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Abstract. LiDAR sensors have become one of the most popular active depth
sensing devices nowadays with their wide applications in autonomous driving and
robotics. Among various types of LiDARs, indirect time of flight (iToF) has been
ubiquitously applied on smartphones and consumer-level imagining devices due
to its affordable price. Based on the common camera configuration on nowadays
smartphones of having an iToF sensor and multiple RGB cameras with different
focal lengths (thus leading to different fields of view), in this work, we investi-
gate the integration between two opposite but complementary sensing modalities
to achieve better depth estimation: 1) The active sensing modality based on iToF
provides absolute and metric depths but suffers from noises caused by environ-
mental lighting and heat; 2) The passive sensing modality based on monocular
RGB cameras produces high-resolution but relative depth estimation. Our pro-
posed integration is built upon a weakly-supervised learning framework where
the learning objective mainly stems from the inter-camera geometric consistency
with the help of iToF depth estimates. Moreover, we adopt the structure distilla-
tion technique for preserving structure details from the passive sensing method.
We conduct experiments on both synthetic and real-world datasets and demon-
strate that the depth estimation produced by the proposed integration model has
a comparable quantitative performance with respect to the supervised learning
baselines. Besides, the qualitative evaluation of our model shows that it utilizes
the advantages and further overcomes the limitations of both sensing modalities.

Keywords: multiple view geometry · multi-modal and multi-view learning · stereo
and 3D vision.

1 Introduction

Depth estimation is an essential task in computer vision. Among various depth sensors,
RGB-D camera modules attract attention because of their capability of multimodal per-
ception from the environment, providing the depth and the RGB images simultaneously.
For the RGB-D camera module of consumer-level mobile phones, time-of-flight (ToF)
⋆ Work done at NYCU as graduate student.
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Fig. 1. Illustration of our RGB-D camera module with specific emphasis on the differences in
terms of focal lengths and fields of view (FoV). Compared with the RGB cameras, the iToF
camera typically has smaller resolution and longer focal length, leading to the narrower FoV.

cameras are the more affordable solution. As shown in Figure 1, the camera module
used in this study comprises an indirect time-of-flight (iToF) depth camera, an ultra-
wide-angle RGB camera, and a wide-angle RGB camera. Our objective is to obtain
accurate metric depth with the same field of view (FoV) as that of the RGB image.

As shown in Figure 2, we have the active sensing depths measured by the iToF cam-
era and the passive sensing depths estimated from the RGB image by the off-the-shelf
vision-based monocular depth estimation model [19]. The iToF depth camera measures
the phase shift between the emitted and reflected infrared light [10] for depth calcula-
tion. As a result, the depth measured by iToF is accurate in short range and has metric
(absolute) values. However, its resolution and FoV are relatively lower than those of the
depth maps estimated from RGB images. As shown in the right column of Figure 2, the
iToF depths warped onto the RGB image plane have a large invalid part with void val-
ues (yellow region with depth value 0). Moreover, the iToF depths suffer from different
types of noises and errors, such as multi-path interference errors, periodic noises, and
low reflection of the infrared signal, causing inaccurate warping results. On the other
hand, vision-based monocular depth estimation models [31,23] have shown impressive
performance in the depth estimation with high-resolution results [19]. These models
benefit from the variety of large datasets and the learned depth cues of objects, such as
edges and vanishing points [12]. However, the obtained depths are relative values and
may suffer from incorrect depth cues due to the domain gap. In short, the active and
passive depth sensing modalities are complementary to each other and their integration
stands a good chance in the combination of advantages from both sides. Our goal is to
obtain a metric depth map with high resolution and less noise by utilizing both iToF
depths and RGB images.
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Fig. 2. An example set of the monocular depth estimation [31,19] on IL and IR, with the cor-
responding iToF depth maps {DL

iToF,D
R
iToF} being warped onto the image planes of their re-

spective cameras (i.e. CL with ultra-wide-angle lens and CR with wide-angle lens). Notice that
{DL

iToF,D
R
iToF} stemmed from iToF sensor have metric depth values with smaller FoVs and con-

tain more noises, whereas the depth maps computed by the off-the-shelf monocular depth esti-
mation model [31,19] have higher resolutions but only relative depth values.

The straightforward idea for cross-modal depth integration is to utilize the confi-
dence map of the metric depth, filter out the unreliable depth measurements, and train
the model with supervised learning as a depth completion task. However, our iToF
depth camera lacks the information for uncertainty, making it difficult to expose the
confident regions in the iToF depth map. Moreover, it is difficult to reduce the influence
of noise using RANSAC [30] because of the large amounts of noises in iToF depth
map. Therefore, iToF depths cannot be used as ground truths for supervised learning.
Furthermore, although the structured light [28] could obtain the ground-truth depths,
it is labor-intensive and sensitive to noise. Another way for supervised learning is to
adopt synthetic data [21]. Unfortunately, the problem of the domain gap between the
real and synthetic images is difficult to overcome. As shown in Figure 3, iToF depths
taken by our device have high-frequency and periodic noises, which are not typical in
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Fig. 3. Comparison on the iToF depth maps between our collected iToF-RGB1k dataset and the
synthetic ToF-FlyingThings3D dataset [21]. The noises of iToF depth maps in iToF-RGB1k are
high-frequency and periodic while those in ToF-FlyingThings3D are low-frequency and non-
periodic, leaving a large domain gap to deploy the model trained on synthetic data.

the synthetic dataset ToF-FlyingThings3D [21], causing the issue of deployment in the
real world.

To tackle these challenges, we propose a cross-modal depth estimation model to
integrate passive sensing RGB and active sensing iToF images as well as its weakly
supervised learning method. Instead of direct supervision with ground-truth depths, the
training of our model is self-supervised with the consistency of multi-view geometry by
computing the similarity between the captured RGB image and the warped one accord-
ing to the estimated depths. Moreover, our model leverages the off-the-shelf monocular
depth estimation model to extend the original limited FoV of iToF and distill the knowl-
edge of depth structure.

In summary, contributions of this work include:

1. We propose a cross-modal depth estimation model and its weakly-supervised learn-
ing framework containing the cross-warp consistency and depth structure distil-
lation. This model integrates the active iToF depths with the passive RGB image to
obtain the metric depth map having the same FoV as the RGB image.

2. We collect the real-world dataset iToF-RGB1k with 1074 sets of triplet data for
the training and testing of the cross-modal depth estimation model. Each triplet
contains an ultra-wide RGB image, a wide RGB image, and an iToF depth map.

3. Quantitative evaluation using the synthetic dataset ToF-FlyThings3D[21] as train-
ing data shows that our model gains competitive results compared with other su-
pervised learning methods, even though our model is a weakly supervised learning
method. Our model also qualitatively performs well when trained and tested on
real-world dataset iToF-RGB1k.
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2 Related Works

2.1 Depth Completion

The objective of depth completion is to estimate a dense and accurate depth map from a
sparse or incomplete one by recovering missing or invalid depth values. Ma et al. [17]
propose the Sparse-to-Dense method to predict the dense depth map from a sparse set
of depth measurements and a single RGB image. In their following work, Ma et al.
[16] further improve Sparse-to-Dense by utilizing photometric consistency and cam-
era poses calculated by PnP with RANSAC. Wong et al. [29] and Choi et al. [3]
utilize temporal photometric consistency with pose estimation network and L1 loss.
DFuseNet [26] utilizes stereo photometric consistency in depth completion task. While
these approaches fill in missing depth values based on confident measurements, our
method extends the FoV of depth images without confidence filtering. Moreover, our
model tackles the problem of large FoV differences among three cameras without addi-
tional pose estimation or stereo image rectification.

2.2 iToF Depth Refinement and Cross-modal Depth Estimation

Because of the success of deep learning [14] in various machine learning tasks, many
network models have been proposed to refine iToF depth, requiring synthetic data for
supervised learning [18,27,9,5]. As another modality, RGB has been used for iToF
refinement or depth estimation with supervised learning for model training [21,13].
CroMo method [28] utilizes geometric consistency for self-supervised learning from
the cross-modal dataset with iToF and stereo polarization images. Instead of depth data
used in our method, CroMo uses iToF correlation images. Moreover, their stereo RGB
cameras are with the same focal length, but ours are different. Furthermore, our method
distills the knowledge of depth structure from other off-the-shelf monocular depth esti-
mation models.

2.3 Monocular Depth Estimation and Knowledge Distillation

Monocular depth estimation models use the visual depth cue to estimate the spatial
relationship between objects [12] from a single image. Godard et al. [7] introduce a
self-supervised-learning method with left-right consistency. Recent supervised-learning
works, such as MiDaS [23], DPT [22], and LeReS [31], leverage neural networks with
advanced model structures and large diverse datasets. Miangoleh et al. [19] discover
the trade-off between scene structure and high-frequency details and mix the estimated
depths with low and high resolutions to boost the performance of the off-the-shelf
model. Inspired by knowledge distillation, DistDepth [30] distills depth-domain struc-
ture knowledge from the off-the-shelf model into its monocular depth estimator. In
contrast with our method which integrates RGB and iToF modalities to estimate abso-
lute depths, these works use single modality (RGB) and most of them estimate relative
depths.
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Fig. 4. Computational flow of our framework of integrating active and passive depth sensing
modalities (i.e. iToF sensor and RGB cameras respectively). We warp the iToF depth map onto
the image planes of the RGB cameras for rough alignment. Then, we input the RGB image and
the warped iToF depth map into the integration network to integrate modalities and to estimate
metric depth on the perspective of the RGB image. Integration Network is weakly supervised by
cross-warp consistency and depth structure distillation. See Sec.3 for details.

3 Methods

3.1 Problem Statement

Our cross-modal integration scenario for depth estimation is built upon a RGB-D cam-
era module composed of:

1. Left RGB camera CL with an ultra-wide-angle lens, where the image captured by
CL is denoted as IL;

2. Right RGB camera CR with a wide-angle lens, where the image captured by CR is
denoted as IR;

3. iToF depth camera CiToF, in which CiToF produces the iToF depth map DiToF.

In this RGB-D camera module, the FoV of IL is larger than IR, and the iToF camera is
typically with the smallest FoV. Without loss of generality, we assume that the camera
with ultra-wide-angle lens is placed on the left of the one with wide-angle lens. The
objective of our cross-modal integration is to acquire the depth maps DL and DR re-
spectively for both CL and CR, with well taking the complementary properties between
{CL,CR} and CiToF to achieve the better depth perception results. The depth map DL is
expected to consist of absolute-metric and less-noisy depths from the same perspective
of the left RGB camera CL.
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3.2 Camera Calibration

Prior to realizing cross-modal integration of the RGB-D camera module, we calibrate all
the cameras to get their geometric characteristics (i.e. intrinsic parameters KL, KR, and
KiToF for CL, CR, and CiToF respectively) as well as their geometric relationship (i.e.
extrinsic parameters TiToF→L, TL→iToF, TiToF→R, TR→iTof, TL→R, and TR→L between
cameras, where TiToF→L denotes the transformation from CiToF to CL and the others are
defined analogously). We adopt the calibration toolkit of OpenCV [2] and a 7×9 metric
chessboard pattern to conduct calibration, where the intensity maps of RGB images
{IL, IR} and the infrared amplitude map of the iToF camera CiToF are taken as inputs.

3.3 Warping iToF Depths and RGB Images

With the extrinsic and intrinsic parameters among RGB and iToF cameras, the warping
grid for building the pixel-wise correspondence across their image planes now becomes
available, under the following computation procedure:

Given the intrinsic parameters {KA,KB} of two cameras {CA,CB}, the extrinsic
transformation TA→B between them, and the depth map DA related to the image plane
of CA, the corresponding pixel pB on the image plane of CB for a specific pixel pA on
the image plane of CA is computed by

pB = KBTA→BzpA
K−1

A pA (1)

where zpA
= DA(pA). Based on computing the corresponding pixels across cameras, the

forward warping grid from camera CA to camera CB with the help of depth map DA
is denoted as ⟨proj(DA,TA→B,KA,KB)⟩, indicating how the pixels on camera CA’s
image plane should move in order to be aligned with the content on the image plane of
camera CB (following the similar notations as DistDepth [30]). Moreover, we denote
the backward warping grid from camera CB to camera CA (i.e. the inverse mapping
with respect to the forward warping grid) as ⟨proj(DA,TA→B,KA,KB)⟩−1.

Based on such technique of warping grid, if we treat the iToF depth map DiToF itself
as a grayscale image on the image plane of iToF camera CiToF, we then are able to warp
it onto the image planes of {CL,CR} thus obtaining DL

iToF and DR
iToF respectively:

DL
iToF = DiToF ⟨proj(DiToF,TiToF→L,KiToF,KL)⟩ (2)

DR
iToF = DiToF ⟨proj(DiToF,TiToF→R,KiToF,KR)⟩ (3)

in which {DL
iToF,D

R
iToF} seem to already provide the depth perception from the per-

spective of {CL,CR}. However, as iToF cameras typically have a longer focal length
than the RGB ones thus leading to the narrower FoV, the warped depth maps (i.e.
{DL

iToF,D
R
iToF}) from iToF camera CiToF to RGB ones {CL,CR} would unfortunately

have large void regions. Moreover, the noise on iToF depth map caused by environmen-
tal lighting and heat would also lead to the incorrect warping results. Figure 2 shows the
void region due to the difference in terms of focal length as well as the wrong warped
results caused by iToF noise. Despite these limitations, the benefits of iToF depth, such
as active sensing and metric/absolute value, should be preserved after the following
integration of RGB and iToF cameras.
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3.4 Off-the-shelf Monocular Depth Estimation

In addition to the warped iToF depth maps {DL
iToF,D

R
iToF}, another plausible and popu-

lar way of acquiring depth upon the image planes of RGB cameras {CL,CR} is to use
the off-the-shelf monocular depth estimation model f , thanks to the recent development
of (deep-)learning-based techniques. The depth maps {DL

RGB = f(IL),D
R
RGB = f(IR)}

contribute the largest FoV with respect to {CL,CR} (as all the pixels of {IL, IR} have
their depth estimates produced by f , while {DL

iToF,D
R
iToF} have quite some void re-

gions) but only produce relative depth perception.

3.5 Integration of RGB and iToF

Given both the active and passive depth sensing components (i.e. {DL
iToF,D

R
iToF} and

{DL
RGB,D

R
RGB} respectively) upon the image planes of {CL,CR}, we now proceed to

integrate them to produce better depth perception. Instead of directly taking DL
iToF and

DL
RGB as input to the fusion model for producing the final depth estimation where their

difference in terms of the depth-scale change would lead to problematic learning, we
propose a novel integration framework based on the following learning scheme com-
posed of three important aspects and shown in Figure 4. Please note that here we take
CL as an example while CR follows the analogous process. 1) An integration network
M (as indicated by the region shaded by light purple color in Figure 4) adopts the pas-
sive sensing RGB image IL for refining the active sensing depth component DL

iToF to
obtain the refined depth DL

∗. The basic idea behind it is leveraging the rich appearance
and structure information of the RGB image to help denoising DL

iToF as well as enlarging
its FoV; 2) To address the lack of ground-truth depth for supervised learning the inte-
gration, we leverage the geometric relationship across two RGB cameras {CL,CR} and
build the photometric and depth consistency loss to realize the unsupervised learning of
DL

∗; 3) We adopt the passive component DL
RGB as structural guidance for DL

∗ during the
training of the integration network M. In other words, we distill the knowledge of depth
structure from DL

RGB. These three important aspects in our framework are driven by two
main objectives: cross-warp consistency and depth structure distillation, which we
detailed sequentially in the following.

Cross-warp Consistency. As we tend to maximize the practical usage and the flex-
ibility of our proposed framework, we do not require the training of DL

∗ to rely on
the ground-truth labels. In other words, the learning of DL

∗ is not supervised. Instead,
we are inspired by the unsupervised objective built upon the geometric relations be-
tween cameras and photometric reconstruction, as proposed by Godard et al. [7], where
the accurate depth estimate of the left camera should enable the reconstruction of the
right image by warping the left image via the geometric transformation between them.
Following the similar idea, we introduce the cross-warp photometric consistency loss
L
DL

∗
xwarp-I for the refined depth DL

∗:
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L
DL

∗
xwarp-I = L

DL
∗-fwd

xwarp-I + L
DL

∗-bwd
xwarp-I

= S(IR
DL

∗
, IR) + S(IL

DL
∗
, IL) , (4)

where S(a, b) = α
1− SSIM(a, b)

2
+ (1− α) |a− b|1

and IR
DL

∗
= IL

〈
proj(DL

∗,TL→R,KL,KR)
〉

IL
DL

∗
= IR

〈
proj(DL

∗,TL→R,KL,KR)
〉−1

.

in which function S(a, b) evaluates the SSIM structural distance as well as L1 pixel
errors between a and b (noting that we follow the common practice as [30] to set α =
0.85). IR

DL
∗

denotes the reconstructed right image, using DL
∗ to perform the forward

warping from CL to CR; IL
DL

∗
denotes the reconstructed left image, using DL

∗ to perform

the backward warping from CR to CL. Noting that LDR
∗

xwarp-I follows the similar procedure
to evaluate S(IL

DR
∗
, IL) + S(IR

DR
∗
, IR).

In addition to the cross-warp photometric consistency loss {LL
xwarp-I, L

R
xwarp-I} for

{DL
∗,D

R
∗}, we also modify the well-known left-right depth consistency loss [7,8] into

cross-warp depth consistency loss Lxwarp-D for our training of integration network M,
making the warped depth map of right camera equal to the depth map of left camera
and vice versa, regardless of forward or backward warping:

Lxwarp-D = L
DL

∗
xwarp-D + L

DR
∗

xwarp-D

= L
DL

∗-fwd
xwarp-D + L

DL
∗-bwd

xwarp-D + L
DR

∗-fwd
xwarp-D + L

DR
∗-bwd

xwarp-D

=
∣∣∣DR

DL
∗
− DR

∗

∣∣∣
1
+
∣∣∣DL

DL
∗
− DL

∗

∣∣∣
1

+
∣∣∣DL

DR
∗
− DL

∗

∣∣∣
1
+

∣∣∣DR
DR

∗
− DR

∗

∣∣∣
1
, (5)

where DR
DL

∗
= DL

∗
〈
proj(DL

∗,TL→R,KL,KR)
〉
,

DL
DL

∗
= DR

∗
〈
proj(DL

∗,TL→R,KL,KR)
〉−1

,

DL
DR

∗
= DR

∗
〈
proj(DR

∗ ,TR→L,KR,KL)
〉
,

DR
DR

∗
= DL

∗
〈
proj(DR

∗ ,TR→L,KR,KL)
〉−1

.

Depth Structure Distillation. As motivated previously that our third aspect is to adopt
the passive component (e.g. DL

RGB) as a structural guidance for the output of our inte-
gration model, we choose to adapt the structure distillation loss proposed by [30] into
our framework for realizing such aspect, which is defined as

Ldistill = L
DL

∗
distill + L

DR
∗

distill

= 1− SSIM(D̄L
∗ , D̄

L
RGB)

+ 1− SSIM(D̄R
∗ , D̄

R
RGB) , (6)
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where D̄ denotes the operation of normalizing depth D with respect to its own mean
value. The depth structure distillation loss Ldistill relies on the off-the-shelf pre-trained
monocular depth estimation model f to provide the passive depth perception. There-
fore, although our cross-warp consistency objective is self-supervised, we categorize
our method as a weakly-supervised learning framework.
Smoothness Loss [7]: Lastly, similar to other self-supervised depth estimation meth-
ods [7,8], we also adopt the smoothness loss Lsm to regulate the estimated depth {DL

∗,D
R
∗}

for making them locally smooth and edge-aware:

Lsm =
∣∣∂DL

∗
∣∣ e−∥∂IL∥ +

∣∣∂DR
∗
∣∣ e−∥∂IR∥. (7)

The derivative operation ∂ in Lsm includes both the horizontal and vertical gradients.
Total Loss. The overall objective is summarized as:

Ltotal = λxwarp-IL
DL

∗
xwarp-I + λxwarp-IL

DR
∗

xwarp-I

+ λxwarp-DLxwarp-D + λdistillLdistill + λsmLsm , (8)

where λ hyper-parameters are the weights to balance among the aforementioned losses.

3.6 Integration Network M
Our integration network M is based on an U-Net [25] architecture which is also similar
to the one in monodepth [7]. It contains an image feature encoder, an iToF depth feature
encoder, and a feature fusion decoder. For both RGB image feature and iToF depth
feature encoders, they adopt ResNet18 [11] as their backbone while the former takes
the pretrained weight from ImageNet [4] classification task as warm start. The multi-
scale features extracted by layers of both encoders are concatenated in a layer-wise
manner and further fed to the corresponding convolutional blocks (of the same scale) in
the fusion decoder.

4 Experiments

4.1 Datasets

The experiments are conducted on two datasets: the synthetic ToF-FlyingThings3D [21]
dataset and the real-world iToF-RGB1k dataset collected by ourselves.

ToF-FlyingThings3D [21] As such dataset is synthetic to have full access to the
groundtruth depth, we mainly adopt it for our quantitative evaluation. Two different
camera configurations are used in our experiments to synthesize the dataset: 1) pseudo
camera parameters as used in its original paper [21] for ensuring a fair comparison
with other methods, where all the cameras are with the same focal length (thus nearly
the same FoV) and the extrinsic transformation is simplified (i.e. no rotation and only
2D orthogonal translation); 2) device camera parameters, where we adopt the calibra-
tion parameters obtained from the RGB-D camera module (i.e. the device that we use
for collecting our iToF-RGB1k dataset, which has different focal lengths for all three
cameras and the extrinsic transformations are more complicated), making the synthe-
sized dataset more challenging for the integration between iToF and RGB cameras.
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Training Ground Truth Input Refined
Methods SL Depth RGB RGB Depth MAE(cm)

Metric Relative FoV

DeepToF [18] ✓ ✓ ToF 4.69
ToF-Net [27] ✓ ✓ ToF 4.90

TOF-KPN w/o RGB [21] ✓ ✓ ToF 2.44
SHARP-Net [5] ✓ ✓ ToF 1.19
TOF-KPN [21] ✓ ✓ ✓ ToF 1.51

Our network w/ TOF-KPN loss [21] ✓ ✓ ✓ ToF 1.50
Cross-warp ✓ ✓ RGB 3.16

Cross-warp + Structure Distillation ✓ ✓ ✓ RGB 3.01
Table 1. Comparison with competitive methods on the ToF-FlyingThings3D dataset [21]. SL:
Supervised learning.

iToF-RGB1k We collect such iToF-RGB1k dataset by using the mobile-phone device
of RGB-D camera in the natural world, in which it comprises 1074 scenes that have
been randomly split into 960 sets for training and 114 sets for testing. The iToF depth
has resolution of 640×480, while the RGB images have a resolution of 1280×960. As
iToF is better suited for indoor environments, the majority of scenes in the dataset are
indoor ones. We also consider the social impact of privacy to avoid capturing the human
being.

4.2 Quantitative Experiments

Comparison with iToF Refinement Methods To ensure a fair comparison with super-
vised learning methods, we first train our integration network M using the supervised
learning objective proposed by Qiu et al. and follow the same evaluation protocol [21].
This objective is also used in SHARP-Net [5].

As shown in the row “our network w/ TOF-KPN loss” in Table 1, we successfully
reproduce the performance of [21]. We then evaluate the performance of our full model,
as shown in the last row in Table 1. Our full model outperforms DeepToF [18] and ToF-
Net [27] (both supervised ones) without requiring the strong supervision of ground truth
depths and can achieve full FoV of RGB image. Although SHARP-Net [5] has the best
performance of mean absolute error (MAE), it is limited to refining the FoV of iToF.
Considering the inherited performance gap between the supervised and self-supervised
learning methods [7,8], our method performs well as a weakly supervised method.

Ablation Studies on Objectives and Modalities To investigate how the objectives and
input modalities affect the performance of our model, we conduct ablation studies with
two camera configurations. As shown in Table 2, our ablation study of objectives starts
with the supervised learning baselines (in (a) and (b) rows) and self-supervised learn-
ing baselines (in (c) and (d) rows). Then, we use a single RGB image (as shown in (c)
rows) or stereo RGB images (as shown in (d) rows) as input for the integration network
trained with cross-warp consistency. In pseudo camera configuration, the model using
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#
Input Weak-sup. Eval. Evaluation metrics

RGB iToF SL CW SD Cam. Region MAE(cm) ↓ AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
(1) Pseudo Camera Parameters

(a) ✓ KPN
L

RGB
2.130 0.04425 0.3086 4.475 0.04165 0.9394 0.9802 0.9957

R 1.550 10.56 215.5 4.392 0.04170 0.9747 0.9937 0.9969

(b) M ✓ KPN
L

RGB
1.686 0.03585 0.2254 3.541 0.03512 0.9550 0.9793 0.9958

R 1.212 0.03614 1.0120 3.275 0.02790 0.9770 0.9938 0.9985

(c) M ✓
L

RGB
7.267 0.08433 3.427 16.30 0.12330 0.9063 0.9397 0.9543

R 5.965 0.08375 2.835 13.46 0.11350 0.9105 0.9446 0.9581

(d) S ✓
L

RGB
4.059 0.05112 1.444 11.04 0.08002 0.9492 0.9672 0.9753

R 5.151 0.07691 2.828 13.37 0.09934 0.9250 0.9508 0.9640

(e) M ✓ ✓
L

RGB
3.156 0.05717 0.760 7.775 0.06248 0.9519 0.9674 0.9762

R 3.236 0.05914 1.215 7.941 0.06750 0.9448 0.9650 0.9762

(f)

M ✓ ✓ ✓

L
RGB

3.006 0.04710 0.7509 7.731 0.06208 0.9506 0.9651 0.9739
R 3.213 0.05669 1.255 7.930 0.06841 0.9454 0.9639 0.9764

(g)
L 3.005 0.04502 0.7399 7.786 0.06098 0.9536 0.9676 0.9764
R

iToF
3.206 0.05477 1.215 7.935 0.06717 0.9475 0.9657 0.9784

(h)
L 3.536 0.07709 1.259 7.561 0.07777 0.9140 0.9344 0.9445
R

Ext.
3.891 0.09745 2.536 8.328 0.08513 0.9121 0.9350 0.9497

(i) M ✓ S2D
L

RGB
54.17 1.383 118.8 64.32 0.4071 0.1132 0.2456 0.4110

R 56.76 1.565 141.3 66.62 0.4281 0.1013 0.2216 0.3746

(j) M ✓ S2D ✓
L

RGB
20.52 0.2246 7.323 27.92 0.1687 0.5968 0.8467 0.9168

R 17.77 0.2234 7.141 22.99 0.1738 0.6270 0.8390 0.9082

(2) Device Camera Parameters

(a) ✓ KPN
UW

RGB
5.454 0.06630 1.639 13.03 0.07756 0.9333 0.9664 0.9784

W 2.473 0.03923 0.5655 6.923 0.04683 0.9586 0.9861 0.9941

(b) M ✓ KPN
UW

RGB
1.921 0.03816 0.2513 3.655 0.03778 0.9644 0.9800 0.9893

W 1.604 0.02757 0.1765 3.516 0.02531 0.9774 0.9927 0.9991

(c) M ✓
UW

RGB
6.740 0.08767 2.508 14.45 0.10030 0.9021 0.9846 0.9650

W 10.60 0.14480 3.976 17.39 0.11650 0.8185 0.9257 0.9576

(d) S ✓
UW

RGB
11.62 0.1270 4.356 22.25 0.12260 0.8578 0.9222 0.9513

W 21.78 0.3129 13.97 31.36 0.17940 0.5835 0.8098 0.8982

(e) M ✓ ✓
UW

RGB
6.115 0.07910 2.116 13.42 0.08497 0.9175 0.9578 0.9747

W 9.211 0.13140 2.924 15.20 0.09361 0.8456 0.9469 0.9782

(f)

M ✓ ✓ ✓

UW
RGB

5.616 0.07305 1.773 12.62 0.07644 0.9232 0.9607 0.9764
W 9.376 0.12280 2.995 15.57 0.09220 0.8579 0.9494 0.9752

(g)
UW

iToF
7.453 0.09368 2.189 13.42 0.08332 0.9027 0.9564 0.9764

W 8.944 0.11670 2.615 14.60 0.08985 0.8718 0.9525 0.9759

(h)
UW

Ext.
4.715 0.06289 1.570 12.03 0.07208 0.9333 0.9628 0.9764

W 10.62 0.13980 4.064 17.84 0.09721 0.8194 0.9395 0.9731

Table 2. Quantitative studies for different supervision and the input. SL: Supervised learning.
Weak-sup.: Weakly supervised learning. CW: Cross-warp. SD: Structure distillation. Cam.: Cam-
era. M: Monocular RGB. S: Stereo RGB. KPN: Using supervised depth refinement loss of TOF-
KPN[21]. S2D: Using Sparse-to-Dense[17] for supervised learning. L: Left rgb camera. R: right
rgb camera. UW: Ultra-wide RGB camera. W: Wide RGB camera. Eval. region: Evaluated re-
gion. Ext.: extended FoV of iToF.

stereo RGB input outperforms the one using monocular RGB input. In device camera
configuration, however, the opposite results may be associated with the challenge of
warping images and depths with different FoVs. Next, we evaluate the performance of
our model with cross-modal stereo input (iToF and RGB), as shown in the (e) rows.
The results indicate that the model using cross-modal stereo input outperforms those
models using single RGB modality because the iToF depths provide metric informa-
tion for absolute depth estimation. Lastly, as shown in the (f) rows, model training with
structure distillation from passive depths improves most performance metrics (exclud-
ing the threshold-based ones), indicating the advantages of better structure guidance
and knowledge from the off-the-shelf monocular depth estimation model.
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Comparison between original and extended FoVs As shown in the (g) and (h) rows
of Table 2, we evaluate the performance of our estimated depths within the original
iToF FoV and the extended region outside the FoV of iToF, as illustrated in Figure 2.
The results with pseudo camera parameters indicate that the estimated depths in the
original iToF FoV on both RGB image planes are better than those in the extended
FoVs. With device camera parameters, however, this case holds only on the wide-angle
image plane, suggesting that the model for the wide-angle cameras could more depend
on the metric information from iToF depths than the model for the ultra-wide camera
because of the larger overlapping region between iToF and RGB cameras.

Comparison with Depth Completion Method To align with the setting of Sparse-to-
Dense [17], we randomly sample 750 points from DL

iToF to generate the sparse depth
maps. These sparse depth maps are paired with IL as the training pairs for Sparse-
to-Dense [17]. The results in the (i) rows of Table 2, where the worse performance
indicates that Sparse-to-Dense [17] is less effective for tackling the noise in iToF depth
and for leveraging the complementary properties across modalities. Even being further
regularized by the structure distillation loss (as shown in the (j) rows), the performance
is still much worse than ours. In contrast, our proposed method leveraging geometric
constraints for cross-warp consistency is more effective in alleviating the interference
from noisy iToF and gets better fusion results.

4.3 Qualitative Experiments

We conduct experiments using our iToF-RGB1k to qualitatively evaluate our model
in the real world. As shown in Figure 5, our model is capable of extending the orig-
inal FoV of iToF depths to the FoV of RGB images. Moreover, our model is able to
remedy the errors or noises of the iToF sensor. For example, as shown in the first and
second row of Figure 5, the iToF depth values within the circled regions are largely
deviated due to the reflection of the wall or the transparent umbrella. Our model refines
the results by leveraging the rich appearance and structure information from the RGB
image. Other examples shown in the third and fourth row in Figure 5 demonstrate our
model’s capability to correct depth errors from the off-the-shelf monocular depth esti-
mation model [31,19]. Monocular depth estimation models, reliant on passive sensing
RGB cameras, often misinterpret visual cues [12] from TV screens and walls because
of misleading or absent textures. In this case, the depth information from active sensing
iToF proves beneficial in resolving the ambiguity. To sum up, our cross-warp and depth
structure distillation model successfully integrates the passive sensing RGB image and
the active sensing iToF depth to estimate the full FoV metric depth map of the scene.

5 Conclusions

We introduce a weakly-supervised framework to tackle the task of cross-modal depth
estimation, driven by cross-warp consistency and depth structure distillation. Our pro-
posed cross-warp consistency adopts iToF depth estimates to build the inter-camera



14 Fang et al.

+

0

2500

5000

7500

10000

12500

15000

17500

20000

→

0

2500

5000

7500

10000

12500

15000

17500

20000

0.0

0.2

0.4

0.6

0.8

1.0

+

0

2500

5000

7500

10000

12500

15000

17500

20000

→

0

2500

5000

7500

10000

12500

15000

17500

20000

0.0

0.2

0.4

0.6

0.8

1.0

+

0

2500

5000

7500

10000

12500

15000

17500

20000

→

0

2500

5000

7500

10000

12500

15000

17500

20000

0.0

0.2

0.4

0.6

0.8

1.0

+

0

2500

5000

7500

10000

12500

15000

17500

20000

→

0

2500

5000

7500

10000

12500

15000

17500

20000

0.0

0.2

0.4

0.6

0.8

1.0

RGB + iToF → Integrated
Boosted [19]
LeReS [31]

Fig. 5. Qualitative evaluation of estimated depths for the real-world dataset, iToF-RGB1k. Our
model overcomes the limitations of the iToF camera and the off-the-shelf monocular depth esti-
mation model, such as the reflective objects and transparent objects (which are red-circled in the
first and second row), and the wrong visual depth cues (which are framed by red rectangles in the
third and fourth row). Boosted [19] LeReS [31] is the off-the-shelf monocular depth estimation
model, a relative depth model. The unit of absolute depth is millimeters.

photometric consistency for guiding the model training, and the depth structure distilla-
tion preserves the structure of RGB images under the help of an off-the-shelf monocular
depth estimation model. Our quantitative experiment on ToF-FlyThings3D [21] shows
that our method is able to achieve comparable performance with several supervised
learning methods despite the lack of depth domain ground truths. Moreover, we collect
an iToF-RGB1k dataset for performing qualitative evaluation in the real world, in which
the corresponding experimental results verify the efficacy of our method in extending
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the FoV of iToF as well as fixing the incorrect/noisy depth estimate where neither iToF
camera nor off-the-shelf monocular depth estimation model can perform well.
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