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Abstract—Obstacle avoidance and environment sensing are 

crucial applications in autonomous driving and robotics. Among 

all types of sensors, RGB camera is widely used in these 

applications as it can offer rich visual contents with relatively low-

cost, and using a single image to perform depth estimation has 

become one of the main focuses in resent research works. 

However, prior works usually rely on highly complicated 
computation and power-consuming GPU to achieve such task; 

therefore, we focus on developing a real-time light-weight system 

for depth prediction in this paper. Based on the well-known 

encoder-decoder architecture, we propose a supervised learning-

based CNN with detachable decoders that produce depth 

predictions with different scales. We also formulate a novel log-

depth loss function that computes the difference of predicted depth 

map and ground truth depth map in log space, so as to increase 

the prediction accuracy for nearby locations. To train our model 

efficiently, we generate depth map and semantic segmentation 

with complex teacher models. Via a series of ablation studies and 

experiments, it is validated that our model can efficiently performs 

real-time depth prediction with only 0.32M parameters, with the 

best trained model outperforms previous works on KITTI dataset 

for various evaluation matrices. 

Keywords—Monocular depth estimation, Light-weight CNN, 

Real-time, Edge device, Supervised learning 

I. INTRODUCTION 

Depth estimation is an important task in computer vision, 
which generates depth maps of corresponding scenes to provide 
statistical representation of object appearance and the 
surrounding environment. Such information is crucial for a 
variety of applications such as autonomous driving, robotics, 
augmented reality, and 3D modeling. 

Traditional approaches to pixel-wise depth estimation are 
achieved through stereo matching [1], which aims at finding the 

corresponding points in the stereo images for every image pixel 
to compute disparity and depth. However, multiple viewpoints 
are required for such methods. To overcome this limitation, 
many researches are focused on developing monocular depth 
estimation in recent years. Some supervised learning approaches 
[2, 3, 4, 29] attempt to predict pixel-wise depth map for the 
corresponding input image by using a CNN (Convolutional 
Neural Network) trained on a large-scale dataset, which contains 
RGB images and corresponding ground truth depth maps. 
However, the ground truth collection of pixel-wise depth map 
still remains a challenge due to the hardware limitation of LiDaR 
depth sensor. Specifically, the depth maps collected by LiDaR 
sensor are not only sparse but may also contain incorrect depth 
values due to transparent surfaces, moving objects, and 
occlusion in the scene. Using such incomplete and possibly 
incorrect training data, supervised learning approaches may fail 
to predict correct depth for the corresponding image pixels. 

Accordingly, some other methods [5, 6, 7, 8] take alternative 
approaches by investigating unsupervised learning for depth 
prediction. By treating depth prediction as an image 
reconstruction problem, such methods can be trained without 
ground truth of depth map, while also achieving high prediction 
accuracy for inference. Recently, some prior works [9, 10, 11] 
also combine unsupervised and supervised loss during training 
to further improve the model performance. Despite the great 
success of these learning-based methods, their models are often 
designed with complex network structures and inefficient 
convolution layers, which is a major concern in nowadays real-
time applications. 

Therefore, methods proposed in [12, 13, 14] are focused on 
developing light-weight models for real-time depth prediction, 
involving efficient convolution layer design, network pruning, 
and assistance of teacher model. These methods have 
compressed their models to less than 10M parameters for real-



time depth estimation on CPU. In this paper, we further 
investigate several light-weight layer designs of CNN and 
develop an extremely small model with less than 0.5M 
parameters for real-time and high-resolution depth estimation 
even on edge devices. To improve depth prediction accuracy of 
such small network, we implement a multi-task network 
structure that output depth map and semantic segmentation 
simultaneously during the training process. With the help of 
complex teacher models that generate dense depth map and 
semantic segmentation map in the training stage, the system 
performance in terms of depth prediction accuracy can be further 
improved. Evaluated on KITTI dataset, our best trained model 
not only has much fewer model parameters and much lower 
computation cost compared with other real-time methods, but 
also outperforms some previous works with several evaluation 
matrices. In summary, contributions of the proposed approach 
include: 

 Design a light-weight CNN that can generate high 
resolution depth map in real-time with much less 
parameters and computations. 

 Propose effective training strategies for such small 
model: (i) joint-training, (ii) data generation by complex 
teacher model, and (iii) using a novel, multi-resolution 
depth loss.  

II. RELATED WORK 

A. Learning Based Method for Depth Prediction 

 In recent years, several learning-based approaches for single 
image depth estimation has been proposed. Eigen et al. [15] 
introduced the first supervised method, in which a coarse depth 
map is generated and refined using convolutional neural 
network. Following [15], Laina et al. [2] proposed an end-to-end 
deep neural network structure to produce dense depth map using 
indoor RGB-D image. They demonstrated the usage of fully 
convolutional network (FCN) for depth estimation and the 
efficient design of up-sampling layer in the encoder-decoder 
structure. Huan et al. proposed deep ordinal regression that 
treated depth estimation as a classification problem and 
outperformed previous supervised methods. Despite the success 
of aforementioned supervised methods, insufficient ground truth 
provided by LiDAR remains to be a problem. Therefore, some 
unsupervised approaches have been proposed to avoid using 
depth ground truth during training. Firstly, Garg et al. [11] 
proposed an unsupervised method by introducing photometric 
loss. Based on [11], Godard et al. [5] introduced a left-right 
consistency loss to enforce stereo reconstruction and achieved 
higher prediction accuracy. One can also adopt both supervised 
and unsupervised losses to further improve model performance. 
Inspired from previous works [2, 5], Kuznietsov et al. [9] 
proposed a semi-supervised deep learning approach by using 
sparse ground-truth depth map for supervised learning and 
stereo image construction loss for unsupervised learning.  

 Some other works have tried to tackle the problem of depth 
prediction with joint learning. As semantic segmentation also 
provides rich information of scene understanding and geometric 
representation, Chen et al. [8] introduced a training strategy that 
takes such information into consideration. They conducted left-

right consistency loss for depth and semantic respectively based 
on [5]. Ramirez et al. [11] proposed a semantics-guided disparity 
smoothness loss that uses semantic information to improve 
disparity prediction. Nekrasov et al. [14] also trained a small 
model jointly with semantic and depth ground truth generated 
by a large teacher model. (Our model is also jointly trained using 
semantic and depth ground truth generated by a complex teacher 
model, which is similar to [14]. However, we adopt a multi-
resolution loss that further expedite the training convergence and 
achieve similar accuracy with a much smaller network 
structure.) 

 While the aforementioned prior works enjoy high accuracy 
for depth prediction, their computation cost and number of 
model parameters are inevitably large. For example, the models 
presented in [5], [15], and [9] have about 30, 70, and 80 million 
parameters, respectively, making them hard to fit in edge devices 
for real-time inference. In this paper, we focus on developing 
highly efficient neural network that can achieve high prediction 
accuracy with much fewer parameters. 

B. Light-weight Neural Network Design  

 In the past few years, the increasing needs of implementing 
high quality and real-time neural networks on edge devices have 
encouraged the research on more efficient network design. 
Several approaches [16, 17, 18] have been proposed to create 
efficient neural networks. In SqueezeNet, Iandola et al. [16] 
replace 3 × 3 convolution with pointwise convolution, and 
decrease the number of channels for convolution layers, so as to 
reduce computation cost. Presented in MobileNet [17], 
depthwise separable convolutions are adopted to decompose a 
standard convolution into depthwise and pointwise 
convolutions, and drastically increase model efficiency. Several 
vision tasks such as image classification and object detection 
have been implemented using MobileNet network as backend 
while achieving comparable results with less computation cost 
(and total number of model parameters) compared with other 
state-of-the-art works. Based on [17], MobileNetV2 [18] further 
improves the depthwise separable convolution by introducing 
the inverted residual (IR) and linear bottlenecks design (LBD). 
While IR increases the complexity of the information flow 
during depthwise convolution, which in turn increases the 
feature expressiveness of the model, LBD replaces the non-
linear transform layer with a linear one to maintain the feature 
information in low dimension, after pointwise convolution is 
used to extract image features, and further improve the model 
performance. Inspired by MobileNetV2, a further streamlined 
encoder-decoder architecture is developed in this paper, which 
adopts similar concepts of IR and LBD, for depth estimation. 

C. Real-time Depth Estimation   

 Based on the development of several light-weight neural 
network structure designs, some prior works for real-time depth 
prediction have been proposed in recent years. Poggie et al. [12] 
introduced a compact network designed with pyramid structure 
and achieved real-time performance on CPU with only 1.9M 
parameters. Elkerdawy et al. [13] trained a complex model first 
and pruned least important filters later by learned binary masks. 
Their method achieves better depth accuracy with 5.9M 
parameters. Using MobileNetV2 as framework, Nekrasov et al. 



[14] proposed an efficient model which is jointly trained using 
depth map and semantic segmentation. By using large pretrained 
teacher model to produce depth and semantic segmentation 
ground truth for training, their model achieved high accuracy 
with only 2.99M parameters. Our proposed method is similar to 
Nekrasov et al., which is also jointly trained with ground truth 
provided by complex teacher networks. However, with a much 
more compact structure design and the usage of multi-task loss 
under multiple resolutions, we further push forward the limits of 
real-time depth prediction and achieve real-time performance on 
edge device with only 0.32M parameters and slightly reduce of 
depth accuracy. 

III. APPROACH 

In this section, our light-weight neural network for real-time 
monocular depth estimation is described. We first introduce 
depth map and segmentation map generation by complex 
teacher model on KITTI dataset, which can speed up the model 
convergence during training. Then, we propose a highly efficient 
architecture design for depth prediction, which has lower 
computation cost and requires less model parameters compared 
with other state-of-the-art methods. Finally, we demonstrate the 
design of a multi-task loss function which is composed of depth 
loss and semantic segmentation loss. 

A. Data Pre-processing 

In this paper, we train, evaluate, and compare our approach 
with previous works on the public KITTI dataset, wherein the 
data are collected in the streets of cities and campuses. During 
the training process, a multi-task learning method is conducted 
to generate depth map and semantic segmentation, wherein the 
aforementioned multi-task loss function is evaluated to update 
the model parameters. Therefore, three types of data are needed 
for the training process: (i) original images as model input, (ii) 
semantic segmentation of (i) as one type of ground truth, and 
(iii) depth map of (i) as another type of ground truth.  

For (i), we use monocular RGB images in KITTI raw dataset 
as the input of our CNN model. For (ii), since the raw data 
provided by KITTI do not include the annotations for semantic 
segmentation, we generate such segmentation data using a 
teacher model - DeepLabV3 [19], a CNN model which generates 
the semantic segmentation with pixel-wise label for 19 different 
classes for each input image. As for the generation of depth 
ground truth in (iii), we employ Pyramid Stereo Matching 
Network (PSMNet) [20] as a teacher model, which uses stereo 
images pair from the KITTI raw data as input and generates 
disparity maps as output. Such maps are then converted to depth 
maps and used as ground truth during the training process. An 
example of the depth map thus generated is shown in Fig. 1. 

However, the above PSMNet depth map is generated via 
stereo matching, which is certainly not the measured ground 
truth; therefore, we further evaluate the PSMNet depth map by 
comparing it with the sparse ground truth depth map measured 
with a LiDaR (provided in the KITTI dataset). In particular, we 
subtract PSMNet depth map from the sparse depth map to 
compute mean error per distance for the training set, as shown 
in Fig. 2. It is readily observable that the mean error is always 
negative with its magnitude increasing with the distance value. 
To compensate such error, a look-up table is built from Fig. 2 
and used to adjust the depth value of each pixel of the PSMNet 
depth map to a more accurate depth value.  

B. Network Architecture 

The proposed CNN design is based on the well-known 
encoder-decoder structure. We choose MobileNetV2 (MNv2) as 

 

Fig. 3. The proposed CNN architecture. Each layer is specified by layer name, number of channels, and strike size. The multiplication (×) on top of a layer 

gives the repetition of that layer. 

 

Fig. 2. Error distribution per distance of PSMNet depth map. 

 
(a)                                                     (b) 

Fig. 1. An example of the pre-processed depth maps on KITTI dataset. 

(a) Input image. (b) Depth map generated by PSMNet. 



our encoder. The decoder is designed with up-scaling layers to 
enlarge the extracted feature maps, to form high resolution 
outputs of depth estimation as well as the corresponding 
semantic segmentation, and will be elaborated next. 

To design a light-weight CNN structure for real-time 
applications, an up-scaling method need to be chosen for our 
decoder design. Three common up-scaling strategies in neural 
network design include: (i) deconvolution, (ii) unpooling, and 
(iii) pixel shuffle. With (i), a deconvolution layer will up-scale 
the feature map by reversing the standard convolution process 
with a stride equal to 2, which maintains good gradient 
information but has high computation costs due to gradient 
descent-based updates of its kernel weights. For (ii), the feature 
map is enlarged directly by filling in zeros or repetitive values 
to empty cells of the enlarged feature map, which has less 
multiplication-add operations but will increase extraneous 
information flow while filling in unnecessary values. As for (iii), 
as presented by Shi et al. [21], the feature map is up-scaled by 
reshaping the feature matrix, e.g., a feature map with size (H, W, 
C) can be reshape to (2H, 2W, C/4) by a pixel shuffle layer. The 
feature reordering process can be efficiently done without any 
multiplication-add computation. Furthermore, the enlarged 
feature map will have all original feature values, maintaining 
good information flow in the neural network. Thus, strategy (iii) 
is adopted in the proposed decoder for feature map up-scaling.  

The proposed neural network architecture is shown Fig. 3, 
wherein each layer is denoted with its layer name, number of 
output channels, and strides (s), while the mark (×) on top of 
each layer gives the repetition of that layer. The encoder is 
composed of one 3×3 full convolution layer and 17 bottlenecks, 
which first down-samples input RGB image and eventually 
outputs a set of low-resolution and highly expressive feature 
maps. On the other hand, the decoder is represented by four 
regions (D1~D4), each composed of a pixel shuffle layer and 2 
to 4 bottlenecks, which eventually generates depth map and 
semantic segmentation map with multiple resolutions. For each 
of the four decoder blocks, a feed-forward feature map from 
previous layer is concatenated with a feature map passed from 
some encoder layers via skip connections and fed into a pixel 
shuffle layer for up-sampling. Next, the feature maps are fed into 
the bottlenecks to increase the feature expressiveness before 
further passed to two separate output layers, one for depth 
prediction and the other for semantic segmentation. While the 
former is done by using a pointwise convolution that compresses 
high-dimensional feature map into a single channel output as the 
pixel-wise depth map, the latter is done by using a pointwise 
convolution and a Softmax function that outputs a feature map 
with 19 channels, each represented by the probability of a 
specific category of segmentation. 

The motivation of the multi-task decoder design is that 
certain dependency and relationship do exist between many 
vision tasks [22]. With such design, we explore the possibility 
of learning depth estimation together with semantic 
segmentation to further improve the performance of depth 
estimation task, as will be observed from some results provided 
in experiments, while the multi-scale decoder design is also 
shown to be able to improve the model performance by 
improving the features of each resolution via the consideration 
of a multi-scale loss, as discussed next. In addition, skip 

connections between corresponding layers in encoder and multi-
scale decoder also benefit the information flow and speed up the 
model convergence. Finally, the proposed multi-scale multi-task 
model is detachable and highly customizable for different 
application needs after the training procedure, which enables us 
to deal with more easily the trade-off between resolution, run-
time speed, and types of output. 

C. Loss function 

In this paper, a loss function ℒ𝑡𝑜𝑡𝑎𝑙  (1), formulated as a 

weighted sum of depth loss and segmentation loss, is applied to 

each decoder block jointly for depth prediction as well as 

semantic segmentation, i.e., 

ℒ𝑡𝑜𝑡𝑎𝑙 = ∑ 𝛼𝑖ℒ𝐷𝑖

4
𝑖=1 + 𝛽𝑖ℒ𝑆𝑖

        

where parameter 𝑖 denotes the block number of the multi-scale 

decoder, ℒ𝐷𝑖
 and ℒ𝑆𝑖

 give the depth loss and segmentation loss 

for block 𝑖, with 𝛼𝑖  and 𝛽𝑖  being their weights and set to 0.25 
and 0.75, respectively. 

The depth loss ℒ𝐷𝑖
 measures the average difference of depth 

value between predicted depth map and ground truth depth. 
Most prior works [2, 4, 9] design the depth loss function by using 
L1 distance or L2 distance directly to represent the difference 
between predicted and the ground truth depth. However, error 
values should be considered differently for nearby and distant 
pixels. Specifically, the depth difference for nearby pixels 
should be more sensitive to depth difference than distant pixels. 
By analyzing the depth value distribution of ground truth depth 
map on KITTI dataset, we discovered that most of ground truth 
pixels has small depth value while only few pixels have large 
depth value, which means that the model should be more 
focused on the depth prediction for nearby objects. Therefore, 
our novel depth loss focuses more on nearby pixels by 
computing the difference of predicted and ground truth depth 
values in log space. To transform depth values from linear space 
to log space, we apply a log transform 𝐺(𝑑) to each pixel of 
depth map. Moreover, BerHu normalization 𝐹(𝑥) [23] is also 
used to balance the training convergence between nearby depth 
and distant depth. ℒ𝐷𝑖

 (2), 𝐹(𝑥)  (3), and 𝐺(𝑑)  (5) can be 

represented as: 

ℒ𝐷𝑖
=  

1

𝑊𝑖𝐻𝑖
∑ ∑ 𝐹(𝐺(𝑑̃𝑥,𝑦) − 𝐺(𝑑𝑥,𝑦))

𝐻𝑖
𝑦=1

𝑊𝑖
𝑥=1 ,   

𝐹(𝑥) =  {
|𝑥|             |𝑥| ≤ 𝑐,

𝑥2+𝑐2

2𝑐
         |𝑥| > 𝑐.        

    

𝑐 =
1

5
max𝑖(|𝐺(𝑑̃𝑥,𝑦) − 𝐺(𝑑𝑥,𝑦)|) 

𝐺(𝑑) =
(log 𝑑−log 𝑚)×𝑀

log 𝑀−log 𝑚
; 𝑚 = 4, 𝑀 = 80, 



where 𝑊𝑖 x𝐻𝑖  gives the resolution of output depth map from 

decoder block 𝑖 , 𝑑̃𝑥,𝑦  and 𝑑𝑥,𝑦  give depth values for the 

corresponding pixels of output and ground truth, respectively. 
For the BerHu normalization, 𝐹(𝑥), the boundary 𝑐 between L1 

distance and L2 distance is determined by 𝑑̃𝑥,𝑦  and 𝑑𝑥,𝑦  in 

current batch. As for the log transform function 𝐺(𝑑), the lower 
bound 𝑚 and upper bound 𝑀 are set to 4 and 80, respectively, 
according to the limitation of the LiDaR sensor.  

The segmentation loss ℒ𝑆𝑖
 is defined as the pixel-wise 

categorical cross-entropy: 

ℒ𝑆𝑖
=  −

1

𝑊𝑖𝐻𝑖
∑ ∑ ∑ 𝑠̃𝑥,𝑦

𝑐 log 𝑠𝑥,𝑦
𝑐𝐶

𝑐=1
𝐻𝑖
𝑦=1

𝑊𝑖
𝑥=1  

where 𝐶  denotes the number of classes for semantic 
segmentation, 𝑠̃𝑥,𝑦

𝑐  and 𝑠𝑥,𝑦
𝑐  respectively give the predicted 

segmentation and ground truth segmentation of class c at the 
corresponding pixel location (𝑥, 𝑦). 

IV. EXPERIMENTS 

A. Implementation details 

In our experiments, the MNv2-based encoder of the 
proposed CNN network is initialized with pretrained weights 
for the ImageNet classification task, while the convolution 
filters in the decoder blocks are initialized with normal 
initializer. For the gradient descent procedure in the training 
process, Adam optimizer is employed with an initial learning 
rate of 0.01, and with the rate reduced by 10% for every epoch. 
The proposed network is trained for at least 20 epochs, with 
1000 iterations for each epoch and a batch size of 8, on NVIDIA 
TITAN Xp with 12GB of memory. All the experiments are 

conducted using Keras as high-level API and TensorFlow as the 
backend platform. 

To train the CNN on KITTI dataset, we first downsample 
RGB images from the original size of (1241, 376) to (1056, 
320) as the model input, while resolutions of the depth maps 
and semantic segmentation outputs of decoder blocks D1~D4 
are (66, 20), (132, 40), (264, 80), and (528, 160), respectively. 
For performance evaluation, we upsample all the predicted 
depth maps back to (1241, 376), i.e., the original resolution of 
the ground truth depth.   

For the purpose of designing a light-weight model with high 
efficiency, we set the hyper-parameter, i.e., width multiplier of 
the bottlenecks, to 0.35, which is used to uniformly down-scale 
the number of channels for each convolution layer. The total 
number of parameters of our model are thus reduced to 0.32 
million, with the multiplication-add operations of the model 
limited to 2.1 GFLOPs. The average inference time, for one 
input image is 21ms on TITAN Xp GPU.  

B. Results  

1) Ablation Study: To demonstrate that our approach does 
benefit from using depth map generated by a teacher model, 

different approaches mentioned in Sec.Ⅲ-A. are evaluated for 

the depth prediction results obtained with the proposed CNN 
model. As shown in Table 1, the model trained directly with 
sparse ground truth depth map (SparseGT) is regarded as 
baseline, which results in an RMSE of 4.922 meters. However, 
the prediction results trained with SparseGT often give false 
predictions near object boundaries and upper part of the 
corresponding input images, as shown in Fig. 4. This is because 
such ground truths are lack of depth value at the upper part due 
to LiDaR projection limitation, while occlusion caused by 
sensor fusion between RGB camera and LiDaR often occur near 
the image boundary.  

To overcome the above problems, PSMNet is employed to 
generate pixel-wise depth map as training ground truth for the 
training of our model. Nevertheless, the PSMNet depth map is 
not the real ground truth and has a biased estimation with 
respect to different distances, and the model trained with 
PSMNet depth map results in 4.716 meters in RMSE. After 

using the look-up table mentioned in Sec. Ⅲ-A to compensate 

for the bias in the depth estimation of PSMNet, the model 
achieves an RMSE of 3.945 meters and outperforms other 
preprocessing methods. It is readily observable from Fig. 4 that 
the models trained with PSMNet depth map predicts more 
accurate depth value at image boundaries and the upper part of 
the image. Moreover, sharper object boundaries can also be 
obtained compared with the results generated by models trained 
with SparseGT.  

TABLE I. EVALUATION OF MODELS TRAINED WITH DIFFERENTLY PRE-
PROCESSED TRAINING DATA. 

Data type Training data 
RMSE 

(meter) 

Baseline Sparse depth map 4.922 

Pre-processed 
PSMNet (origin) 4.716 

PSMNet (compensated) 3.945 

 

TABLE II. EVALUATION OF MODELS TRAINED WITH DIFFERENTLY PRE-
PROCESSED TRAINING DATA. 

Improvement 

RMSE (meter) Depth 

Teacher 

Log 

Depth 

Segment 

Teacher 

   3.945 

   3.884 

   3.871 

 

 
           (a)                    (b)          (c)                (d) 

Fig. 4. An example of depth prediction results trained with various pre-processed data. (a) Input image. (b), (c), and (d) are the predicted results trained with 

Sparse depth map, Dense depth map, PSMNet (origin), and PSMNet (compensated), respectively. 



Next, we conduct another experiment to evaluate loss 
functions designed with (i) ordinary depth map and (ii) the 
depth map re-mapped by 𝐺(𝑑) (log depth map). To evaluate the 
depth prediction result, the outputs of the model trained (and 
tested) with log depth maps are inversely re-mapped to the 
original depth values by using 𝐺−1(𝑑) for RMSE computation. 
According to the results shown in Table 2, evaluated with 
RMSE, the model trained with log depth map performs better 
than that trained with original depth map, i.e., with 6 cm 
decreases in RMSE.  

Finally, we explore possible enhancements of depth 
estimation via the employment of multi-task learning that not 
only predicts depth map but also gives semantic segmentation 
during training. Based on the original model for single task, we 
investigate several designs by modifying the decoder blocks for 
multi-task prediction. Since a decoder block is composed of one 
pixel shuffle layer and 𝑁 bottlenecks, we split the bottlenecks 
into 𝑚  mutual layers and 𝑛  individual layers for multi task 
learning, where the formers share the same weights and produce 

the same feature maps while the latter have independent 
weights and produce individual feature maps for each 
individual task. We conduct an experiment with four different 
settings of (𝑚, 𝑛)  for mutual convolution and individual 
convolution, including (𝑁, 0) , (𝑁 − 1, 1) , (𝑁 − 2, 2) , and 
(𝑁 − 3, 3), as shown in Table. 3. We train each model for 10 
epochs, and compare the depth loss ℒ𝐷 of the last epoch, which 
are 4.167, 4.225, 4.465, and 5.222, respectively, for the above 
four (𝑚, 𝑛) setting. We can conclude that with same amount of 
bottleneck layers, increasing mutual layers between tasks can 
increase the model performance. Therefore, decoder blocks 
designed with 𝑁  mutual bottlenecks and 0 individual 
bottleneck are used for our multi-task learning approach, as in 
the network architecture shown in Fig. 3.   

We then compare the depth prediction results of single task 
and multi-task learning models. According to the results shown 
in Table 2, the model trained for both depth prediction and 
semantic segmentation outperforms the model only trained for 
depth prediction, i.e., with 1.3 cm decreases in RMSE. One 
possible explanation of such results is that the model trained for 
multiple tasks will have higher feature expressiveness and 
expedite the convergence of the training process, which in turn 
improves the depth estimation for all distance ranges.   

2) Evaluation on KITTI dataset: With all improvements 
described in the previous subsection, we can now use KITTI 
public dataset to compare the performance of our method with 
previous works in terms of depth prediction accuracy and model 
size. Fig. 5 shows some qualitative results of the prediction of 
depth map and semantic segmentation on KITTI dataset by 
using our best trained multi-task multi-loss model. The outputs 
of depth maps are illustrated with color map, with brighter color 
corresponding to a closer distance, whereas the outputs of 
semantic segmentation are illustrated by assigning different 
colors to differently identified classes. One can also see that the 
proposed model can obtain accurate depth maps with clear 
object boundaries for small (far away) objects.  

To compare the performance with previous works, we use 
our best trained model to predict depth maps for the testing 

TABLE IV. COMPARED WITH PREVIOUS WORKS ON KITTI DATASET. 

Model Abs Rel Sq Rel RMSE RMSE log 
Threshold 

<1.25 <1.56 <1.95 

Kuznietsov et al. [9] 0.113 0.741 4.621 0.189 0.862 0.960 0.986 

Godard et al. [5] 0.133 1.158 5.370 0.208 0.841 0.949 0.978 

Eigen et al. [15] 0.203 1.548 6.307 0.282 0.702 0.890 0.958 

Liu et al. [4] 0.201 1.584 6.471 0.273 0.680 0.898 0.967 

Luo et al. [24] 0.094 0.626 4.252 0.177 0.891 0.965 0.984 

Godard et al. [6] 0.114 0.991 5.029 0.203 0.864 0.951 0.978 

Luo et al. [25] 0.128 0.935 5.011 0.209 0.831 0.945 0.979 

Yin et al. [7] 0.149 1.060 5.567 0.226 0.796 0.935 0.975 

Guo et al. [26] 0.111 0.771 4.449 0.185 0.868 0.958 0.983 

Yang et al. [28] 0.092 0.547 3.390 0.177 0.898 0.962 0.982 

Amiri et al. [10] 0.078 0.417 3.464 0.126 0.923 0.984 0.995 

Fu et al. [3] 0.072 0.307 2.727 0.120 0.932 0.984 0.994 

Ours 0.106 0.502 3.871 0.160 0.897 0.998 0.9997 

 

TABLE III. EVALUATION OF MODELS TRAINED WITH VARIOUS DECODER 

STRUCTURES. 

Decoder Structure  RMSE (meter) 

(𝑁, 0) 4.167 

(𝑁-1, 1) 4.225 

(𝑁-2, 2) 4.465 

(𝑁-3, 3) 5.222 

 

 

Fig. 5. Some qualitative results of our multi-tasks model. Top to bottom: 

input images, predicted depth map, and predicted semantic segmentation. 



images of KITTI dataset and compare the evaluation results 
with various approaches of monocular depth estimation, as 
shown in Table 4. For each evaluation metric, bold numbers and 
underlined numbers represent the best and the second-best 
results, respectively. Our model outperforms all the others for 
Threshold <1.56 and Threshold <1.95. Note that the current 
state-of-the-art method proposed by Fu et al. [3] is conducted 
by using ordinal regression, which has high computation cost 
and takes more than 500ms (less than 2 fps) for inference, while 
our model can produce high resolution outputs with low 
computation cost and only takes 21ms (47 fps) for inference.  

Fig. 6 illustrates qualitative results of predicted depth map 
produced by our method and those proposed by Godard et al. 
[5], Kuznietsov et al. [9], and Fu et al. [3], wherein GT gives 
ground truth depth map post-processed by interpolation for 
better visualization, with depth prediction results of each 
method rescaled to the resolution of input image, or 
(1241, 376). The unsupervised learning method proposed in 
[5] gives depth prediction with rich detail. However, the object 
boundary of closed by objects has blurrier depth prediction 
results compared with our method. The method proposed in [9] 
also fails to predict correct depth for nearby objects. Moreover, 
the depth prediction of smaller (thinner) objects in the scene are 
more blurred compared with the result of our method, e.g., the 
lamp pole shown in Fig. 6 (b). As for the current state-of-the-
art method proposed in [3], despite their high evaluation score, 
the depth prediction gives random value at the upper part of the 
image due to insufficient of ground truth value. On the other 
hand, our method not only gives detailed depth prediction for 
all image pixels, but also provides correct prediction and clear 
boundaries for nearby objects, and even small objects.  

We further evaluate the model size (number of model 
parameters) of our method and several previous works of real-
time depth estimation, including the methods proposed by 
Elkerdawy et al. [13], Poggi et al. [12], and Nekrasov et.al [14] 
on KITTI dataset, as shown in Table 5. One can see our (single 
task) model only has a total number of 0.32 million parameters, 
which is the least among all methods, i.e., 18.4, 5.9, and 9.3 
times fewer than that of Elkerdawy, Poggi, and Nekrasov’s 
method, respectively. As for the comparison of depth prediction 
error evaluated with the RMSE metric on KITTI dataset (which 
is also available in Table 5), our model outperforms all models 
except for the one proposed by Nekrasov et.al, which has a 
much more complex model than ours. 

3) Evaluation on Edge Device: For realistic evaluation of 
the proposed light-weight design for computation time and 
model performance, we implement our model on NIVIDIA 
Jetson TX2 module, a power-efficient embedded AI computing 
device. To achieve low latency and high-throughput for 
inference applications, we convert our well-trained model from 
Keras framework to TensorFlow then optimize it using 
TensorRT (TRT), which combines selected layers and 
optimizes the kernel selection for throughput, power efficiency, 
and memory consumption. Finally, we evaluate the model 
performance (in terms of FPS), before and after the TRT 
optimization, on NVIDIA GTX 1060 GPU and Jetson TX2 
module, as shown in Table 6.  

Aiming for realistic edge applications, we provide four 
models of different sizes, with different computation efficiency 
and prediction accuracy. In particular, L, M, S, and XS 
represent the models with 4, 3, 2, and 1 decoder blocks, 
respectively. With the input resolution set to (480, 320), output 
resolutions of L, M, S, and XS models are set to (240, 160), 
(120, 80), (60, 40), and (30, 20), respectively. On GTX 1060, all 
models can easily achieve much higher than real-time 
performance (>100fps) with a TensorFlow-based framework, 
and can further increase the inference speed (>121 fps) via 
TensorRT optimization. On Jetson TX2, on the other hand, all 
models can achieve slightly higher than real-time performance, 
except for the  TensorFlow implementation of the model which 
has the highest output resolution of (240,160). 

V. CONCLUSION 

We proposed an efficient CNN for depth estimation with 
real-time (over 45fps) processing rate. Our method is designed 
with detachable multi-resolution decoder blocks that output 
pixel-wise depth map and semantic segmentation with multiple 
scales. The detachable structure enables model customization, 

  Input Image              GT            Fu et al. [3]          Godard et al. [5]            Kuznietsov et al. [9]       Ours 

 

Fig. 6. Qualitative results on KITTI dataset. GT gives the ground truth depth, which is pre-processed with interpolation for visualization. 

TABLE V. THE COMPARISON OF PREDICTION ERROR AND TOTAL USAGE OF 

MODEL PARAMETERS. 

Method RMSE Parameters (M) Ratio 

Elkerdawy et al. [13] 5.891 5.9 ×18.4 

Poggi et al. [12] 6.030 1.9 ×5.9 

Nekrasov et.al [14] 3.453 2.99 ×9.3 

Ours 3.871 0.32 ×1.0 

 
TABLE VI. EVALUATION OF OUR MODEL ON GTX 1060 AND JETSON TX2. 

Model Output dim. 
GTX 1060  

(FPS) 

Jetson TX2 

(FPS) 
RMSE 

L (240, 160) 121.6 33.5 4.315 

M (120, 80) 148.7 42.8 4.344 

S (60, 40) 174.8 49.5 4.619 

XS (30, 20) 179.4 54.1 4.549 

 



offering the trade-off between output resolution and 
computation cost (speed). To train our CNN with supervised 
learning techniques on KITTI dataset, we generate ground truth 
semantic segmentation by using DeepLabV3, and produce 
ground truth depth map by using PSMNet and a depth 
compensation scheme. Based on an encoder-decoder 
architecture, we also explore efficient convolution design, low-
computation upsampling layers, and a series of decoder 
structures. Our best trained model achieves state-of-the-art 
performance in several evaluation matrices on KITTI dataset 
with extremely small model size. Finally, via the renowned 
TensorFlow conversion and TensorRT optimization, we show 
that our compressed model can perform in real-time not only on 
GPU but also on power-efficient computing device, and will 
have a great opportunity for various edge computing 
applications. 
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