
Multi-Class Video Co-Segmentation with a Generative Multi-Video Model

Wei-Chen Chiu Mario Fritz
Max Planck Institute for Informatics, Saarbrücken, Germany

{walon,mfritz}@mpi-inf.mpg.de

Abstract

Video data provides a rich source of information that
is available to us today in large quantities e.g. from on-
line resources. Tasks like segmentation benefit greatly from
the analysis of spatio-temporal motion patterns in videos
and recent advances in video segmentation has shown great
progress in exploiting these addition cues. However, ob-
serving a single video is often not enough to predict mean-
ingful segmentations and inference across videos becomes
necessary in order to predict segmentations that are con-
sistent with objects classes. Therefore the task of video co-
segmentation is being proposed, that aims at inferring seg-
mentation from multiple videos. But current approaches are
limited to only considering binary foreground/background
segmentation and multiple videos of the same object. This
is a clear mismatch to the challenges that we are facing with
videos from online resources or consumer videos.

We propose to study multi-class video co-segmentation
where the number of object classes is unknown as well
as the number of instances in each frame and video. We
achieve this by formulating a non-parametric bayesian
model across videos sequences that is based on a new
videos segmentation prior as well as a global appearance
model that links segments of the same class. We present the
first multi-class video co-segmentation evaluation. We show
that our method is applicable to real video data from online
resources and outperforms state-of-the-art video segmenta-
tion and image co-segmentation baselines.

1. Introduction
Video data is one of the fastest growing resource of pub-

licly available data on the web. Leveraging such resources
for learning and making it accessible and searchable in an
easy way is a big opportunity – but equally a big challenge.
In order to leverage such data sources, algorithm must be
able to deal with the unstructured nature of such videos
which is beyond today’s state-of-the-art.

Video segmentation has recently made great progress in
improving on traditional segmentation algorithms. Motion

Figure 1. Our proposed multi-class video co-segmentation model
addresses segmentation of multiple object classes across multiple
videos. The segments are linked within and across videos via the
global object classes.

and spatio-temporal structure in videos provide rich cues
about potential object boundaries and independently mov-
ing objects. However, this approach has inherent limita-
tions. As a single video might only expose a partial view,
accidental similarities in appearance and motion patterns
might lead to an ambiguous or even misleading analysis.
In addition, performing video segmentation independently
on each video of a video collection does not reveal any ob-
ject class structure between the segments that would lead to
a much richer representation.

We draw two conclusions. First, segmentations should
be treated in a probabilistic framework in order to account
for uncertainty. Second, a richer problem set should be in-
vestigated where the approach is enabled to reason across
multiple video sequences in order to collect additional evi-
dence that is able to link segments across videos.

Recently, two initial attempts [16, 5] have been made to
approach such a video co-segmentation task. But these ap-
proaches make quite strong assumptions. A binary fore-
ground vs. background segmentation is assumed where-
fore no association between object classes is required across
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videos. Also the set of videos is assumed to be visually very
similar. Furthermore, one presented evaluation [5] remains
qualitative and the other one uses synthetically generated
sequences [16] that paste a foreground video into different
backgrounds. There is still a big disconnect between the
idea of video co-segmentation to the challenges presented
in video data from the web or personal video collections.

Contribution : This paper establishes multi-class video
co-segmentation as a well defined challenge. We propose
an approach that considers real video data, where neither
the global number of appearance classes nor the number of
instances in each images is known. Our method is based on
the first application of distant-dependent Chinese Restau-
rant Processes for video data in order to formulate a video
segmentation prior. Finally, we present the first quantitative
evaluation of this new task which is performed on real video
sequences.

2. Related Work

The idea of spatio–temporal analysis and segmentation
of video data [6, 23, 22] has seen several refinements over
the last years. More sophisticate probabilistic models [9,
13, 19] and the combination with tracking and segmentation
algorithms [3, 14, 7] have greatly improved the applicability
of such models. We organize and discuss related approaches
as follows:

Video Segmentation In [14] long term point trajectories
based on dense optical flow are used to cluster the feature
points into temporally consistent segmentations of mov-
ing objects in the video. Similarly, in [7] with introduc-
tion of probabilistic region trajectories, they proposed to
use spatial–temporal clustering on trajectories based on mo-
tion. Although their methods provide plausible solutions
on video segmentation tasks, they lack a global appear-
ance model that would relate segments across videos for the
video co-segmentation task.

Image/Object Co-Segmenation Object co-segmentation
[21] was first introduced to segment a prominent object
based on an image pair in which it both appears. This
idea has seen several refinements and today’s state-of-the-
art in co-segmentation can handle multiple objects [10].
Similar to [10], we assume the objects are shared between
videos, therefore co-segmentation can be encouraged but
not enforced. However, these approaches only look at sin-
gle frames and do not consider spatio-temporal structure
and motion, which we incorporate in our generative model.
Also we overcome the issue of choosing a particular num-
ber of classes by employing a non-parametric prior.

Bayesian Non-parameterics for Image and Video Anal-
ysis In terms of learning appearance models, we relate to
the application of topic models in the image domain [17].
This work has been extended to handle also spatial infor-
mation [24] as well as part notions in infinite mixture mod-
els [18] and motion [12]. Non of these models have pre-
sented a video segmentation prior or described a generative
model for appearance classes across multiple videos. From
the modeling aspect, our work is inspired by the image seg-
mentation method based on distant dependent Dirichlet Pro-
cess (ddCRP) [8]. We present a model that employs ddCRP
in order to formulate video segmentation prior as well as
learning appearance models together with the segmentation
across multiple videos.

Video Co-Segmentation Recently, two initial attempts
[16, 5] have been made to approach video co-segmentation
with a binary foreground/background segmentation task.
But this setting makes quite strong assumptions and elim-
inates the problem of associating segments of multiple
classes across frames and videos. In contrast, our method
is the first to advance to less structured videos of multi-
ple objects. We define and address a multi-class video co-
segmentation task. In addition, we provide the first quanti-
tative evaluation of this task on real videos.

3. Generative Multi-Video Model

The goal of this paper is to perform segmentation across
multiple videos where the segments should correspond to
the objects and segments of the same object class are linked
together within and across videos. As motivated above,
video segmentation on each video independently can lead
to ambiguities that only can be resolved by reasoning across
sequences. In order to deal with this problem we approach
video cosegmentation by a generative model where videos
are linked by a global appearance model. In order to be able
to deal with an unknown number of object classes and ob-
ject instances in each video, we make use of non-parametric
bayesian modeling based on Dirichlet Processes. In particu-
lar, we define a video segmentation prior that proposes con-
tiguous segments of coherent motion by a distance depen-
dent Chinese Restaurant Process (ddCRP) as well as an infi-
nite mixture model for the global appearance classes based
on a Chinese Restaurant Process (CRP) [15].

After describing our video representation, we give an
overview of Chinese Restaurant Processes (CRP) and ex-
tension to distant dependent Chinese Restaurant Processes
(ddCRP) [2]. The ddCRP will then be used to define a
video segmentation prior. In oder to define a generative
model across video we add another layer on top that links
the videos with a shared appearance model.



3.1. Video Representation

Given a set of videos V , we start by a superpixel seg-
mentation for each frame within the sequence and represent
the video as a collection of superpixels. For every video
v ∈ V , we denote its total number of superpixels by Nv ,
and describe each superpixel i by its appearance feature xi,
spatio-temporal location si and motion vector mi.

3.2. Distance Dependent Chinese Restaurant Pro-
cesses (ddCRP)

We briefly introduce the basic idea of CRP and its ex-
tension to ddCRP. CRP is an alternative representation of
Dirichlet process model and it defines the following proce-
dure. Imagine a restaurant with an infinite number of tables.
A sequence of customers come enter the restaurant and sit
at randomly chosen tables. The i-th customer sits down at
a table with a probability that is proportional to how many
customers are already sitting at that table or opens up a new
table with a probability proportional to a hyperparameter.
Their seating configuration represents a random partition
also called table assignments. Thus CRP provides a flexible
prior distribution over table assignments where the number
of tables is potentially infinite. Since the table assignment
of each customer just depends on the number of people sit-
ting at each table and is independent of the other ones, the
ordering of customers does not affect the distribution over
partitions and therefore exchangeability holds.

While in some cases there are spatial or temporal de-
pendencies between customers, the exchangeability does
not hold any more, the generalized process allowing non-
exchangeable distribution over partitions is needed. The
ddCRP was proposed to offer an intuitive way for model-
ing non-exchangeability and dependency. The main differ-
ence between the CRP and ddCRP is that rather than di-
rectly linking customers to tables with table assignments, in
ddCRP customers sit down with other customers according
to the dependencies between them, which leads to customer
assignments. Groups of customers sit together at a table
only implicitly if they can be connected by traversing the
customer assignments. Therefore the i-th customer sits with
customer j with a probability inversely proportional to the
distance dij between them or sits alone with a probability
proportional to the hyperparameter α:

p(ci = j|D, f, α) ∝

{
f(dij) j 6= i

α j = i
(1)

where ci is the customer assignment for customer i and f(d)
is the decay function and D denotes the set of all distances
between customers. The decay function f should be non-
increasing, takes non-negative finite values, and satisfies
f(∞) = 0. It describes how distances between customers
affect the probability of linking them together.

3.3. ddCRP Video Segmentation Prior

We use the ddCRP in order to define a video segmen-
tation prior. Customers correspond now to superpixels and
tables correspond to object instances. The distance mea-
sure D and decay function f is now composed of two parts:
{Ds, fs} and {Dm, fm} where the former one comes from
the spatio-temporal distance and the latter one from motion
similarities between superpixels.

p(ci = j|D, f, α) ∝

{
fs(dsij)f

m(dmij ) j 6= i

α j = i
(2)

Before measuring the spatio-temporal distance, we first use
the optical flow vectors gained from TV-L1 model [4] in
each pair of adjacent frames to find the neighbouring super-
pixels along temporal axis. Then the spatio-temporal dis-
tance Ds between superpixels is defined as the number of
hops [8] required to travel from one superpixel to another.
For the motion distance Dm between superpixels, we sim-
ply use the euclidean distances between mean motion vec-
tors of superpixels for the motion similarities. For fs, we
use the window decay f(d) = [d < A] which determines
the probabilities to link only with customers that are at most
distance A away. For fm, we use the exponential decay
f(d) = e

−d
B which decays the probability of linking to cus-

tomers exponentially with the distance to the current one,
where B is the parameter of decay width. With the decay
functions fs and fm for both spatio-temporal and motion
domains, we have defined a distribution over customer (su-
perpixel) assignments which encourages to cluster nearby
superpixels with similar motions thus to have contiguous
segments in spatio-temporal and motion domains. In Fig-
ure 2 we show samples from this ddCRP video segmenta-
tion prior for different hyperparameters. The prior proposes
segments having contiguous superpixels with similar mo-
tion.

3.4. Generative Multi-Video Model

In this section we formulate a probabilistic, generative
model that links the videos by a global appearance model
that is also non-parametric. We consider the following hier-
archical generative procedure of multiple video sequences:

Videos consist of multiple global object classes with dif-
ferent appearances, and for every video there are arbitrary
number of instances which are located at different locations
and possibly move over time. As our model has a hierarchi-
cal structure of layers for global classes and local instances
which is very similar to the idea of Hierarchical Dirich-
let Process [20], we use the same metaphor of its Chinese
restaurant franchise representation in our case: There is a
restaurant franchise (set of videos) with a shared menu of
dishes (object classes) across all restaurants (videos). At



Figure 2. First Row (from left to right): Original image, motion
map from optical flow, superpixel segmentation. Rest Rows: Sam-
ples from ddCRP video cosegmentation prior under different set-
tings between concentration hyperparameter α and width parame-
ter B for exponential decay function of motion fm.

each table (object instance) of each restaurant one dish (ob-
ject class) is ordered from the menu by the first customer
(superpixel) who sits there, and it is shared among all cus-
tomers (superpixels) who sit at that table (object instance).
Multiple tables (object instances) in multiple restaurants
(videos) can serve the same dish (object class). So the
analogy is the following: restaurants correspond to videos,
dishes correspond to object classes, tables correspond to in-
stances, and customers correspond to superpixels. Here is a
summary of the generative process:

1. For each superpixel iv in video v, draw assignment
civ ∼ ddCRP(D, f, α) to object instance

2. For each object instance tv in video v, draw assign-
ment ktv ∼ CRP(γ) to object class

3. For each object class k, draw parameters φk ∼ G0

4. For each superpixel iv in video v, draw observed fea-

ture xiv ∼ P (·|φziv ), where ziv = ktiv the class as-
signment for iv .

where G0 is drawn from the DirichletProcess(γ,Ha) in
order to define an infinite set of appearance models. Ha

denote a Dirichlet prior on feature appearance distribution
which is used as the base distribution for the process. γ
is the concentration parameter for the Dirichlet process.
For each global object class k discovered across video se-
quences, the parameter φk for its appearance model is sam-
pled from G0. We use a multinomial distribution η to de-
scribe the appearance model. Therefore given the observed
appearance feature xi for superpixel i, the likelihood of ob-
served appearance feature for global object class k can be
denoted as p(xi|φk) = ηk(xi).

Posterior Inference via Gibbs Sampling In order to in-
corporate the ddCRP video segmentation prior with the
likelihood of superpixels to object instances whose appear-
ance models are inherited from corresponding global object
classes, we can now define a posterior distribution over cus-
tomer assignments and use it to perform inference.

The goal of posterior inference is to compute posterior
distribution for latent variables given observed data. The
posterior for customer assignments is:

p(c1:Nv
|x1:Nv

, D, f, α, γ) =(∏Nv

iv=1 p(civ |D, f, α)
)
p(x1:Nv

|z(c1:Nv
), γ)∑

c1:Nv

(∏Nv

iv=1 p(civ |D, f, α)
)
p(x1:Nv

|z(c1:Nv
), γ)

(3)
Here we use ddCRP p(x1:Nv

|z(c1:Nv
) as prior for all the

possible customer configurations such that its combinatorial
property makes the posterior to be intractable wherefore we
use sampling techniques. As proposed in original ddCRP
paper [2], Gibbs sampling is used where samples are itera-
tively drawn from the conditional distribution of each latent
variable given the other latent variables and observations:

p(civ |c−iv , x1:Nv
, D, f, α, γ) ∝p(civ |α,D, f)·

p(x1:Nv
|z(c1:Nv

), γ)
(4)

The prior term is given in equation 2 and the likelihood term
for multinomial appearance distribution is

p(x1:Nv
|z(c1:Nv

), γ) =

|z(c1:Nv )|∏
l=1

p(xz(c1:Nv )=l|z(c1:Nv
), γ)

=

|z(c1:Nv )|∏
l=1

ηl(xz(c1:Nv )=l)

(5)
Resampling the global class (dish) assignment k follows

typical Gibbs sampling method for Chinese Restaurant Pro-
cess but consider all the features xV and assignments kV



in the video set V . The class assignment posterior of each
table tv in video v is:

p(ktv = l|kV−tv , x
V , γ) ∝

{
m

kV−tv

l η
kV−tv

l (xtv ) if l is used
γηl(xtv ) if l is new

(6)
Here kV−tv denotes the class assignments for all the tables in
the video set V excluding table tv , xV is the appearance fea-
tures of all superpixels within V . Given the class assignment

setting kV−tv , m
kV−tv

l counts the number of tables linked to

global class l whose appearance model is η
kV−tv

l . xtv stands
for the appearance features of superpixels assigned to the
table tv .

3.5. Implementation Details

For computing the appearance feature representation for
superpixels, we use the following pipeline: We use a sim-
ilar procedure of dense patch extraction and patch descrip-
tion as in [10] in order to stay comparable to the image co-
segmentation baseline which we will use in the experimen-
tal section. These patches are further quantized into a code-
book of length 64 so that we can assign a color codeword
to every image patch, which is based on a typical Bag-of-
Words (BoW) image representation. Now we describe the
appearance feature for each superpixel i by using the color
codeword histogram xi computed from the image patches
whose center is located inside that superpixel.

For all our experiments we set the concentration param-
eter γ = 1 which is weakly informative. The hyperparame-
ter on multinomial distribution for appearance information
is assigned symmetric Dirichlet prior Ha = Dir(2e + 2)
which encourage to have bigger segments for global classes.
The concentration parameter α = 1e − 100 for the pro-
posed video segmentation prior and the width parameter
B = 1e− 1 for motion decay function fm was determined
by inspecting samples from the prior obtained from equa-
tion 2. We show examples in Figure 2 that displays the ef-
fect of the parameters. We set width parameterA for spatial
decay function fs to be 3 for all our experiments.

4. Experimental Results
In this section, we evaluate our generative video co-

segmentation approach and compare it to baselines from
image co-segmentation and video segmentation.

We first present our new dataset and the evaluation cri-
terion that we propose. Then we present the results of our
method and compare them to image co-segmentation and
video segmentation baselines.

4.1. Dataset

We present a new Multi-Object Video Co-Segmentation
(MOViCS) challenge, that is based on real videos and ex-

poses several challenges encountered in online or consumer
videos.

Up to now there is only a first attempt to propose a video
co-segmentation benchmark [16]. The associated dataset is
very limited as it only consists of one set of 4 videos that
are synthetically generated. The same foreground video is
pasted into 4 different backgrounds. Accordingly, their task
is defined as binary foreground/background segmentation
that does not address segmentation of multiple classes and
how the segments are linked across videos by the classes.

In contrast to this early video co-segmentation ap-
proaches, we do not phrase the task as binary fore-
ground/background segmentation problem but rather as a
multi-class labeling problem. This change in task is cru-
cial in order to make progress towards more unconstraint
video settings as we encounter them on online resources and
consumer media collections. Therefore, we propose a new
video co-segmentation task of real videos with multiple ob-
jects in the scene. This makes a significantly more difficult
problem, as not only object have to be correctly segmented
but also assigned the same global class across video.

We propose the first benchmark for this task based on
real video sequences download from youtube. The dataset
has 4 different video sets including 11 videos with 514
frames in total, and we equidistantly sample 5 frames from
each video that we provide ground truth for. Note that for
each video set there are different numbers of common ob-
ject classes appearing in each video sequence, and all the
objects belonging to the same object class will be noted by
the same label.

Unlike the popular image co-segmenation dataset iCoseg
[1] which has similar lighting, image conditions and back-
ground or video segmentation dataset moseg [3] with sig-
nificant motion patterns, our dataset exposes many of the
difficulties encountered when processing less constraint
sources. In Figure 3 we show examples of video frames for
the four video sets together with the provided groundtruth
annotations. Our sequences show different lighting con-
ditions (e.g. tiger seq.), motion blur (e.g. chicken seq.),
varying number of objects moving in and out (e.g. gi-
raffe,elephant seq.), similar appearance between objects and
background (e.g. tiger), etc. The MOViCS dataset and
our code can be found at http://www.d2.mpi-inf.
mpg.de/datasets.

4.2. Evaluation Metric

In order to quantify our results, we adopt the
intersection-over-union metric that is also used in image
co-segmentation tasks (e.g. [11]) as well as the PASCAL
challenge.

M(S,G) =
S ∩G
S ∪G

(7)

http://www.d2.mpi-inf.mpg.de/datasets
http://www.d2.mpi-inf.mpg.de/datasets


Figure 3. Summary of our proposed MOViCS dataset. Different color blocks stand for different video sets and the images within the same
block come from the same video sequences.

where S is a set of segments and G are the groundtruth an-
notations.

We define our co-segmentation task as finding for each
object class a set of segments that coincide with the object
instances in the video frames. Therefore the algorithm has
to group the segments by object class. We denote all seg-
ments grouped to an object class i by Si. Therefore our
evaluation assigns the object class to the best matching set
of segments predicted by an algorithm:

Scorej = max
i
M(Si, Gj) (8)

Please note that this measure is not prone to over-
segmentation, as only a single label is assigned per object
class for the whole set of videos. We can further condense
this performance measure into a single number by averag-
ing over the classes.

Score =
1

C

∑
j

Scorej (9)

where C is the number of object classes in the groundtruth.

Comparison to video segmentation A comparison to
video segmentation methods is not straight forward. As
each video is processed independently, there is no linking
of segments across the videos. We therefore give the advan-
tage to the video segmentation method that our evaluation
links the segments across videos by the groundtruth.

4.3. Results

We evaluate our approach on the new MOViCS dataset
and compare it to two state-of-the-art baselines from video

segmentation and image co-segmentation. Our video seg-
mentation baseline [14] is denoted by (VS) and the image
co-segmentation baseline [10] is denoted by (ICS) whereas
we use (VCS) for our video co-segmentation method. For
both baselines we run the publicly available code of the au-
thors on our data.

The performance numbers of the proposed method in
comparison to the baselines are shown in Figure 4. With
an overall performance of 48.75% of our method, we out
perform VS by 22.08% and ICS by 31.5%.

Figure 7 shows a visualization of the results. First col-
umn is a frame of the video, second column shows the mo-
tion map, the third column shows the results of ICS, fourth
column shows the result of VS and the last column shows
the results of our VCS method.

Here the evaluation is performed per set of video se-
quences since the algorithm not only have to correctly seg-
ment the object instances but also link them to a consistent
object class. As described in our evaluation metric, we don’t
allow for over-segmentation of the object classes in this ex-
periment.

Also recall that VS doesn’t have this property to link ob-
jects across videos. Therefore it has no notion of objects
links across videos. As described above we give an advan-
tage to the VS method by linking the segments across video
via the groundtruth. Despite this advantage our method out-
performs VS by a large margin for the first 3 video sets.
Only on the tiger sequences VS performs better. It turns out
that in this set the appearance is particularly hard to match
across videos due to lighting and shadow effects, where the
VS gets boosted by the additional information we had to
provide for the comparison.
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Figure 4. Comparison of co-segmentation accuracies between the
our method (VCS), image co-segmentation (ICS) and video seg-
mentation (VS) on the proposed MOViCS dataset. Only a single
label is assigned per object class in the groundtruth for the whole
set of videos.

Discussion The video segmentation baseline strongly de-
pends on motion information in order to produce a good
segmentation. When the motion map is noisy or there are
objects moving together or with similar motion, segmenta-
tion errors occur. This issues are particular pronounced in
the first video set where the chicken moves together with
the turtle and the motion map is noisy due to fast motion
in the second video. Our method handles such situations
better and maintains a good segmentation despite the noisy
motion information.

The image co-segmentation baseline has an assumption
which expects a certain number of common object classes
for all input images. This often cause problems for the less
constraint settings that we are of interest in our study. For
example in the second and third video sets in Figure 7, there
are a varying number of objects moving in and out. The
performance of image co-segmentation reduces in these set-
tings. In addition, problems occur with wrongly merged ob-
ject classes (lion with zebra, and giraffe with elephant). Our
non-parametric approach seems to be better suited to deal
with this variation on object instances and object classes
and shows overall a more consistent segmentation.

Another interesting aspect of our model is how segmen-
tation is supported by jointly considering all the videos of
a set and learning a global object class model. Without
this global appearance model, the performance decreases
by 3.15% - still outperforming the baselines. We give an
example in Figure 6 where the first row is the images from
a single tiger video, the second row is the results by apply-
ing our proposed method only on this single sequence, and
the last row is our VCS result while taking all videos in tiger
set into account. We observe an improved segmentation that
recovers parts of the tiger that were previously missing.

Analysis with over-segmentation In this analysis we re-
lax the assumption that the sets of segments proposed by
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Figure 5. Comparison of co-segmentation accuracies between our
approach (VCS) and baselines (ICS, VS) for MOViCS dataset.
Allow over-segmentation which can assign multiple labels to the
same object class in the groundtruth.

Figure 6. Example of improved results by segmenting across
videos with a global object class model. First row: images from a
single tiger video. Second row: results obtained from running our
proposed method only on single tiger sequence. Third row: joint
segmentation on all tiger videos.

the method have to correspond to exactly one groundtruth
object class each. Therefore, we now assign multiple set
of segments to the same object class in the groundtruth.
In Figure 5 we present the performance comparison under
this relaxed setting. Please note that this relaxed measure
doesn’t penalize for non-existing links between the videos
as well as over segmentation in the spatial domain. Overall,
the performance improves, as over segmentation is not pe-
nalized. In average our method achieves a performance of
64.1% which still outperforms VS by 22.82% and ICS by
30.19%. The improvements under this measure are partic-
ular prominent on the video sets where appearance is hard
to match across sequences. We take the fourth video set
(tiger) as an example. In Figure 7 we observe that VS over-
segments the tiger. This set of videos is challenging due to
varying lighting conditions, shadows and appearance simi-
larities with the background. Both ICS and VS do not match
the object correctly across videos, as we can tell be the dif-
ferent coloring across videos. Our method does not show
strong over-segmentation artifacts and also matches the ob-
ject class across the first two videos.



Figure 7. Examples of results from the proposed method (VCS)
and baselines (ICS, VS) for all four video sets in MOViCS dataset.

5. Conclusion
We have proposed a non-parametric approach to the

task of multi-class video co-segmentation. Our method
incorporates a probabilistic video segmentation prior that
proposes spatially contiguous segments of similar motion.
We defined the first video co-segmentation challenge on
multiple objects. The proposed Multi-Object Video Co-
Segmentation (MOViCS) dataset is based on real videos
and exposes challenges encountered in consumer or online
video collections.

Our method outperforms state-of-the-art image co-
segmentation and video segmentation baselines on this new
task. We provide an analysis that give insights to the open
challenges on this emerging task.
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