
mixed across ReDWeb and DIML (R+D), and (6) FlyingChairs→FlyingThings3D→our mixed dataset (C→T→R+D). The
circles on the figures highlight the regions where our method improves the flow estimation (zoom in for better visualisation).

often is able to perform the best in real-world scenarios (i.e.
KITTI), compared to using only the real-world dataset R+D;
3) Though having better performance and generalizability in
real-world scenes (i.e. KITTI-12 and KITTI-15), training or
finetuning on real-world datasets (i.e. R+D and C→T→R+D)
would lead to worse performance in the synthetic scenario
(i.e. Sintel) due to the domain gap among real and virtual
data, while training ended up with synthetic ones (i.e. C
and C→T) typically performs better in Sintel, since C and T
datasets share the same graphics rendering process as Sintel.
Note that [21] also has such an observation similar to ours;
4) Another important contribution of our proposed method is
the capability of unifying various depth estimation datasets,
where prior work [21] typically can only utilize a single
dataset, thus resulting in worse performance (in which the
model variant without any of our proposed designs, i.e. the
first row in Table III, actually reproduces [21]’s model trained
on D; even when we train [21]’s model based on RAFT flow
estimator upon R, it still performs worse to have 2.42 EPE
and 9.96 F1-all for KITTI-12 and 5.65 EPE and 18.85 F1-all
for KITTI-15) than ours trained on unified dataset R+D.

TABLE I: Quantitative results upon RAFT flow estima-
tors with different training settings (cf. Section IV-A).

Datasets Sintel KITTI-12 KITTI-15
clean final EPE F1-all EPE F1-all

C 2.36 4.39 5.14 34.64 10.77 41.08
C → T 1.64 2.83 2.40 10.49 5.62 18.71
R+D 2.61 3.98 2.16 9.28 4.18 15.03

C → T → R+D 2.44 3.88 2.12 8.28 4.06 13.58

TABLE II: Quantitative results upon GMFlow flow esti-
mators with different training settings (cf. Section IV-A).

Datasets Sintel KITTI-12 KITTI-15
clean final EPE F1-all EPE F1-all

C 3.23 4.43 8.73 47.10 17.82 56.15
C → T 1.50 2.96 5.09 25.75 11.60 35.52
R+D 3.58 4.88 4.21 21.63 9.80 33.95

C → T → R+D 3.01 4.60 4.33 19.60 8.66 28.78

In Figure 5 we provide some qualitative examples, where
we see that the models trained on only synthetic datasets
(e.g. C or C→T in the third or fourth columns of Figure 5)
though provide correct object shape but may exhibit glaring
errors in flow direction, while the models trained on diverse
and challenging real-world datasets (attributed to our general
flow generation and lateral geometric augmentation; e.g. R+D
or C→T→R+D in the fifth or sixth columns of Figure 5) show
less artifacts and errors, thus achieving better performance.

C. Ablation Study
Model Designs. We conduct an investigation upon the model
designs in our proposed framework: virtual disparity, lateral
geometric augmentation, and auxiliary classifier. Please note
that here we specifically only adopt DIML dataset to perform
model training in order to exclude the benefit of our unifying
various depth datasets and better focus on the contributions
of our model designs. Moreover, as virtual ego-motion has
been introduced in [21], we thus do not consider it in our
ablation study. Furthermore, though DIML dataset itself is
already a stereo dataset, we can still leverage different scaling
factors for baseline B and focal length f to introduce differ-
ence virtual disparities. From Table III which summarizes the
ablation results on KITTI-15 dataset, we observe that: 1) the
model variant that excludes all our designs (i.e. reproduction
of [21]) performs the worse, while introducing our virtual
disparity to enrich the depth variance helps to boost the
performance; 2) the further introduction of lateral geometric
augmentation provides the significant improvement thanks
to its providing more diverse and challenging optical flow
samples for learning; 3) with adopting our proposed auxiliary
classifier C, the full model exhibits further advance, thus
verifying the contribution and efficacy of the corresponding
novel objective LC .
Accuracy of Auxiliary Classifier C. Moreover, we conduct
a study (cf. Table IV) to investigate the impact caused by the
accuracy of auxiliary classifier C (noting that the accuracy



TABLE III: Ablation study for model designs. Evaluation
is based on KITTI-15 dataset with two flow estimator back-
bones (GMFlow and RAFT) being trained on DIML dataset.

virtual lateral geometric auxiliary GMFlow RAFT
disparity augmentation classifier EPE F1-all EPE F1-all
# # # 11.25 39.8 6.08 16.74
! # # 12.31 39.91 5.76 16.03
! ! # 10.97 35.44 4.64 15.83
! ! ! 10.94 34.05 4.52 15.36

of the classifier C is evaluated on the ReDWeb dataset,
higher accuracy indicates better performance of identifying
the augmentation types from the flow maps), in which we
observe that a stronger C (with its accuracy to be 0.80) can
contribute to better training of flow estimator in comparison
to the weaker one (with its accuracy to be 0.69).

TABLE IV: Study on the impact from the accuracy of
auxiliary classifier C. Evaluation is based on two flow mod-
els (RAFT backbone) trained on DIML dataset respectively
using two auxiliary classifiers with different accuracy levels.

classifier Sintel KITTI-15
strength clean final EPE F1-all

weak (accuracy = 0.69) 3.59 4.86 5.10 15.61
strong (accuracy = 0.80) 3.56 4.91 4.52 15.36

Please kindly refer to our supplementary video for more
ablation studies, implementation details (e.g. the parameter
settings and illustrated procedures for generating virtual
disparity and virtual ego-motion as well as applying lateral
geometric augmentation, and the architecture of auxiliary
classifier), and more qualitative results.

V. CONCLUSION

We propose a novel framework to well unify various
supervised depth estimation datasets, including both monoc-
ular and stereo ones, for synthesizing the real-world optical
flow training set with groundtruth annotations. With further
introducing the challenging optical flow training samples by
our proposed lateral geometric augmentation and building
a novel objective function based on our proposed auxiliary
classifier, the learning of optical flow estimator is largely
benefited to achieve the superior performance with respect
to the state-of-the-art baseline across various experiments.
The source code and model are available at https://
github.com/AegeanKI/OpticalFlowFromDepth
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flow, depth, and scene flow without real-world labels,” IEEE Robotics
and Automation Letters, 2022.

[24] J. Watson, O. M. Aodha, D. Turmukhambetov, G. J. Brostow, and
M. Firman, “Learning stereo from single images,” in European Con-
ference on Computer Vision (ECCV), 2020.

[25] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“Towards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2022.

[26] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[27] K. Xian, C. Shen, Z. Cao, H. Lu, Y. Xiao, R. Li, and Z. Luo, “Monoc-
ular relative depth perception with web stereo data supervision,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

https://github.com/AegeanKI/OpticalFlowFromDepth
https://github.com/AegeanKI/OpticalFlowFromDepth

	Introduction
	Related Work
	Methodology
	Create Annotated Flow via Unifying Depth Datasets
	Lateral Geometric Augmentation
	Auxiliary Classifier

	Experiments
	Datasets
	Experimental Results
	Ablation Study

	Conclusion
	References

