
Masking Improves Contrastive Self-Supervised Learning for ConvNets,
and Saliency Tells You Where
– Supplementary Materials –

Zhi-Yi Chin1* Chieh-Ming Jiang1* Ching-Chun Huang1 Pin-Yu Chen2 Wei-Chen Chiu1

1 National Yang Ming Chiao Tung University
2IBM Research

{joycenerd.cs09, nax1016.cs10, chingchun}@nycu.edu.tw, pin-yu.chen@ibm.com, walon@cs.nctu.edu.tw

1. Appendix
In this appendix, we firstly provide the summarization

of our contributions with respect to our two main baselines
MSCN [12] and ADIOS [20] (cf. Section 1.1 and Sec-
tion 1.2 respectively) as well as our contribution in terms
of saliency masking (cf. Section 1.3). Furthermore, we
show the efficacy of our three different masking strategies
(i.e., high-pass filtering, strong blurring, and mean filling)
with more experiments as well as discuss the computational
cost: In Section 1.5, we provide detailed experimental se-
tups and conduct various downstream tasks (i.e., classifica-
tion, object detection, and semantic segmentation) in dif-
ferent contrastive SSL frameworks (i.e., MoCov2 [4] and
SimCLR [3]); While in Section 1.6, we compare the com-
putational cost of three different masking strategies with
MSCN [12] and ADIOS [20].

1.1. Emphasis upon our contribution compared to
baseline MSCN [12]

Here we would like to emphasize again that our contribu-
tions stand out from the ones of MSCN [12] as it includes:
1) Saliency masking with various masking strategies (their
benefits are shown in Table 4 and 1 of the main manuscript),
in which MSCN does not adopt saliency-guided masking
but applies random masking, and its masking strategy based
on high-pass filtering constrains the setting of downstream
tasks (since the input for the downstream tasks needs to
be firstly high-pass-filtered as well, i.e. having the prior
knowledge upon how the pre-training of feature extractor is
done, c.f. lines 360-372 in our main manuscript). Our pro-
posed strong blurring and mean-filling masking strategies
are novel and practical as they do not have such constraints,
thus being more flexible; 2) Based on the explicit analysis of
variance manipulation, our proposed method applies mask-
ing solely on the query branch of the siamese framework
and is shown to consistently improve the performance for
all masking strategies (c.f. Table 6 of the main manuscript);

3) Generating the hard negative samples easily by masking
only the foreground patches with the help of saliency (cf.
Table 8 of the main manuscript for the improvement based
from such design).

1.2. Emphasis upon our contribution compared to
baseline ADIOS [20]

We would like to emphasize that our contributions stand
out from the ones of ADIOS [20] as it includes: 1) Effi-
ciency in obtaining (partially) semantic masks. While both
our proposed method and ADIOS employ a localization net-
work to address the “where to mask” issue, our approach
achieves a more favorable trade-off between obtaining (par-
tially) semantic masks and computational effort. Notably,
the localization network we utilize remains frozen during
feature extractor training, whereas ADIOS requires joint
training of the localization network (UNet-based segmen-
tation model) alongside the feature extractor; 2) Variance
manipulation in single branch. ADIOS masks a single
view while both views (i.e. masked and unmasked) will go
through both query and key branches (as indicated in their
source code). In comparison, our design shows that incor-
porating variance manipulation through masking only the
query branch has a positive impact on the Siamese network.
Our method differs from ADIOS in terms of both operation
and motivation (i.e. variance manipulation). Further details
of our investigation and discussion can be found in lines
744-807, and while corresponding ablation studies can be
found in Tables 6 and 7.

1.3. Our contribution in saliency masking

As described in lines 101-113 in our main manuscript,
and we would like to clarify again here: most existing
studies of adopting masking operations (together with self-
reconstruction objective) to realize self-supervised learning
are based on the transformer backbone thanks to the to-
kenized input (where the masking is simply to block out
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some tokens), and the prior works (e.g. SemMAE [13],
MST [14], BEiT [2], iBOT [24], MAE [10], and Sim-
MIM [22]) are designed for transformers as well. In a
recent study, MSN [1] introduces a clustering-based self-
supervised learning method. Their approach involves as-
signing the query view (where random masking is applied)
and the key view from the two branches of the Siamese net-
work to the same cluster. To prevent the adverse impact of
masked patches on the model, they opt for ViT as the back-
bone network and remove the masked patches in the query
view during training. Notably, this technique is applicable
specifically once while ViT (i.e. vision transformer) serves
as the backbone. In contrast, we aim to apply masking for
convolutional neural networks, which is actually nontriv-
ial due to the unwanted edges caused by masking (and that
is exactly why MSCN [12] needs to introduce the high-
pass filtering at first). Moreover, even there exists some
transformer-based prior works adopting the saliency oper-
ations as well, the ways of their applying saliency masking
are also different from ours: For instance, SemMAE [13]
requires a two-stage training process to determine where
to apply the mask, while our approach achieves the same
goal with a single feature extractor and end-to-end training;
MST [14] also aims to avoid masking important objects,
while our method of explicitly distributing masked patches
across foreground and background empirically leads to bet-
ter performance.

Additionally, in the absence of our proposed saliency-
guided masking, creating effective hard negative samples
through masking can be challenging. Strategic masking of
salient patches allows for the generation of impactful hard
negative samples without the need to mask a large number
of patches, considering the potential detrimental effects of
masking on ConvNets.

1.4. Implementation Detail

Here, we introduce how the parameters are set in our
saliency masking approach. We set the penalty ratio, de-
noted as ρ, for hard negative samples to 2, in which such
setting is identified to effective as well in [7]. For our
strong blurring masking strategy, we establish a Gaus-
sian blur kernel of size of 31 × 31 with setting its stan-
dard deviation to be 10. The parameters for the high-
pass filter, specifically the radius and standard deviation,
are adopted from MSCN [12]. Regarding the positive
masking ratio, its ranges among U(0.05, 0.25) of the to-
tal patches, while for the hard negative masking ratio, the
range among U(0.4, 0.7) of the salient patches is adopted.
It’s worth noting that we do not find an optimal fixed mask-
ing ratio, and instead, we determined these ratios by ex-
tending the search range, ensuring that performance did not
significantly deteriorate.

1.5. More Experimental Results

In this section, we provide the results for all the down-
stream tasks with three different masking strategies (i.e.,
high-pass filtering, strong blurring, and mean filling) and
baselines (i.e., MSCN [12] and ADIOS [20]) based on two
contrastive SSL frameworks (i.e., MoCov2 [4] and Sim-
CLR [3]). In the pretraining stage, we train the feature en-
coder (under MoCov2 and SimCLR frameworks) with us-
ing ResNet-50 as the backbone on the ImageNet-100 [19]
dataset for 200 epochs. We conduct experiments on three
datasets (i.e., ImageNet-100, Caltech-101 [6], and Flower-
102 [16]) for downstream classification tasks and super-
visedly train a linear classifier while the feature encoder
is kept fixed/frozen for 100 epochs. We conduct experi-
ments on VOC07+12 [5] and COCO [15] datasets for down-
stream detection tasks, where the COCO dataset is also
used for the downstream instance segmentation task. For
the VOC07+12 dataset, we adopt the Faster R-CNN [17]
model with C4 backbone which is finetuned for 24k itera-
tions; while for the COCO dataset, we adopt the Mask R-
CNN [11] model with C4 backbone which is finetuned for
180k iterations (using 1× learning rate schedule).

MoCov2 Results. First of all, please note that most of
the results based on MoCov2 framework have been pro-
vided in our main paper, here we particularly include them
again for the purpose of having better and more complete
overview. For MoCov2, we set the batch size to 128 and
the base learning rate to 0.015 and use SGD [18] as the op-
timizer during pretraining. When training the linear classi-
fier, we set the base learning rate to 30.0 and adopt a learn-
ing rate schedule that decreases the learning rate by 0.1 at
epochs 60 and 80. All MoCov2’s downstream classification
results are reported in the upper half of Table 1, while all
the downstream detection and instance segmentation results
are reported in the upper half of Table 2. Our method out-
performs the fundamental contrastive SSL framework (i.e.,
MoCov2, which has no masking involved) and two base-
lines (i.e., MSCN and ADIOS) in all the downstream tasks.

SimCLR Results. For SimCLR, we set the batch size to
256, the base learning rate to 0.3, and use LARS [23] as the
optimizer during pretraining. When training the linear clas-
sifier, we set the batch size to 256, the base learning rate to
1.0, and adopt a cosine learning rate schedule. All the Sim-
CLR’s downstream classification results are reported in the
lower half of Table 1, while all the downstream detection
and instance segmentation results are reported in the lower
half of Table 2. Our method outperforms the fundamen-
tal contrastive SSL framework (i.e., SimCLR, which has
no masking involved) and two baselines (i.e., MSCN and
ADIOS) in all the classification tasks; but ADIOS slightly
outperforms our method in the detection and instance seg-
mentation tasks, where we attribute this to two reasons.
Firstly, according to ablation studies conducted in [21], ma-



Method ImageNet-100 Caltech-101 Flowers-102
Supervised 82.72 21.99 20.29
MoCov2 68.22 81.87 88.39
+ MSCN [12] 70.28 84.13 90.10
+ ADIOS [20] 62.76 79.83 88.39
+ OURS (High-pass filtering) 73.80 84.91 90.95
+ OURS (Strong blurring) 72.50 83.95 90.59
+ OURS (Mean filling) 70.84 82.68 90.83
SimCLR 69.77 78.20 85.21
+ MSCN [12] 77.18 86.99 91.08
+ ADIOS [20] 71.12 81.96 87.53
+ OURS (High-pass filtering) 77.90 87.04 90.71
+ OURS (Strong blurring) 77.78 83.41 91.93
+ OURS (Mean filling) 77.36 83.55 90.83

Table 1. Linear evaluation results on ImageNet-100, Caltech-101 and Flowers-102. The best and second-best results on each dataset with
different constrastive SSL frameworks (i.e., MoCov2, SimCLR) are marked in orange and blue respectively.

Method VOC07+12 detection COCO detection COCO instance segmentation
APall AP50 AP75 AP bb

all AP bb
50 AP bb

75 APmk
all APmk

50 APmk
75

Supervised 44.30 73.47 46.50 37.84 57.09 40.67 33.14 53.95 35.31
MoCov2 50.27 76.68 54.76 38.52 57.62 41.67 33.75 54.70 35.86
+ MSCN 50.27 76.99 54.70 38.80 58.09 42.20 33.89 54.78 36.36
+ ADIOS 45.85 73.44 48.45 38.12 57.38 41.29 33.38 54.25 35.63
+ OURS (High-pass filtering) 50.89 77.66 55.44 39.16 58.62 42.45 34.22 55.28 36.30
+ OURS (Strong blurring) 50.76 77.29 54.75 38.90 58.13 42.11 33.93 54.77 36.53
+ OURS (Mean filling) 50.59 76.97 55.30 38.93 58.08 42.17 33.92 54.86 36.27
SimCLR 40.34 69.86 40.96 36.30 55.55 38.80 31.99 52.28 33.80
+ MSCN 43.50 73.18 45.04 37.88 57.44 40.68 33.36 54.15 35.57
+ ADIOS 43.83 73.42 45.01 38.76 58.35 41.96 33.94 54.96 36.23
+ OURS (High-pass filtering) 43.76 73.43 44.90 38.45 57.79 41.58 33.90 54.70 35.93
+ OURS (Strong blurring) 43.20 73.15 44.27 37.44 56.80 39.96 32.92 53.73 35.00
+ OURS (Mean filling) 43.20 72.54 44.79 37.27 56.46 40.10 32.68 53.35 34.54

Table 2. Transfer learning results on VOC07+12 and COCO detection tasks, and COCO instance segmentation task. Performances in terms
of APall, AP50 and AP75 metrics are reported, and the best and second-best results on each task of different contrastive SSL frameworks
(i.e., MoCov2, SimCLR) are marked in orange and blue respectively.

nipulating variance across branches in symmetric encoders
(i.e. SimCLR) does not improve as much as that in asym-
metric encoders (i.e., MoCov2), limiting improvement in
our three masking strategies. Secondly, more detailed se-
mantically meaningful masks of ADIOS are learnt in its
pretraining stage, which yield better performance for the
downstream detection and instance segmentation tasks (as
both detection and instance segmentation can be seen as
more detailed recognition tasks than classification). How-
ever, noting that an occlusion module needs to be trained
jointly with the main SSL objective to learn such masks for
ADIOS (thus being believed to require more computational
efforts). In contrast, our saliency masking utilizes a pre-

trained localization network before masking (where the re-
sultant masks are less detailed than the ones in ADIOS but
no additional joint learning is required) and still contributes
to the comparable results with ADIOS.

Supervised Baseline Results. To establish a solid foun-
dation, we create a supervised baseline. In this baseline,
we train an image classification model using ResNet-50 as
the feature extractor. Our training setup involves using a
batch size of 256, a base learning rate of 0.1, and a learning
rate decay of 10 every 30 epochs, and employing SGD as
our optimizer when training on the ImageNet-100 dataset.
For downstream classification tasks involving Caltech-101
and Flowers-102, we follow our SSL approaches. In these



cases, we kept the ResNet-50 feature which is trained on
ImageNet-100 fixed, and train a linear classifier with hy-
perparameters similar to our SSL approaches. All clas-
sification tasks undergo 100 epochs of training. Regard-
ing downstream detection and instance segmentation tasks,
we utilize settings similar to those used in our SSL meth-
ods. The top row of Table 1 presents the results for the
supervised baseline classification, while the top row of Ta-
ble 2 showcases the results for downstream detection and
instance segmentation. Despite achieving the highest accu-
racy in ImageNet-100 classification, the supervised baseline
exhibits the poorest transferability. Both transfer classifica-
tion tasks achieve only 20% accuracy, a result we attribute
to the distribution differences between the ImageNet-100
and Caltech-101/Flowers-102 datasets.

Monocular Depth Estimation Downstream Task Re-
sults In addition to the commonly addressed downstream
tasks of classification, detection, and instance segmenta-
tion in most SSL previous works, we have extended the
evaluation of our approach to include monocular depth es-
timation. To achieve this, we adopt Monodepth2 [9] as
our reference and substitute its feature encoder with our
pretrained ResNet-50, which remains frozen during train-
ing. We maintain identical hyperparameters to those used
in Monodepth2 and conduct our evaluation on the KITTI
2015 dataset [8]. The results are presented in Table 3. No-
tably, whereas Monodepth2 trains all model components,
we exclusively train the depth decoder and the pose network
while keeping the feature encoder fixed. Our mean filling
masking strategy produces results on par with the original
Monodepth2, and all our settings outperform baseline meth-
ods (MoCov2, MoCov2+MSCN, MoCov2+ADIOS). Fur-
thermore, our approach’s learned features demonstrates the
capacity to generalize to tasks beyond the scope of tradi-
tional classification, detection, and instance segmentation.

1.6. Computational Cost

We compare the computational cost of ADIOS [20],
MSCN [12], and our three masking strategies (i.e., high-
pass filtering, strong blurring, and mean filling) using Mo-
Cov2 as the SSL framework. Training time (in minutes)
per epoch in ImageNet-100 for each method is measured.
Serving as the base SSL framework of all methods, Mo-
Cov2 takes 5.5 minutes to train one epoch. In order to
alleviate the parasitic edges caused by masking operation
in ConvNets, MSCN [12] adopts a high-pass filter and ap-
plies random masking (including channel-wise and focal
masking) on input images, which in results takes 7 min-
utes per epoch. Instead of randomly masking, ADIOS [20]
proposes an UNet-based occlusion module to adversarially
learn along with the feature encoder to determine the re-
gions to be masked, which is called masking slot. The
memory and computational cost will increase linearly as the

number of masking slots increases. 10 minutes are needed
to train one epoch with 6 masking slots in ADIOS. In or-
der to determine where and how to mask in an easier way,
our three masking strategies consist of saliency computa-
tion and different image processing. In saliency computa-
tion, two forward passes through the localization network
are needed to produce saliency maps for positive and (hard)
negative samples. Compared to MSCN, although it takes
2 minutes longer per epoch due to the saliency constraint
in our high-pass filtering strategy, we achieve better perfor-
mance on various downstream tasks. While in mean fill-
ing and strong blurring strategies, mean value and strong
blurred patches are filled in the masked regions to make
those edges caused by masking less visible, in total each
epoch takes 7.5 and 10.5 minutes respectively for their train-
ing. The strong blurring strategy spends more time than
other strategies, in which the bottleneck is attributed to the
GPU I/O. Since our saliency masking procedure is done on
GPU, for our strong blurring strategy, we need to move both
the standard augmented images and strong blurred images
onto the GPU. The data transfer time will be twice that
of our other two strategies (i.e., high-pass filtering strat-
egy only moves images onto GPU after high-pass filter-
ing, while mean filling strategy only moves the images onto
GPU after standard data augmentation). We will keep im-
proving the overall GPU I/O procedure for our proposed
strategies. Furthermore, we test the accuracy of our high-
pass filtering method against MSCN on ImageNet-100, with
matching pre-training times. MSCN achieves its highest ac-
curacy 70.28% in 197 epochs, while around the same time
our method based on high-pass filtering masking strategy
reaches 131 epochs but results to have 71.66% accuracy,
which is already 1.4% higher than MSCN. To sum up, our
high-pass filtering strategy strikes a better balance between
efficiency and efficacy than MSCN and ADIOS.
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