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1 Overview

This supplementary material presents additional results to complement the main manuscript. First, we provide details on the
spectrum analysis of 1D signal alignment in Sec. 2. Second, we describe the connection between 1D and 3D Gaussian filtering,
which is the main motivation behind our proposed method, in Sec. 3. Next, we derive the equivalence of separable component-
wise convolution and naı̈ve 3D convolution in Sec. 4. Finally, we provide the complete training process and implementation
details in Sec. 5 and Sec. 6, respectively. Alongside this document, we provide additional video results and compare our results
with state-of-the-art methods.

2 Complete Version of Spectrum Analysis of 1D Signal Alignment

In Eq. 5 of Sec. 3.2, we formulated the 1D signal alignment problem as:

L1d(g, q1, q2)=
∑

i∈[1,2]

∫
∥W1d(g, qi)(x)− fi(x)∥2dx

=
∑

i∈[1,2]

∫
∥g(x)− fGT (x− pi + qi)∥2dx,

(1)

whereW is the translation operator on signal defined asW1d(g, qi)(x)= g(x− q1), fGT is the ground truth 1D signal, p1, p2
are predetermined translation values, and g is the signal we are trying to optimize, and q1, q2 are the reconstructed translation
values. We optimize L1d with gradient descent and attempt to reach one of the global minima, where q1 − q2 = p1 − p2 and g
=W1d(fGT , p1 − q1)

2.1 Theorem 1: Simplifying Joint Optimization to Pure Alignment on Shifted GT Signals

To simplify the complex dynamic interaction of joint optimization in Eq. 1, here we assume that g rapidly converges to tem-
porary optima (with respect to the current translation) before the translation parameters q1, q2 are further refined. Note that this
assumption is reasonable because voxel-based architectures (which we focus on) easily overfit to current supervision. Due to
the property that the minima of squared error are achieved at average value, this allows us to replace g by the average of two
translated ground truth signals. (Note that the partial optimization of g is convex and is guaranteed to converge to g∗q1,q2 ).

g∗q1,q2 = argmin
g
L1d(g, q1, q2)

= argmin
g

∑
i∈[1,2]

∫
∥g(x)− fGT (x− pi + qi)∥2dx

=
fGT (x− p1 + q1) + fGT (x− p2 + q2)

2
.

(2)

Substituting Equation 2, the loss L1d with respect to q1 and q2 under this assumption can be simplified as follows.



L1d(q1, q2) = L1d(g
∗
q1,q2 , q1, q2)

=
∑

i∈[1,2]

∫
∥g∗(x− qi)− fi(x)∥2dx

=
∑

i∈[1,2]

∫
∥g∗(x)q1,q2 − fGT (x− pi + qi)∥2dx

=
∑

i∈[1,2]

∫
∥fGT (x− p1 + q1)− fGT (x− p2 + q2)

2
∥2dx

=

∫
∥fGT (x− p1 + q1)− fGT (x− p2 + q2)∥2dx

=

∫
∥fGT (x)− fGT (x+ u)∥2dx

=

∫
∥fGT (x)−W(fGT ,−u)∥dx,

(3)

where u = (p1−p2)−(q1−q2) is the translation value of the pure alignment problem between two shifted ground truth signals
fGT andW(fGT ,−u).

2.2 Theorem 2: Spectral Property of Gradient in 1D Signal Alignment

Let u = (p1 − p2)− (q1 − q2) (a). replace variable

L1d =

∫
∥fGT (x)− fGT (x+ u)∥2dx

=

∫
∥ F[ fGT (x)− fGT (x+ u) ] ∥2dk (b). Parseval’s theorem

=

∫
∥ F[ fGT ]− eikuF[ fGT ] ∥2dk (c). shift property

=

∫
∥ F[ fGT ] ∥2 · ∥ 1− eiku ∥2dk

d

du
L1d =

d

du

∫
∥ F[ fGT ] ∥2 · ∥ 1− eiku ∥2dk

=

∫
∥ F[ fGT ] ∥2 · d

du
∥ 1− eiku ∥2dk (d). swap operators by Leibniz integral rule

=

∫
∥ F[ fGT ] ∥2 ·H(u, k) dk,

(4)

where H(u, k) = 4πk sin(2πku), F[ fGT ] represents the Fourier transform of the spatial domain function fGT (x), and k
is the wavenumber in the frequency domain. In the final form, the function H(u, k) transfers the spectrum F[ fGT ] into the
derivative d

duL1d. The value of H(u, k) is plotted in the left part of Fig. 1. We can see that the sign of the transfer function H
is well-behaved when the magnitude of k is small. Here “well-behaving” means that the sign of the gradient is able to help u
descend to 0. (i.e., positive when u > 0 and negative when u < 0). However, when the magnitude of k increases, the sign of H
quickly begins to alternate with increasing magnitude. If the spectrum of fGT is too wide, the sign of d

duL1d will be affected
by the flipping sign of H(u, k), and joint optimization will get stuck in local optima.

2.3 Theorem 3: Effect of Gaussian Kernel on the 1D Signal Alignment

To deal with this flipping gradient issue of H(u, k) when k departs from 0, we try to shrink the bandwidth of fGT so that it
won’t reach too much into the flipping area of the transfer function H . Applying the 1D Gaussian filter N (x) on fGT is a
natural solution. Here we show that applying a Gaussian filter to fGT is effectively the same as modulating the transfer function



Figure 1: Copy of Fig. 3(b) is placed here for readability. Left: The value of H(u, k) is plotted. We can see that the sign of
the transfer function H is well-behaved when the magnitude of k is small. Here, “well-behaving” means that the sign of the
gradient is able to help u descend to 0, i.e., positive when u > 0 and negative when u < 0. However, when k departs from 0,
the sign of H quickly begins to alternate and the magnitude increases, which causes the gradient to be large and noisy. Hence,
high-frequency signals with a spreading spectrum can easily get stuck in local optima. Right: Filtering the fGT with Gaussian
kernel is effectively the same as modulating the function H(u, k) with a Gaussian mask, resulting in a more desirable function
H̃(u, k)

.

H .

Let f̃GT = N ∗1d f̃GT be the filtered signal

L̃1d = L1d calculated with f̃GT

d

du
L̃1d =

∫
∥ F[ N ∗1d fGT ] ∥2 ·H(u, k) dk (a) Substitute Eq. 4

=

∫
∥ F[ N ] · F[ fGT ] ∥2 ·H(u, k) dk (b) convolution property

=

∫
∥ F[ fGT ]∥2 · ∥ F[ N ] ∥2 ·H(u, k) dk (c) F[ N ]is real

=

∫
∥ F[ fGT ]∥2 · H̃(u, k) dk,

(5)

where H̃(u, k) =∥ F[ N ]∥2·H(u, k), and ∗1d denotes the 1D convolution operator. Step (a) comes directly from Equation 4,
and step (b) applies the convolution property of the Fourier transform. In step (c), we use the identity F[N (x)] = F[e−ax2

] =

−
√

π
a e

−π2k2/a, which says that the Fourier transform of Gaussian function is another Gaussian function; hence F[N (x)] is
real-valued and can be separated out of the 2-norm.

In Fig 3(b)(bottom) in the main paper (same as the right half of Figure 1), we plot the modulated transfer function H̃(u, k)
(filter N(x) is generated by Eq.11 with σ = 4.0). We can see that the misbehaved region is suppressed and the gradient descent
is very likely to converge to u = 0 as long as the initial magnitude of u is less than 6.0. (Actually, the region in which d

du L̃1d

is well-behaved is quasi-convex and is guaranteed to converge to global optima given the suitable learning rate that prevents us
from getting stuck at saddle points.)

3 Connection of Gaussian Filtering in 1D and 3D
(Motivation for Proposed Techniques In Sec. 3.6)

Here we discuss the connections between the 1D analysis in Sec.3.2 and the 3D joint optimization techniques proposed in Sec.
3.6.



3.1 Connection to Smoothed 2D Supervision & 3D Gaussian Filtering
Note that in the previous section, we only considered blurring the input signals fGT (which in turn affects f1 and f2 in Eq. 1).
If we strictly map this setting into the joint optimization in the 3D case as described in Sec. 3.2.2, we should only blur 2D input
training images (Smoothed 2D Supervision in Sec. 3.6). However, we found empirically that restricting the spectrum of both
2D training images and the 3D radiance field gives the best reconstruction quality (as shown in Tab. 4).

3.2 Motivation for Randomly Scaled Kernel & Edge Guided Loss
From the previous spectral analysis, one may have the impression that a larger kernel leads to stronger modulation, and hence
always results in more robust pose registration. However, this is not always true, because the magnitude of H(u, k) decreases
linearly as k approaches 0. Notice that in Fig. 1(Right) the magnitude of modulated H̃ is weaker than that of H , which means
that d

du L̃1d is weaker than d
duL1d and therefore is more easily influenced by noise. In the 3D case, this weak and noisy gradient

problem caused by overly aggressive filtering corresponds to the excessive blur effect that destroys important edge signals in
the training images, causing pose alignment to fail. See Fig. 2(b) for a visualization of the image blurred by an over-strength
kernel, in which the thin edge information is eliminated, causing the camera pose to randomly drift.

(a) No Kernel (b) Overly Aggresive Kernel (c)  Randomly Scaled Kernel (d) Edge Region

Figure 2: Visualization of 2D Randomly Sampled Kernel and Edge Guided Loss. (a) Input supervision without kernel.
Joint optimization using unblurred images easily overfit to high-frequency noises (b) Input supervision blurred by an overly
aggressive kernel. Notice that the edge information is largely destroyed by the blurring process, resulting in weak and noisy
gradients, causing the poses to drift around easily. (c) Same input supervision blurred by four randomly scaled kernels. We
empirically found that mixing different filtering strengths results in a more robust joint optimization. (d) Edge areas of the
blurred image selected by the Sobel filter with a threshold set to 1.25x of the average value of the filtered map.

Real-world scenes are composed of edge structures of various scales; it is insufficient to use a single-size kernel on all these
different scene structures (in which the same kernel may be overly aggressive in one scene, but overly gentle in another scene).
Therefore, we introduce randomly scaled kernel in Sec. 3.6, which randomly scales the kernel by a factor uniformly sampled
from [0, 1]. See Fig 2(c) for a visualization of the same input image filtered by a range of randomly sampled kernels. We observe
that the training schedule becomes more robust when we alternate between these randomly sampled kernel scales.

Another way to mitigate the weak and noisy gradient problem is the edge guided loss introduced in Sec. 3.6, in which we
increase the learning rate (and hence amplify the gradient signal) on pixels in the edge area. See visualization in Fig. 2 (d), where
we color the edge area (which is detected using the Sobel filter on the filtered 2D images) in yellow. Edge-guided rendering
loss helps joint optimization focus more on the edge areas of the training images, resulting in more robust pose optimization.

4 Theorem 4: Equivalence of Separable Component-Wise Convolution and Naive 3D Convolution
In Eq. 15 of Sec. 3.5, we used the following identity to simplify the computation of Naive 3D convolution into separable
component-wise convolution.

T̃σ =

R∑
r=1

ṽX
σ,r ⊗ M̃

Y,Z

σ,r + ṽY
σ,r ⊗ M̃

X,Z

σ,r + ṽZ
σ,r ⊗ M̃

X,Y

σ,r , (6)

where T̃σ = (N3d ∗3d Tσ) denotes the 3D Gaussian convoluted tensor volume, ṽσ,r = (N1d ∗1d ṽσ,r) denotes the 1D Gaussian
convoluted vector component, and M̃σ,r = (N2d ∗2d M̃σ,r) denotes the 2D Gaussian convoluted matrix component.

To prove Eq. 6, we first notice that the outer product between the lower-dimensional component ⊗ can be viewed as convo-
lution ∗ in a higher-dimensional space. We can view the outer product as a convolution with full padding, where the kernel and
the signal are embedded into the high-dimensional space before performing the convolution. For example, the outer product
between two 1D vectors u ∈ Rn and v ∈ Rm is a m× n matrix. We can obtain the same result by performing 2D convolution



on 2D discrete embedded functions uX ,vY : Z2 → R.

uX [x, y] =

{
u[x]δ[y] if 0 ≤ x < n

0 otherwise

vX [x, y] =

{
v[y]δ[x] if 0 ≤ y < m

0 otherwise

(uX ∗2d v
Y )[x, y] =

∞∑
i=−∞

∞∑
j=−∞

uX [i, j] · vY [x− i, y − j] (a) expand definition

=

∞∑
i=−∞

∞∑
j=−∞

u[i] δ[j] · v[y − j] δ[x− i] (b) only add turns where j = 0 and x− i = 0

= u[x] δ[0] · v[y − 0] δ[0] (c) substitute values
= u[x] · v[y]
= (u⊗ v)[x, y], (e) definition of ⊗

(7)

where in (c) we assume u[x] and v[y] returns 0 when index is out of range of the vector. Now we have proved that the result of
the outer product ⊗ between 1D vectors is identical to the convolution ∗2d of two embedded vectors in the 2D space.

Similar properties can be obtained for vector-matrix products:

(vX ∗3d M
Y,Z)[x, y, z] = (v ⊗M)[x, y, z], (a) proof is similar to Eq. 7, (8)

where vX is the embedded version of the 1D vector v along the X axis in the 3D space, and MY,Z is the embedded version of
the 2D matrix M along the Y, Z axes in the 3D space.

Now with Eq. 7 and Eq. 8 we can replace ⊗ in 3D Gaussian definition and Eq. 6 by convolution ∗3d, after which we apply
the commutative and associative property of the convolution operator ∗3d to distribute the separable Gaussians into each tensor
component.

T̃σ = N3d ∗3d Tσ

= (NX
1d ⊗N Y

1d ⊗NZ
1d) ∗3d (

R∑
r=1

vX
σ,r ⊗MY,Z

σ,r + vY
σ,r ⊗MX,Z

σ,r + vZ
σ,r ⊗MX,Y

σ,r ) (a) expand definition

= (NX
1d ∗3d N Y

1d ∗3d NZ
1d) ∗3d (

R∑
r=1

vX
σ,r ∗3d M

Y,Z
σ,r + vY

σ,r ∗3d M
X,Z
σ,r + vZ

σ,r ∗3d M
X,Y
σ,r ) (b) apply Eq. 7 and Eq. 8

=

R∑
r=1

(NX
1d ∗3d N Y

1d ∗3d NZ
1d) ∗3d (v

X
σ,r ∗3d M

Y,Z
σ,r )+

(NX
1d ∗3d N Y

1d ∗3d NZ
1d) ∗3d (v

Y
σ,r ∗3d M

X,Z
σ,r )+

(NX
1d ∗3d N Y

1d ∗3d NZ
1d) ∗3d (v

Z
σ,r ∗3d M

Z,Y
σ,r ) (c) linearity of ∗3d

=

R∑
r=1

(NX
1d ∗3d v

X
σ,r) ∗3d ((N Y

1d ∗3d NZ
1d) ∗3d M

Y,Z
σ,r )+

(N Y
1d ∗3d v

Y
σ,r) ∗3d ((NX

1d ∗3d NZ
1d) ∗3d M

X,Z
σ,r )+

(NZ
1d ∗3d v

Z
σ,r) ∗3d ((NX

1d ∗3d N Y
1d ) ∗3d M

X,Y
σ,r ) (c) commutivity , associativity, of ∗3d

=

R∑
r=1

ṽX
σ,r ∗3d M̃

Y,Z

σ,r + ṽY
σ,r ∗3d M̃

X,Z

σ,r + ṽZ
σ,r ∗3d M̃

X,Y

σ,r (d) definition rewrite

=

R∑
r=1

ṽX
σ,r ⊗ M̃

Y,Z

σ,r + ṽY
σ,r ⊗ M̃

X,Z

σ,r + ṽZ
σ,r ⊗ M̃

X,Y

σ,r . (e) apply Eq. 8.

(9)
Now the proof is complete, and we have verified that the 3D convoluted tensor can be expressed as the composition of



individually convoluted components. With a similar process, we can prove that the 3D feature tensor also has the property:

T̃c = N3d ∗3d Tc

=

R∑
r=1

ṽX
c,r ⊗ M̃

Y,Z

c,r ⊗ bX + ṽY
c,r ⊗ M̃

X,Z

c,r ⊗ bY + ṽZ
c,r ⊗ M̃

X,Y

c,r ⊗ bZ .
(10)

5 Complete Training Process
The training loss of our method in joint optimization of the 3D running field can be summarized as follows

L̃joint(Fσ, Fc,P,Nσ,Nc,NI) =

L∑
i=1

∑
u∈U

Eiu · ∥V(F̃σ, F̃c,W3d(Pi, s(⃗0, d⃗u)))− Ĩiu∥

F̃σ(x) = T̃σ(x), where T̃σ is component-wise convoluted with Nσ

F̃c(x, d⃗) = s(T̃c(x), d⃗), where T̃c is component-wise convoluted with Nc

Ĩ = {NX
I ∗2d N Y

I ∗2d Ii}i=1,2,··· ,L,

(11)

where Eiu is the edge-guided rendering weight of pixel u on image i (In the first few iterations, Eiu = 1.5 for pixels on the
edge regions, after that, Eiu = 1.0 for all training pixels.), Nc,Nσ are 1D Gaussian kernel for convolving Tc, Tσ respectively,
NI is the 1D Gaussian kernel that is used for smoothing the supervision images I .

The complete training loss can finally be expressed as

L3d = w1 · Ljoint + w2 · LL1 + w3 · LTV, (12)

where Ljoint is described in Eq. 11, LL1,LTV are the L1 loss and TV loss on tensor components vσ,r,Mc,r,Mσ,r,vc,r respec-
tively. w1, w2, w3 are loss weights.

Now, the total training process can be described as Algorithm 1, where the kernel width is first sampled from a predefined
kernel schedule, then randomly scaled by a factor sampled uniformly from [0, 1], then Gaussian kernels are constructed and
used to calculate our proposed rendering loss Ljoint in Eq. 11. Finally, the total loss L3d in Eq. 12, based on which the camera
poses and the radiance field are jointly updated.

Algorithm 1: Conceptual Training Process for Our Proposed 3D Joint Optimization Training
Tσ, Tc ← Initialize Voxel Grid
P← Initialize Camera Poses
for s = 1 to train iters do
i← 2D kernel sched(s)
σ, c← 3D kernel sched(s)
uσ ← randomly sample density kernel scale
uI ← randomly sample 2D kernel scale
Nσ ← sample discrete gaussian kernel with variance (σ · uσ)

2

Nc ← sample discrete gaussian kernel with variance c2

NI ← sample discrete gaussian kernel with variance (i · uI)
2

L̃joint ← L̃joint(Tσ, Tc,P,Nσ,Nc,NI) (with randomly selected pixels in all training views)
LL1 = LL1(vσ,r,Mc,r,Mσ,r,vc,r)
LTV = LTV(vσ,r,Mc,r,Mσ,r,vc,r)
L3d = w1 · Ljoint + w2 · LL1 + w3 · LTV
back propagation
update Tσ, Tc,P

end for

6 Implementation Details
We evaluate our proposed method against three previous works BARF (Lin et al. 2021), GARF (Chng et al. 2022), and HASH
(Heo et al. 2023). Since the implementations of GARF and HASH are unavailable, we directly use the results reported in their
paper for comparison. For the planar image alignment task, we compare our result with (Lin et al. 2021) under the same settings.
To reconstruct the radiance field, we follow (Lin et al. 2021; Chng et al. 2022; Heo et al. 2023) to evaluate and compare our
method on NeRF-Synthetic dataset and LLFF dataset.



Planar Image Alignment is performed under settings identical to those of BaRF (Lin et al. 2021), where a sample image
is chosen from ImageNet (Deng et al. 2009) , from which L2d = 5 patches are cropped with different homography transform
parameters P0, P1, · · · , P5 ∈ R8. We jointly reconstruct the homography parameters and the 2D image represented with the
decomposed 2D tensor. The warp parameters are parameterized in sl(3) and initialized to 0⃗ before training.

NeRF-Synthetic dataset is proposed by (Yen-Chen et al. 2020), and consists of 8 object-centric scenes. For each scene,
the training data consist of 100 images along with the camera extrinsic and intrinsic. Following (Lin et al. 2021), we simulate
camera noise with Gaussian noise N(0, 0.15I) on se(3) pose embedding. The noises are composed of the ground truth extrinsic
parameter, and our joint optimization process aims to cancel the noise and restore accurate camera poses. We follow BaRF (Lin
et al. 2021) to resize training and testing images to 400× 400.

LLFF dataset is proposed by (Mildenhall et al. 2019), and consists of 8 forward-facing scenes captured with a handheld
camera. The ground truth camera poses in the datasets are estimated by COLMAP (Schönberger et al. 2016; Schönberger and
Frahm 2016). Following BaRF (Lin et al. 2021), we optimize camera poses from scratch with identity initialization, and images
are resized to 480× 640 before being used.

6.1 Implementation Details for Planar Image Alignment
We use 500 × 500 2D decomposed tensor with 100 components. The 2D tenor and homography warp parameters are jointly
optimized with Adam optimizer (Kingma and Ba 2014) with learning rates 0.001 and 0.01 respectively. The total training
iteration is set to 15000, Gaussian kernel schedule shrinks exponentially with a pise-wise linear curve that starts with 128 and
reaches 0 at 6000 iteration.

6.2 Implementation Details for NeRF (3D) Synthetic Object
We follow the implementation of (Chen et al. 2022) and sample 2048 rays per iteration across all training images with sample
density equal to 2X current tensor grid resolution. We decrease the hidden width of the decoder MLP to 32 and postpone the
input of the viewing direction to the last layer. The pose parameters, the tensor volume, and the MLP decoder are jointly opti-
mized with Adam optimizer with learning rates 0.001, 0.01, and 0.0005, respectively, and the learning rates are exponentially
degraded. Smooth 2D supervision in Section 3.6 is used in synthetic scenes. The total training iteration is set to 40000. The 2D
and 3D Gaussian kernel schedule shrinks exponentially with a pice-wise linear curve, which starts with 0.3 (in 3D coordinate)
and 0.025(in 2D coordinate) and degrades to effectively 0 at 10000 iteration. The 3D tensor grid is scaled from 643 to 3003

with 5 up-sample steps, and kernel parameters are adjusted to adapt to the current tensor grid resolution. We postpone the alpha
mask update in (Chen et al. 2022) to allow blurry scenes in the early stage of training. The total training time is 80 minutes on
a single RTX3090 GPU.

6.3 Implementation Details for NeRF (3D) Real World Scenes
Most settings in Real World Scenes are the same as the Synthetic Scenes. We describe the difference here, where we follow
(Yen-Chen et al. 2020) and (Chen et al. 2022) to use the Normalized Device Coordinate (NDC) in joint optimization of the
forward-facing scenes. We found that the absolute coordinates (before Procruste analysis to align with GT) of reconstructed
poses are often more densely gathered than GT poses, causing the absolute size of the reconstructed scene to be smaller and
clipped by the near plane in NDC coordinate; we solve this issue by moving the sampling near the plane of NDC from 1.0
to -1. Most other settings are the same as the synthetic setting. The total training iteration is set to 50000. The 3D tensor grid
is scaled from 1283 to 8003 with 5 up-sample steps. The Gaussian kernel schedule is the same as the synthetic NeRF setting,
except that we start with 0.4 in 3D coordinates for the 3D kernel and 0.07 in 2D coordinates for the 2D kernel. To accelerate
the training process in increase the stability, we increase the number of rays per iteration to 20480 before 6000 iterations and
restore to 4096 rays per iteration afterward. The learning rate of the pose parameters warms up for 500 iterations, and poses
are reset to identity at 2500 iterations. Randomly scaled Kernel Parameters and Edge-Guided Loss described in Section 3.6 are
used in real-world scenes. Note that to prevent input scale instability of the MLP decoder, we use randomly scaled Gaussian
kernel only for density volume, the Gaussian kernel for the color volume is not randomized. The total training time is about 3
hours on a single RTX3090 GPU.

6.4 Evaluation Criteria
Following previous works (Lin et al. 2021; Chng et al. 2022; Heo et al. 2023), we measure our results in two aspects: pose error
for registration and view-synthesis quality for the scene representation. Since the reconstructed poses and scenes are variable
to the ground truth up to a similarity transform, we perform the Procrustes analysis to align the training pose parameter and the
GT poses before calculating the rotation error and translation error. To report the view-synthesis quality independent of tiny
registration noise, before calculating PSNR, SSIM, and LPIPS on the trained scene w.r.t testing image, we perform test-time
optimization on each testing pose to prevent tiny pose error from contaminating the view-synthesis quality. In the 2D case, warp
error (distance between homography parameter and the ground truth warp) and PSNR are reported.
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