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Abstract—Style transfer of the polyphonic music recordings
has always been a challenging task due to the difficulty of learning
representations for both domain invariant (i.e. content) and
domain-variant (i.e. style) features of the music. Although there
exists prior works which employ the Multi-modal Unsupervised
Image-to-Image Translation (MUNIT) framework to perform the
music style transfer in an unsupervised manner and successfully
provide the promising results, the gap between the transferred
music recordings and the real ones is still noticeable. In order to
reduce such gap, we propose and experiment several techniques
for improving the transferred results, including the domain
balanced loss, up-sampling, content discriminator, recycle loss,
and the data scaling. We conduct extensive experiments on the
tasks of bilateral style transfer among four different genres,
namely: piano solo, guitar solo, string quartet, and chiptune. In
evaluation, an objective testing scheme is proposed to investigate
the pros and cons of all our proposed techniques, while we also
design a subjective testing method for making comparison among
different approaches and show that our proposed method is able
to provide superior performance with respect to the prior works.

I. INTRODUCTION

Applying style transfer on music, which aims to transfer
a music recording into another realistic one as being played
with different instruments, is an interesting but challenging
task with great potential in practical use. In general, existing
approaches on such task typically have an important assump-
tion that a music recording can be decomposed into the content
and the style attributes, hence the style transfer is attempting
to modify the style of the music recording while preserving
its content. However, distinguishing content and style is a
challenging task due to the highly dynamic boundary between
them. Traditional music style transfer methods mostly need to
be performed in a supervised manner. Due to the lack of the
labeled data, it becomes a restriction.

Recent approaches using deep learning methods such as the
generative adversarial networks (GAN) [1] allow a system
to learn the content and style attributes directly from data

in an unsupervised manner with extra flexibility in mining
the attributes relevant to content or style and achieve higher-
level mapping across domains. However, finding a proper input
representation of music data for the model is not a trivial task
because no clear definition are given for the music style.

This work represents an extension of [2], a recently pro-
posed model that allows style transfer of arbitrary music
recordings. The method includes timbre-enhanced data repre-
sentation for the model’s input, which is a combination of four
timbre features. The model is based on the Multimodal Unsu-
pervised Image-to-Image Translation (MUNIT) [3] framework
to transfer the style of input music piece to another domain.
Experiments show the system can achieve better performance
in terms of content preservation and sound quality, and is able
to find an optimal pseudo pair from non-parallel data from
scratch. However, it is still hard to generate comparable timbre
to music played with real world instruments.

To reduce this gap, we analyzed the problems and proposed
two techniques to improve the transferred results. First, we
found the previous model works well for within-domain re-
construction, but performs poorly for cross domain translation.
So we proposed a new loss function, called domain balance
loss, which constrains the discriminator from two fake data,
one is from the within-domain reconstruction, and the other
is from the cross-domain translation. The discriminators is
forced to balance the loss from those two input. Second, the
previous model cannot capture the subtle changes along the
temporal axis for timbre information, including the harmonic
series and the ADSR (attack, decay, sustain and release cycle).
To remedy this, the model is added recycle loss, up-sampling,
data scaling, and content discriminator to better capture the
music features.

We conducted a series of experiments to evaluate the
proposed methods. The subjective evaluation showed that with
this new proposed loss, the generated results outperform [2]
in terms of temporal smoothness, transferred style and sound



Fig. 1. The architecture of our music style transfer system. Left: within-domain reconstruction. Right: cross-domain translation.

quality. Furthermore, we used an auxiliary classifier to perform
the objective evaluation of these experiments and do the further
analysis. The results also indicate that the proposed methods
can improve the quality of generated music.

The rest of this paper is organized as follows. Section II
reviews the overall framework of [2]. Based on [2], Section
III presents the proposed methods. Section IV shows the
experiments and their results. Conclusion and discussion are
given in the last section.

II. TIMBRE-ENHANCED STYLE TRANSFER: A REVIEW

Let X and Y be two domains from which data are trans-
ferred. MUNIT creates latent spaces for X and Y , each
of which can be further decomposed into two subspaces: a
content space and a style space. Those two domains share
the same content space whereas each domain has their own
style space individually. The style transfer is performed by
combining the content and the style from different domains.

Our model uses four timbre features as the model inputs:
1) mel-spectrogram, 2) mel-frequency cepstral coefficients
(MFCC), 3) spectral difference, and 4) spectral envelope.
Those four timbre features are used as the channels of the
model’s input to capture the timbre information.

Figure 1 illustrates the model’s architecture. Both domain
X and Y have its own encoder, namely Ex, Ey and its own
generator (decoder), namely Gx, Gy . The encoders convert
music clips into content codes cx, cy and style codes sx, sy;
the generators then take the content and style codes as input
and generate another music clip that is in the style of their
corresponding domain. The system has two learning paths,
within-domain reconstruction and cross-domain translation.
The process and the objective function for each path will be
described below.

Within-domain reconstruction. To train the encoders and
decoders into the inverse of each other, the system uses an
self-reconstruction mechanism ( music piece → latent code
→ music piece), as shown in the left of Fig. 1. The objective
function calculates the reconstruction loss between input music
pieces and reconstructed music pieces.

Lr = Lx
r + Ly

r = |x− xrec|1 + |y − yrec|1 (1)

where |· | is the l1-norm, xrec, yrec are the reconstructed
features of x and y, respectively. The reconstruction path of
xrec, yrec can be written as:

xrec = Gx(E
c
x(x), E

s
x(x)) (2)

yrec = Gy(E
c
y(y), E

s
y(y)) (3)

Cross-domain translation. Different from the within-domain
reconstruction that the style codes are encoded from the input
data, the generators take the style codes zx, zy ∈ N(0, 1),
randomly sampled from a Gaussian distribution and the con-
tent codes, encoded from another domain’s music piece. This
means that they preserve the content of the other domain’s
input and translate its style to their own domain. The across
domain translation is achieved through the generative adver-
sarial approach. To fool the discriminators D, the encoders and
generators need to cooperate and match the distribution of the
transferred music pieces to the target style distribution, while
the discriminators try to distinguish between the transferred
results and the real data. That means, if the model can generate
results which cannot be distinguished by the discriminators
from the ones in the real target domain, then it has successfully
captured the distribution of the target style.

The relativistic average LSGAN (RaLSGAN) [4] is used
as the GAN loss to generate better results in sound quality.
Different from other GAN loss in the training stage, the
generator does not only capture the distribution of real data,
but also decreases the probability that real data is real. The
loss function for the generator can be represented as:

LG
adv = LGx

adv + L
Gy

adv

= Ex[((DX(x)− Exfake
DX(xfake)) + 1)2]

+ Exfake
[((DX(xfake)− ExDX(x))− 1)2]

+ Ey[((DY (y)− Eyfake
DY (yfake)) + 1)2]

+ Eyfake
[((DY (yfake)− EyDY (y))− 1)2]

(4)



and for the discriminator:

LD
adv = LDx

adv + L
Dy

adv

= Ex[((DX(x)− Exfake
DX(xfake))− 1)2]

+ Exfake
[((DX(xfake)− ExDX(x)) + 1)2]

+ Ey[((DY (y)− Eyfake
DY (yfake))− 1)2]

+ Eyfake
[((DY (yfake)− EyDY (y)) + 1)2]

(5)

where xfake, yfake are the transferred music pieces that are in
the distribution of fake data in X and Y domains, respectively.
The translation path from domain X to domain Y (x→ yfake)
and from domain Y to domain X (y → xfake) can be written
as:

yfake = Gy(E
c
x(x), zy) and xfake = Gx(E

c
y(y), zx) (6)

Additionally, the model uses the reconstruction loss in the
latent space ( latent code → music piece → latent code )
which ensures the information of content and style are still
preserved after the cross-domain translation. Below illustrate
the content(Lc) and the style reconstruction loss (Ls) respec-
tively:

Lc = Lcx + Lcy = |cx − ĉy|1 + |cy − ĉx|1 (7)

where cx (cy) is the content code before style transfer and
ĉx (ĉy) is the content code encoded back from the transferred
results.

Ls = Lsx + Lsy = |zx − ŝx|1 + |zy − ŝy|1 (8)

where zx (zy) is the style code random sampled from N(0, 1)
in a Gaussian distribution and ŝx (ŝy), is the style code
encoded back from the transferred results. The full objective
function L of our model is

L = λadvLadv + λcLc + λsLs + λrLr + λicLic (9)

where Ladv is the combination of LG
adv,LD

adv , and Lic is the
intrinsic consistency loss for keeping the consistency among
the channel-wise features in the target domain thus improve
the sound quality, we don’t describe the detail of this loss since
it’s less relevant to our improvement in this work. Readers are
encouraged to refer to more details of the method in [2].

III. PROPOSED METHODS

A. Domain Balance Loss

Several problems for the timbre-enhanced style transfer
remain. First, the generated timbre is different from that
generated by real instruments and the sound quality also can
be improved. Second, when combining the transferred music
clips with the raw wav file, adjacent music clips along the
timeline often loss the continuity and consistency. In other
words, two music clips adjacent to each other in a song may
sound discontinuous. For example, they might sound like the
same instruments but played with different brands. Notice that
during the inference time, the style code is fixed for the whole
song so all the music clips that compose the song should be
in a consistent style.

Fig. 2. The view of the two learning paths of our generation model, we
omit Gx (Lx

db) here for simplicity. The figure can be spilt into two parts: up
(blue arrow): within-domain reconstruction, down (red arrow): cross-domain
translation.

The problems described above are not noticeable when the
results are generated within the same domain, or even with a
randomly sampled style code. It means that the model actually
is able to perform well when the generation doesn’t involve
the cross-domain translation. Figure 2 gives an illustration of
the difference between two generation paths (within-domain,
cross-domain) of our model from Gy perspective. The gen-
erator Gy needs to take a content code cy/cx and a style
code sy/zy as its input. Since replacing sy with zy actually
doesn’t cause too much loss in the quality of within-domain
reconstructed results, we can infer that the reason for the
difference in quality between the results of two paths is that
whether the encoder Ey(Ex) that encodes the input into cy(cx)
belongs to the same domain as the decoder. For example,
when reconstructing the input within domain, Gy decodes
the content code cy that encodes by Ey (same domain). On
the contrary, when transferring the input across domains, it
decodes the content code cx that encodes by Ex (different
domain).

We expect that the generator should decode to results with
similar quality no matter the content code it takes is encoded
from which domain. We assume this unbalance situation is
because that we trained the within-domain reconstruction with
Lr, which is a strong constrain loss with ground truth and
easier to learn than the adversarial loss that is used to train the
cross-domain path, and thus accidentally dominate the main
learning direction of our model.

To fix this problem, we added a constrain loss to balance
the learning of two paths, named domain balance loss (Ldb).
Figure 2 specified the main idea of our approach. According to
the property of the GAN loss (RaLSGAN), the discriminators
take two inputs, one real data and one fake data, and output
the probability that the given real data is more realistic than
the fake data. Now, the new constrain forces discriminators
take two fake data: one from within-domain reconstruction;
the other from cross-domain translation. With the constrain,
the discriminators will give them similar probability of being
fake or real data, since they are both belong to the distribution
of fake data and none of them should be far more real than the
other. Consequently, the reconstruction path and the translation
path can map their outputs to the similar distribution, balancing
the learning of the encoders, and alleviate the problem of the
unbalance learning of the two paths.



The proposed loss is shown below.

Ldb = Lx
db + L

y
db

= (Exrec
D(xrec)− Exfake

D(xfake))
2

+ (Eyrec
D(yrec)− Eyfake

D(yfake))
2

(10)

where xrec, yrec are generated from within-domain recon-
struction path and xfake, yfake are generated from cross-
domain translation path. The proposed new loss can be easily
integrated with our model by appending it to the original
objective function, so our new objective function can be
written as:

Lnew = Lori + λdbLdb (11)

The model architecture is modified from the MUNIT archi-
tecture. We changed the activation function of the last layer
of the decoder from Tanh to ReLU since the number in the
music features shouldn’t contain negative numbers. The model
is optimized by ADAM [5], with the batch size one, and the
learning rate and weight decay rate are both 0.0001. We set
the regularization parameters of the loss functions to: λadv =
1, λc = λs = 1, λr = 10, λic = 1 and λdb = 0.5.

B. ADSR Enhancement

We have observed that the transferred outputs do not truly
sound like real instruments, and one reason is because that
the ADSR (attack, decay, sustain and release) curves of the
transferred notes are not well captured by the model. Typically,
ADSR is related to both long-term dependency (e.g., sustained
strings) and short-term dependency (e.g., acute and strong
attacks of percussion) in audio signals. To better capture the
ADSR behaviors of the target styles, there are two possible
strategies: 1) using the data representation with a higher
resolution (i.e. enhancement of local information), and 2)
extending the temporal range of the data representation (i.e.
enhancement of global information). We therefore consider
three methods to fulfill these purposes, which are up-sampling,
recycle loss, and data scaling.

Up-sampling. In order to let the model has the ability to re-
construct the details of music data representations, we cropped
each input into sub-segments along the temporal axis (i.e. the
x-axis of data representation), and trained local discriminators
for both source and target domain to discriminate the real
sub-segments from the fake ones. Then, bilinear interpolation
is performed to re-sample the sub-segment up to the size of
the original input data along the temporal axis. Through this
auxiliary adversarial setting, we expect that the generators
are guided to generate results with the right details, and the
local discriminators can easily discriminate its input since up-
sample the cropped data with the wrong detail would increase
the unreality of the data.

Recycle Loss. Recycle-GAN indicates that the use of temporal
information in videos can provide more constraints to the opti-
mization for transforming one domain to another, by applying
a novel loss function named Recycle Loss [6]. Recycle Loss is

a revision of the cycle loss (i.e. reconstruction loss) function
used in Cycle-GAN. In comparison to cycle loss, recycle loss
adopts one more predictor to predict the forthcoming video
frame from the previous video frames. It then calculates the
reconstruction loss with the predicted video frame. Similar
to videos, our model includes the Recycle Loss by replacing
the original fake images in the reconstruction part of the total
objective function (Lr, Lc, Ls) with the predicted fake images.

Data scaling. Another strategy to create different resolutions
of data representation is to use different hop sizes for STFT
(short-time Fourier transform). A smaller hop size can produce
smaller temporal time grids of data representation, i.e. the
data points are denser and therefore contain more precise local
information. We assume that our choice of hop size may be
too big and cause the loss of data information. Our original
hop size is set to 256, to increase the detail information in
our data, we consider smaller hop size (128, 96) to see that
whether this change can get any improvement of our results.

Content discriminator. In addition to focus on how to let
our model capture the ADSR of timbre, we also made an
assumption that the drop of performance in cross-domain
translation compared to within-domain reconstruction and is
due to the inefficiency of disentanglement, which means that
the content codes still contain style information in it. Inspired
by recent works including DRIT [7] and a voice conversion
task [8], we also consider adding a content discriminator
on the latent space to distinguish the extracted content codes
between the two domains, and to facilitate the ablation of
domain information in content codes. The architecture of
the content discriminator is based on the one proposed by
DRIT [7].

IV. EXPERIMENT AND RESULTS

We consider three music style transfer tasks. The tasks and
used data sets are described as below.
1) Bilateral style transfer between 8,200 seconds of popular

piano solo and 7,800 seconds of popular guitar solo covered
by the pianists and guitarists on YouTube.

2) Bilateral style transfer between 6,701 seconds of classical
piano solo and 4,796 seconds of classical string quartet.

3) Bilateral style transfer between 8,200 seconds of popular
piano solo (same as task1) and 9210 seconds of popular
8-bit (chip-tune) covered by the pianists and made by 8-bit
music player on YouTube, respectively.

In other words, there are six sub-tasks in total: piano to guitar
(P2G), guitar to piano (G2P), piano to string quartet (P2S),
string quartet to piano (S2P), piano to 8-bit (P2B), and 8-bit
to piano (B2P).

The above-mentioned tasks are evaluated in two approaches:
objective test. and subjective tests. Since asking human to
compare all parameter settings mentioned in Section III in the
subjective test is ineffective, an object evaluation is required
to verify the parameter settings. In the subjective test, we eval-
uated the proposed model with domain balance loss (denoted



as MUNIT-DB) by comparing it with two baseline models,
MUNIT in [2] and Recycle-GAN [6], for each sub-task.
Recycle-GAN is a widely-used, competitive unsupervised style
transfer network, which improve the Cycle-GAN [9], which
overall optimization process is focused on reconstructing the
input when transferring style of videos. Recycle-GAN then
successfully improved the quality of the transferred videos by
considering the temporal information of data. Note that unlike
MUNIT and the proposed method, Recycle-GAN allows only
one-to-one mapping.

A. Objective Evaluation

In the objective test, we trained an instrument classifier
that classify among three classes of instrument (i.e. guitar,
piano, and strings). The main idea of the objective test is
that a higher classification accuracy should be obtained for
the outputs of a better style transfer model on the target style
labels. This provides a simple yet practical way to evaluate the
performance of style transfer models without subjective tests,
and can be helpful when there are many model parameters
to be fine-tuned and compared. In this work, the classifier
network structure is formed by four 4× 4 convolution layers,
followed by a 1×1 convolution layer whose output dimension
is 1 for dimension reduction. The output dimensions of the
former 4 layers are 64, 128, 256, 512, respectively. Lastly,
a fully connected layer is added to output three dimensions
which represents the three output instrument classes.

To train our style transfer model and instrument classifier
with independent training sets, a large amount of data is
needed. To do this, we use MIDI files with an audio syn-
thesizer from music21 toolkit to generate music data of the
three instruments. We then split the generated data into two
training sets and one testing set. One of the two training sets is
used for training our style transfer model, and the other one is
for training the instrument classifier. The testing data are used
as the input of the style transfer models, and the transferred
results are evaluated with the instrument classifier. Since the
data are all synthetic, the instrument classifier can achieve
99.95 % accuracy (i.e. 0.05% error rate) on the original music
data without style transfer; see Table I.

Table I lists the classification error rates (in %) of the pro-
posed style transfer methods under various parameter settings.
Here, MUNIT denotes the baseline model [2]; MUNIT-DB
(this work) is the MUNIT model with the domain balance loss;
MUNIT-RL is the one including recycle loss [6]; MUNIT-
US is the one using up-sampling; MUNIT-H128 and MUNIT-
H96 are the ones applying data scaling (i.e. one with hop
size of 128 and the other with hop size of 96); MUNIT-
CD is the one with content discriminators and and RCGAN
is the one using Recycle-GAN. As we can see, MUNIT-DB
achieves the lowest error rate among all. This is also consistent
with the results of subjective tests that MUNIT-DB receives
the highest score from the users; see the result of subjective
evaluation. It should also be noted that MUNIT-RL and
MUNIT-US achieves slight though insignificant improvement

in comparison to MUNIT. MUNIT-H128, MUNIT-H96, and
MUNIT-CD get worse results than MUNIT.

From the results above, the optimal setting of the style
transfer models can be obtained without conducting subjective
tests: we find that reducing the hop size for STFT will only
make the transferred results worse. By fixing the number of
frames in each input, choosing different hop sizes actually
results in a trade off between enhancing local information and
enhancing global information; this is the reason why MUNIT-
H128 and MUNIT-H96 do not improve the results. On the
other hand, MUNIT-RL and MUNIT-US, the methods which
manage to enhance global and local information, respectively,
both result in performance improvement compared to MUNIT,
though the extent of improvement is limited. The result of
MUNIT-CD shows that the adversarial way cannot truly lead
the model to achieve better style transfer. as it tends to add
noises in content codes to fool the content discriminator.
The result of RCGAN shows relatively higher error rate than
MUNIT, indicates that Recycle-GAN has weaker performance
in ST metric which will be further confirmed by subjective
evaluation in next part. Based on the classification results, we
consider using only MUNIT-DB in the subjective test.

B. Subjective Evaluation

In each sub-task, the subjects are asked to listen to the
original music clip, as well as three versions of that music
clip after style transfer using three different models: MUNIT-
DB, MUNIT, and Recycle-GAN.

For each transferred music clip, we asked the subjects to
score the three metrics from 1 (low) to 7 (high) so that we
can get the mean opinion score (MOS) and do the further
evaluation. The three metrics are:
1) Temporal smoothness (TS): the continuity and consistency

along the temporal axis of the transferred music,
2) Success in style transfer (ST): how well does the style

of the transferred music match the target domain (target
instrument), and

3) Sound quality (SQ): how good does the transferred music
sounds.

We also conducted the preference test by asking the subjects
to choose the best and the worst version according to their
personal view on style transfer. These questions are listed
into an online questionnaire. The questionnaire is distributed
through social media.

We received 152 responses, where 32% of them reported
themselves have music related experience, or are familiar
with the timbre of our experimental instruments. Table II
summarizes the mean opinion scores (MOS) of the listening
test in the above three metrics. The following observations are
made. In all the three metrics, our work (MUNIT-DB) gets the
highest score on average, but not in all the sub-tasks. As can be
seen, when comparing MUNIT-DB with MUNIT, MUNIT-DB
gets better score for all the sub-tasks. Comparing MUNIT-
DB with Recycle-GAN, MUNIT-DB performs the best in
style transfer under any circumstances, but Recycle-GAN
outperforms MUNIT-DB in temporal smoothness or sound



TABLE I
THE RESULTS OF OBJECTIVE EVALUATION BASED ON CLASSIFICATION.

Task Original MUNIT MUNIT-DB MUNIT-RL MUNIT-US MUNIT-H128 MUINT-H96 MUNIT-CD RCGAN
Error Rate(%) 0.05 0.46 0.11 0.37 0.24 1.66 7.36 6.97 2.23

TABLE II
THE MEAN OPINION SCORE (MOS) OF VARIOUS STYLE TRANSFER TASKS AND SETTINGS.

Task P2G G2P P2S S2P P2B B2P Average
Model TS ST SQ TS ST SQ TS ST SQ TS ST SQ TS ST SQ TS ST SQ TS ST SQ

Recycle-GAN 5.29 3.95 3.99 5.04 3.26 3.91 4.97 3.45 4.00 5.07 4.52 4.28 3.67 3.95 3.03 5.36 3.86 4.65 4.90 3.83 3.98
MUNIT 5.36 4.30 4.25 5.13 3.05 3.83 3.69 2.87 2.53 5.00 4.86 4.03 3.93 3.96 2.95 5.16 3.99 4.08 4.71 3.84 3.61

MUNIT-DB 5.50 4.72 4.45 5.19 3.40 3.86 4.43 3.55 3.28 5.49 5.24 4.45 4.18 4.30 3.35 5.41 4.55 4.59 5.03 4.29 4.00

Fig. 3. Results of the preference test. The y-axis is the ratio that each setting
earns the best, middle, or the worst ranking from the listeners

quality. However, Recycle-GAN sometimes gets a worse score
than MUNIT especially on the style transfer metric. Above
results indicate that there is a trade-off between style transfer
and two other metrics in some sub-tasks when Recycle-GAN
is compared with our work.

According to these observations, the Recycle-GAN does
increase the temporal smoothness of sound in some transfer
sub-tasks by adding temporal information to the model and
may achieve better sound quality, but often with the side
effect of making the sound less realistic. On the other hand,
our method can always perform well in style transfer, and
also brings some improvement on two other metrics compare
to MUNIT. In general, our method is the most stable when
considering all those three metrics and performs the best in
style transfer metric.

We can further confirm this claim through the preference
test, as shown in Figure 3, in which there are 42.87% of
listeners think that MUNIT-DB performs the best and only
27.18%, 29.95% listeners choose MUNIT, Recycle-GAN as
the best, respectively. We can also confirm our theory from
the worst aspect that only 15.78% listeners choose MUNIT-
DB as the worst, which is far less than MUNIT (49.12 %) and
Recycle-GAN (35.1%). Also, in each sub-task, MUNIT-DB
never gets the “worst” votes like MUNIT and Recycle-GAN.
The analysis and results above demonstrate the stability and
superiority of the proposed method over other two baselines.

V. CONCLUSIONS

In this paper we present a simple yet efficient loss (i.e.
domain balance loss) which successfully improves the previ-
ous work built upon MUNIT for the efficacy of music style
transfer, and shows better results in terms of the temporal
smoothness and sound quality. The observations found in our
extensive experiments and the thorough studies on several
techniques, together with our evaluation schemes, are able
to provide valuable reference for the following researches.
Codes and listening examples of this work are announced on-
line at: https://github.com/LeslieFan0531/Play-As-You-Like-
Timbre-Enhanced-Multi-modal-Music-Style-Transfer. For fu-
ture work, in addition to continuously improving the quality
of music style transfer, we attempt to also apply the idea
of our proposed domain balance loss on other tasks (e.g.
image or video style transfer) for further investigating its
generalizability and the practical potentials.
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