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Abstract

In this paper, we propose an algorithm that allows joint refine-
ment of camera pose and scene geometry represented by de-
composed low-rank tensor, using only 2D images as supervi-
sion. First, we conduct a pilot study based on a 1D signal and
relate our findings to 3D scenarios, where the naive joint pose
optimization on voxel-based NeRFs can easily lead to sub-
optimal solutions. Moreover, based on the analysis of the fre-
quency spectrum, we propose to apply convolutional Gaus-
sian filters on 2D and 3D radiance fields for a coarse-to-fine
training schedule that enables joint camera pose optimization.
Leveraging the decomposition property in decomposed low-
rank tensor, our method achieves an equivalent effect to brute-
force 3D convolution with only incurring little computational
overhead. To further improve the robustness and stability of
joint optimization, we also propose techniques of smoothed
2D supervision, randomly scaled kernel parameters, and
edge-guided loss mask. Extensive quantitative and qualita-
tive evaluations demonstrate that our proposed framework
achieves superior performance in novel view synthesis as well
as rapid convergence for optimization. The source code is
available at https://github.com/Nemo1999/Joint-TensoRF.

1 Introduction
In recent years, neural rendering has become a widely-used
method for high-quality novel view synthesis. NeRF as a pi-
oneer work (Mildenhall et al. 2020) represents a 3D radiance
field as an implicit continuous function built upon multilayer
perceptrons (MLPs) which is trained with differentiable vol-
ume rendering. While achieving excellent synthesis qual-
ity, NeRF suffers from training/inference inefficiency due to
dense evaluation of the computationally expensive MLPs.

To this end, voxel-based methods built upon the explicit
scene representation of 3D voxel grid (Sun, Sun, and Chen
2022; Fridovich-Keil et al. 2022; Liu et al. 2020) are pro-
posed to achieve faster training and provide better rendering
quality than the original MLP-based NeRF, hence becoming
the more preferred choices for downstream applications.

Nevertheless, maintaining a dense 3D voxel grid is in turn
memory intensive, thus still restricting wider applications
of voxel-based methods. Fortunately, TensoRF (Chen et al.
2022) proposes to tackle such memory-intensive issue of the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Robust joint pose refinement on decomposed
tensor. Our method enables joint optimization of camera
poses and decomposed voxel representation by applying
efficient separable component-wise convolution of Gaus-
sian filters on 3D tensor volume and 2D supervision images.

voxel grid via replacing the dense 3D grid with decomposed
low-rank tensor. TensoRF achieves a high data compression
ratio and low computational cost at the same time while also
achieving state-of-the-art performance. Providing a win-win
situation on memory usage and computational efficiency, the
decomposed low-rank tensor architecture has been widely
adopted in many recent works (Xu et al. 2023; Fridovich-
Keil et al. 2023; Goel et al. 2022; Han and Xiang 2023; Shao
et al. 2023; Tang et al. 2022; Meuleman et al. 2023).

On the other hand, the effectiveness of NeRF (and most of
the aforementioned works) hinges on precise camera poses
of input images, which are often calculated using Structure-
from-Motion (SfM) algorithms like COLMAP (Schönberger
and Frahm 2016). While some works (Wang et al. 2021; Lin
et al. 2021; Chng et al. 2022) aim to bypass the slow and oc-
casionally inaccurate COLMAP process by optimizing cam-
era pose and scene representation jointly on the original
MLP-based NeRF, their success is often tied to the spectral
bias (Yüce et al. 2022) of the MLP architecture which en-
sures the smoothness of 3D radiance field early in training.
Voxel-based methods, however, lack such properties and can
overemphasize sharp edges, making naive joint optimization
problematic as getting trapped in local optima (Fig. 2 (a)).

In this work, we present simple yet effective methods
for refining the camera pose and the 3D scene using de-
composed low-rank tensors (cf. Fig. 1). We identify that



controlling the frequency spectrum is vital for pose align-
ment, while directly realizing such control in a dense 3D
grid could be nontrivial/challenging as well as computation-
ally demanding. To this end, we introduce an efficient 3D
filtering method using component-wise separable convolu-
tion for enabling the spectral control, which is more efficient
than the traditionally well-known trick of separable convo-
lution kernel as we additionally utilize the separability of the
input signal. To further ensure stability in the optimization
process, we propose several techniques, including smoothed
2D supervision, randomly scaled kernel paramter, and the
edge-guided loss mask. These techniques are experimentally
proven crucial for successful pose refinement in our ablation
studies. In results, our proposed method requires only 50k
training iterations, where all the previous methods typically
needs 200k iterations (e.g. the overall training time is re-
duced to 25%, compared to previous MLP-based methods).
The main reason behind this advantage is not only based
on property of voxel-based architecture, but also relies on
our carefully designed efficient spectral filtering algorithm
that requires only single reusable voxel grid (please refer to
Sec. 4.3). Moreover, our method performs favorably against
state-of-the-art methods on novel view synthesis. Our con-
tributions are three-fold:

• With 1D pilot study, we provide insights into the impact
of spectral property of 3D scene on the convergence of
joint optimization beyond the coarse-to-fine heuristic dis-
cussed in prior research, and propose a learning strategy
built upon specially designed efficient component-wise
convolution algorithm.

• To enhance the robustness of our joint optimization, we
introduce techniques of smoothed 2D supervision, scaled
kernel parameters, and the edge-guided loss mask.

• Training time drops by 25% versus existing MLP-based
methods, with requiring only 50k iterations against 200k
of previous methods. Results show state-of-the-art per-
formance in novel view synthesis with unknown pose.

2 Related Work
Accelerating Neural Rendering. As the seminal work of
neural rendering, NeRF adopts MLPs to construct the im-
plicit representation of the 3D scene, providing high-quality
view synthesis but having a time-consuming training pro-
cess due to the computational demands of MLPs. For ad-
dressing such issue, different variants of NeRF are proposed
to use custom spatial data structures where the scene infor-
mation is distributed only locally thus aiding faster training
and rendering, in which those spatial data structures include
point cloud (Xu et al. 2022; Hu et al. 2023), space parti-
tioning tree (Wang et al. 2022; Yu et al. 2021), triangular
mesh (Chen et al. 2023b; Kulhanek and Sattler 2023), and
voxel gird (Sun, Sun, and Chen 2022; Fridovich-Keil et al.
2022; Liu et al. 2020; Hedman et al. 2021). Among these
variants, the voxel grid has become more popular due to
its easy implementation and quality reconstruction. How-
ever, as scene dimensions grow, the memory usage of the
voxel grid becomes inefficient. To address this, (Müller et al.
2022) recommends compressing the grid via hash encoding,
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Figure 2: Comparison of naive joint pose optimization
and our proposed method on voxel-based NeRFs. (a)
Naively applying joint optimization on voxel-based NeRFs
leads to dramatic failure as premature high-frequency sig-
nals in the voxel volume would curse the camera poses to
stuck in local minima. (b) We propose a computationally ef-
fective manner to directly control the spectrum of the ra-
diance field by performing separable component-wise con-
volution of Gaussian filters on the decomposed tensor. The
proposed training scheme allows the joint optimization to
converge successfully to a better solution.

while (Chen et al. 2022; Fridovich-Keil et al. 2023) suggest
adopting tensor decomposition for 3D feature compression,
in which our method is mainly based on (Chen et al. 2022)
but can be adaptable to other tensor decomposition-based
voxel structures like K-Planes (Fridovich-Keil et al. 2023).
Joint Pose Estimation on MLP-based NeRFs. (Wang et al.
2021) is one of the first NeRF-based attempts to tackle the
joint problem of estimating camera poses and learning 3D
scene representation by directly adjusting camera pose using
gradient propagation on neural radiance fields. The robust-
ness of such joint optimization is further enhanced by (Lin
et al. 2021; Chng et al. 2022), where they propose various
methods to smooth the pose gradient derived from the un-
derlying MLP. (Chen et al. 2023a) further increases the noise
tolerance by a specially designed local-global joint align-
ment approach. Our method also tackles joint problems but
is specifically designed for the voxel-based NeRF built upon
the decomposed low-rank tensor architecture.
Pose Estimation on Decomposed Low-rank Tensors.
There do exist works that optimize camera pose on decom-
posed low-rank tensor (Liu et al. 2023; Meuleman et al.
2023) but require rich additional geometry clues (e.g., depth
map and optical flow). To our best knowledge, we are the
first attempt to jointly optimize the camera pose and the de-
composed low-rank tensor using only 2D image supervision.
Pose Estimation on Multi-Resolution Hash Encoding.
Aside from decomposed low-rank tensor, multi-resolution
hash encoding is another compressed voxel-based architec-
ture proposed by (Müller et al. 2022). Along with such a
choice of architecture, recently (Heo et al. 2023) has pro-
posed to address the joint optimization of camera pose and
multi-resolution hash encoding. They suggest a new inter-
polation scheme that provides smooth gradients hence pre-
venting gradient fluctuation in the hash volume, along with



a curriculum learning scheme that controls the learning rate
of the hash table at each resolution level. Although achiev-
ing impressive results on joint optimization, the effective-
ness of their method is limited to multi-resolution hash en-
coding and is not applicable to decomposed low-rank tensor,
While our proposed separable component-wise 3D convolu-
tion (and randomly scaled kernel) is specifically designed
for decomposed low-rank tensor and not directly applicable
to multi-resolution hash encoding, in which these two repre-
sentations have their respective pros and cons.

3 Our Proposed Method
3.1 Joint Refinement of 3D Scenes and Poses
Volume Rendering for Radiance Field Reconstruction.
Based on the setting of neural volume rendering in NeRF, the
radiance fields respective for geometry and appearance for a
3D scene are represented via two functions (implemented by
MLPs): Fσ : R3 → R1 and Fc : R6 → R3, where Fσ re-
turns the volume density of an input 3D coordinate, while
Fc outputs the color at an input 3D coordinate given a 3D
viewing direction. For rendering a pixel on 2D coordinate u
with its homogeneous form ū = [u; 1]⊤, we first sample a
sequence of N 3D-coordinates {sn}n=1···N along the cam-
era ray defined by the camera center c⃗ ∈ R3 and the ray
direction d⃗u = K−1ū,

{sn}n=1···N = s(c⃗, d⃗u) = {c⃗+ tn · d⃗u}n=1···N , (1)

where K is the intrinsic camera matrix and {tn}n=1···N are
N samples equidistantly distributed along the depth axis in
between the near and far planes of the view frustum. The re-
sultant color of the pixel is obtained by integrating through
the density field Fσ and color field Fc using the volume ren-
dering equation (Kajiya and Von Herzen 1984; Mildenhall
et al. 2020), where we denote the discretized volume render-
ing intregral by a function V:

V(Fσ , Fc, s(c⃗, d⃗u)) =
∑

sn∈s(c⃗,d⃗)

Tn · αn ·Cn, (2)

where Tn = exp(−
∑n

j=1 δjFσ(sj)) represents accumu-
lated transmittance prior to sn, αn = 1− exp(−δnFσ(sn))

represents the opacity of sample sn, and Cn = Fc(sn, d⃗u )
represents the color of sample sn, and δj = ∥sj − sj−1∥ is
the euclidean distance between two adjacent samples.

In the typical setting of NeRF, given a set of L 2D-images
I = {I1, · · · , IL} with their corresponding camera poses
P = {P1, · · · , PL} ∈ se(3) Lie algebra (parametrizing rigid
3D transformation as se(3) is a very common technique in
robotics, here we follow the usage of (Lin et al. 2021)) as
input, we aim to reconstruct the 3D scene represented by
F ∗
σ and F ∗

c , via minimizing the loss Lrec of 2D photomet-
ric reconstruction with the gradient-based optimization al-
gorithm, in which

Lrec(Fσ , Fc) =
L∑

i=1

∑
u∈U

∥V(Fσ , Fc,W3d(Pi, s(⃗0, d⃗u)))− Iiu∥,

(3)
where U is the set of all possible 2D coordinates in the in-
put images, Iiu ∈ R3 is the RGB color of pixel location u on

training image Ii, warping function W3d(P, ) : R3 → R3

performs rigid 3D transformation parameterized by P ∈
se(3) Lie algerbra, and W3d(P, s(⃗0, d⃗u)) maps each sam-
ple 3D coordinate in canonical ray (⃗c = 0⃗) into a 3D sam-
ple coordinate of camera ray with pose P . Note that this is
an ill-posed reconstruction problem that suffers from shape-
radiance ambiguity (Zhang et al. 2020).
3D Joint Optimization. When it comes to jointly estimat-
ing camera poses (where the camera poses P are also un-
known) and learning scene representation (Lin et al. 2021;
Chng et al. 2022; Chen et al. 2023a; Heo et al. 2023), the
problem is even more ill-defined with the objective now be-
ing extended from Eq. 3 and defined as:

Ljoint(Fσ , Fc,P) =

L∑
i=1

∑
u∈U

∥V(Fσ , Fc,W3d(Pi, s(⃗0, d⃗u)))− Iiu∥.

(4)
Such joint optimization is highly influenced by the structural
bias of the underlying representation of {Fσ, Fc}, which we
will conduct a pilot study with a simpler 1D case in Sec. 3.2.

3.2 Gaussian Filter on 1D Signal Alignment
Here we aim to analyze the effect of the signal spectrum
(spectrum of Fc, Fσ , and I in Eq. 4) on the joint optimiza-
tion process. We begin by reducing 3D joint optimization
of camera pose and scene reconstruction into a simpler 1D
counterpart of signal alignment.
1D Signal Alignment. Let us consider a target ground
truth 1D signal fGT (assuming the signal to be continu-
ous, bounded, and have finite support), which we aim to
reconstruct and align with. We are given randomly trans-
lated versions f1, f2 of the ground truth signal fGT , where
f1 = W1d(fGT , p1), f2 = W1d(fGT , p2) with having W1d
a signal translation operation defined as W1d(f, p)(x) =
f(x− p), and p1, p2 are the translation values.

Although the reconstruction is trivial in such a 1D setting,
in order to mimic the case of 3D joint optimization, we at-
tempt to estimate a signal g as well as the translation values
q1 and q2 via adopting the iterative gradient-based optimiza-
tion on the reconstruction loss.

L1d(g, q1, q2)=
∑

i∈[1,2]

∫
∥W1d(g, qi)(x)− fi(x)∥2dx

=
∑

i∈[1,2]

∫
∥g(x)− fGT (x− pi + qi)∥2dx.

(5)

Note that Eq. 5 and Eq. 4 are analogous in terms of their
structure/formulation, where the difference only lies in the
dimensionality. And L1d achieves the optimum whenever
q1− q2 = p1− p2 and g = W1d(fGT , p1− q1). Please check
Figure 3(a) for a simple visual representation of Equation 5,
where f1 and f2 are connected to g by the reconstruction loss
L1d (i.e blue arrows), whose gradients are used to update g
and the translation values {q1, q1}.
Connection between 1D Signal Alignment and 3D Joint
Optimization. The formulation of 1D signal alignment ef-
fectively simulates the “local phenomenon” of joint camera
pose alignment and 3D scene reconstruction on a 2D cross-
section: As shown in Figure 3(c), where we consider two



Figure 3: Spectrum analysis and effect of Gaussian filter-
ing on 1D signal alignment. (a) 1D signal alignment com-
parison: noisy signals can get trapped in local optima with-
out Gaussian filtering. (b)(Top) Visualization of H(u, k) in
Eq. 7, which shows alternating signs as k departs from
0, causing misdirection in gradient-based optimization if
there has too much high-frequency energy in the signal.
(b)(Bottom) Visualization of H̃(u, k) in Eq. 8, which is the
modulated version of H(u, k) with the help of Gaussian fil-
ter N . (c) 1D alignment relates to 3D joint optimization in
Eq. 4, where effective pose refinement stems from the 1D
alignment in specific cross-sections, with the red lines in 3D
scene correlating to horizontal shifts (blue arrows) and rota-
tions (green arrows).

neighboring camera poses as well as a cross-section in the
3D space passing through both camera planes and intersect-
ing with each camera plane on a projected straight line, the
RGB color values on such projected lines correspond to the
1D shifted ground truth signals f1, f2 in Equation 5, and the
value of the radiance field on the cross-section corresponds
to reconstructed signal g in Equation 5. Similar to the loss
L1d in Equation 5, the projected lines on the camera planes
and the corresponding cross-section in the 3D radiance field
are connected by the volume rendering function V and re-
construction loss Ljoint in Equation 4. As a result, the com-
plete 3D joint optimization can be intuitively viewed as si-
multaneously performing many 1D signal analyses on the
superposition of all possible combinations of camera poses
and cross-sections.

Spectrum Analysis and Effect of Gaussian Filtering on
1D Signal Alignment. First we transform the problem into
a simpler form with a assumption that is reflected by the fast
convergent property of voxel grids (cf. our supplement for
detailed derivation of the theorem):

Theorem 1 If we assume rapid convergence of signal g
(which means g achieves local optima g∗ w.r.t current q1, q2
whenever we update q1, q2.), we find that the problem in Eq.5
is equivalent to pure alignment between two ground-truth

signals, that is
L1d(g, q1, q2) = L1d(g

∗, q1, q2)

= L1d(u) =

∫
∥fGT (x)− fGT (x+ u)∥2dx,

(6)

where u = (p1 − p2) − (q1 − q2) is the shift between two
ground truth signals, which has an initial value of p1 − p2
We aim for u to reach 0 with gradient-based optimization.

Next, by analyzing the relationship between fGT and the
optimization gradient d

duL1d in terms of their spectral prop-
erties, we get the following result (cf. our supplement for
detailed derivation of the theorem):
Theorem 2

d

du
L1d=

∫
∥ F[fGT ] ∥2 ·H(u, k) dk, (7)

where H(u, k) = 4πk sin(2πku), F[fGT ] is Fourier trans-
form of fGT , and k is the wavenumber in frequency domain.
Particularly, we are interested in the sign of d

duL1d which
determines the direction of our iterative optimization. We
plot the value of H(u, k) in Fig. 3(b)(Top), where we can
observe that the sign of H is well-behaved when the magni-
tude of k is small (here well-behaving means the direction
of the gradient is able to let u descend to 0, i.e., being pos-
itive when u > 0 and negative when u < 0). However,
when k increases, the sign of H quickly begins to alternate,
and the magnitude increases, which causes the gradient to be
large and noisy. Hence high-frequency signals with a spread-
ing spectrum can easily lead the optimization process to get
stuck in the local optima.

To this end, we demonstrate that applying a Gaussian filter
on the signal fGT effectively mitigates the sign-alternating
issue of the original H function. Specifically, we show that
filtering the input signal is equivalent to modulating H by a
Gaussian window (cf. our supplement for derivation):
Theorem 3 Let L̃1d denotes L1d calculated with Gaussian
convoluted signal N ∗ fGT , and F[N ] denotes the Fourier
transform of the Gaussian kernel N , then we have

d

du
L̃1d=

∫
∥ F[fGT ] ∥2 · H̃(u, k) dk, (8)

where H̃(u, k) =∥ F[N ] ∥2·H(u, k).

In Fig. 3(b)(Bottom), we plot the modulated H̃(u, k), with
observing that the misbehave region is suppressed (note that
we set the variance of N to 4 here). The gradient descent
will likely converge to u = 0 once the initial magnitude
of u is less than 6.0. The region where d

du L̃1d does well-
behave is quasi-convex and is guaranteed to converge to
global optima given suitable learning rate that prevents us
from getting stuck on saddle points. Our analysis agrees with
the motivation behind the coarse-to-fine training schedule of
(Lin et al. 2021) and (Heo et al. 2023). Specifically, observ-
ing that the well-behaved region in H(u, k) grows wider as
u approaches 0 (cf. Fig. 3(b)(Top)), which means that we
can loosen the filtering strength of Gaussian kernel as u ap-
proaches 0, leading to larger and more accurate gradient.

3.3 2D Planar Image Alignment
In addition to the 3D joint optimization problem, previous
works (Lin et al. 2021; Chng et al. 2022) also consider a



2D image patches alignment task as a simpler example of
joint optimization, in which there are L2d overlapping im-
age patches I2d = {I1, · · · , IL2d} cropped from a single
ground truth image Igt before being transformed by 2D ho-
mography. The homography transforms are parameterized
by P2d = {P1, · · · , PL2d} ∈ sl(3) and initialized as 0⃗ (here
we also follow from (Lin et al. 2021) the usage Lie algrebra
to parameterize 2D homography transform). Analogously to
Equation 4, our objective is to jointly optimize the 2D image
content F2d : R2 → R2 and per-patch homography warps
P2d by the reconstruction loss. Joint optimization can be for-
mulated as:

L2d(F2d,P2d) =

L∑
i=1

∑
u∈U2d

∥F2d(W2d(Pi, u))− Iiu∥2, (9)

where U2d is the set of all possible 2D coordinates in the
image patches, Iiu is the color of pixel at location u on in-
put image patch Ii, warp function W2d(Pi, ) : R2 → R2

performs 2D homography transformation parameterized by
Pi ∈ sl(3) Lie algebra, and W2d(Pi, u) maps 2D coordinate
u on Igt into a transformed 2D coordinate on patch Ii. No-
tice the strong structural correspondence among Eq. 5 (1D
alignment), Eq. 9 (2D alignment), and Eq. 4 (3D alignment),
the three problems share similar computational property.

We parameterize F2d by a 2D decomposed low-rank ten-
sor T2d ∈ Rh×w, where w, h are the dimensions of the im-
age. Motivated by our analysis in Section 3.2, we filter T2d
with 2D Gaussian kernel to avoid overfitting.

F2d(x) = (N2d ∗2d T2d)(x) = (N2d ∗2d (

R∑
r=1

vX
r ⊗ vY

r ))(x), (10)

where x ∈ R2 is 2D pixel coordinates, N2d is 2D gaus-
sian kernel, ∗2d is the convolution operator, and ⊗ denotes
outer product between the 1D vector components vX

r ∈
Rw,vY

r ∈ Rh. “(x)” at the end of the expressions means bi-
linearly interpolating the preceding discrete 2D volume with
continuous coordinate x. Our method outperforms the naı̈ve
tensor method and previous methods (Lin et al. 2021; Chng
et al. 2022), experiment results are shown at Sec. 4.1.

The width of Gaussian kernel N2d is controlled by an
exponential coarse-to-fine training schedule that changes
continuously (cf. our supplement for details of such kernel
schedule). In order to support continuous changing width on
a discrete Gaussian kernel, the kernel is generated by the
following rule:

N1d(σ)=


LN /2⊕

x=−LN /2

min(1,
1

√
2πσ

e
− x2

2σ2 ) if σ > 0.0001

LN /2⊕
x=−LN /2

δ[x] otherwise,

N2d(σ)= N1d(σ)⊗N1d(σ),
(11)

where LN is the size of the discrete kernel, 1D kernel
N1d(σ) ∈ RLN is discretely sampled from continuous Gaus-
sian distribution and clamped to a max value of 1.0 before
being concatenated into a vector by ⊕ operator. To avoid nu-
merical instability, when σ < 0.001, we assign N1d(σ) to be
discrete impluse function δ. 2D kernel N2d(σ) ∈ RLN×LN

is generated by outer product of two 1D kernels.

3.4 Decomposed Low-Rank Tensor
This section describes the decomposed low-rank tensor pro-
posed by TensoRF (Chen et al. 2022) which is the scene rep-
resentation that our proposed method is built upon. While
there are two different types of tensor decomposition con-
sidered in (Chen et al. 2022): CP-decomposition and VM-
decomposition, in our discussion we mainly focus on VM-
decomposition, although our method is also naturally appli-
cable to CP-decomposition.

To represent the 3D density field Fσ , we store the infor-
mation in a 3D tensor Tσ ∈ RI×J×K , in which now Fσ is
defined simply as component-wise interpolation of Tσ .

Tσ =

R∑
r=1

vX
σ,r ⊗MY,Z

σ,r + vY
σ,r ⊗MX,Z

σ,r + vZ
σ,r ⊗MX,Y

σ,r , (12)

where R is the number of components in the decomposition,
(vX

r ,vY
r ,v

Z
r ) ∈ (RI ,RJ ,RK) are 1D vector-components

for axes (X,Y, Z) repectively, (MY,Z
r ,MX,Z

r ,MX,Y
r ) ∈

(RJ×K ,RI×K ,RI×J) are 2D matrix-components for axes
(Y -X,X-Z,X-Y ) repectively, operator ⊗ denotes the outer
product between vector and matrix.

To represent the 3D color field Fc, the information
Tc(x) ∈ RG queried from 3D feature tensor Tc ∈
RI×J×K×G is decoded by a small MLP S into RGB color
value (G is the input feature dimension of S). The imple-
mentation can be formulated as

Fc(x, d⃗) = S(Tc(x), d⃗)

Tc =
R∑

r=1

v
X
c,r ⊗ M

Y,Z
c,r ⊗ b

X
r +

v
Y
c,r ⊗ M

X,Z
c,r ⊗ b

Y
r + v

Z
c,r ⊗ M

X,Y
c,r ⊗ b

Z
r .

(13)

Tc(x) denotes the component-wise linear-interpolation of
tensor volume Tc on 3D coordinate x. d⃗ is the viewing direc-
tion of the current ray. vc,r and Mc,r have the same shape
as their vσ,r and Mσ,r counterparts, bX

r ,bY
r ,b

X
r ∈ RG are

feature components to expand the feature axis of Tc.

3.5 Separable Component-Wise Convolution
As theoretically analyzed in Sec. 3.2 and empirically shown
in Fig. 2(a), naı̈vely applying low-rank decomposed tensor
(which lacks internal bias that limits the spectrum of learned
signal, hence corresponds to the top raw of Fig. 3) to joint
camera pose optimization results in suboptimal reconstruc-
tion quality and inaccurate poses. Therefore, we propose to
limit the spectrum of the radiance field Fσ and Fc with a
coarse-to-fine training schedule.

If we naı̈vely convolve the 3D Gaussian kernel with our
3D volume Tσ , (as in the 2D planar case of Eq. 10), we
would have to reconstruct the whole 3D tensor before ap-
plying convolution, destroying the space compression ad-
vantage of decomposed low-rank tensor, see Eq. 14.

Fσ(x, y, z) = (N3d ∗3d Tσ)(x, y, z), (14)
where ∗3d denotes 3D convolution, N3d is the 3D Gaussian
filter defined by N1d⊗N2d. Under this setting, the time com-
plexity and the space complexity are O(I · J ·K · L3

N ) and



O(I · J ·K) respectively, where LN is the size of 3D Gaus-
sian kernel in each dimension.

To achieve computationally efficient convolution on the
3D decomposed low-rank tensor volume, we perform our
proposed separable component-wise convolution, by taking
advantage of the following identity (whose correctness will
be proven in the supplementary material).

Theorem 4

T̃σ =
R∑

r=1

ṽX
σ,r ⊗ M̃Y,Z

σ,r + ṽY
σ,r ⊗ M̃X,Z

σ,r + ṽZ
σ,r ⊗ M̃X,Y

σ,r , (15)

where T̃σ = (N3d ∗3d Tσ) denotes the 3D Gaussian con-
voluted tensor volume, ṽσ,r = (N1d ∗1d ṽσ,r) denotes the
1D Gaussian convoluted vector component, and M̃σ,r =

(N2d ∗2d M̃σ,r) denotes the 2D Gaussian convoluted ma-
trix component. In other words, the 3D convoluted ten-
sor can be expressed as the composition of individually
convoluted components, which allows us to distribute the
3D Gaussian convolution across the individual components
of the decomposed low-rank tensor. Similar to Sec. 3.4,
the value of the density field is component-wised linearly
sampled from the Gaussian convoluted components, i.e.,
F̃σ(x) = T̃σ(x). Similarly, the spectral restricted version of
the color field Fc can be obtained as

F̃c(x, d⃗) = S(T̃c(x), d⃗)

T̃c =

R∑
r=1

ṽX
c,r ⊗ M̃Y,Z

c,r ⊗ bX
r +

ṽY
c,r ⊗ M̃X,Z

c,r ⊗ bY
r + ṽZ

c,r ⊗ M̃X,Y
c,r ⊗ bZ

r .

(16)

With separable component-wise convolution, the time com-
plexity required is O(I ·J ·LN +J ·K ·LN +K ·I ·LN ) for
computing convoluted components (assuming that we sep-
arate 2D Gaussian convolution on matrix components into
1D Gaussian convolutions), and O(R) for each query sam-
ple (same as the original decomposed tensor in (Chen et al.
2022)), drastically reducing the computation required for fil-
tering 3D radiance fields Fσ and Fc.

We stress here that our proposed component-wise con-
volution is different from traditional technique of sepa-
rated kernel convolution in signal processing literature, in
the sense that the common separated kernel technique only
separates the 3D kernel without utilizing the separability of
the input signal itself, and hence requires sequentially per-
forming three 1D convolution operation on 3D volume, the
time complexity of traditional technique would be O(I · J ·
K · LN ), and also requires a 3-dimensional memory with
space complexity of (I · J ·K) to store convolution result.

3.6 Techniques for Increasing Pose Robustness
Here we summarize our improvements on naı̈ve decom-
posed low-rank tensors that improve joint camera pose opti-
mization and radiance field reconstruction.

Coarse-to-Fine 3D schedule. Using efficient 3D convo-
lution algorithm in Sec. 3.5. During training, we apply a
coarse-to-fine schedule on the 3D radiance field F̃σ, F̃c by
controlling the kernel parameter (σ of Eq. 11) of the Gaus-
sian kernel, which is exponentially reduced to 0 at 10k it-

erations and remains 0 afterward (for detailed settings of σ,
please refer to the supplement).

Smoothed 2D Supervision. Inspired by the analysis in
Sec. 3.2, we discovered that blurring the 2D training im-
age with a parallel set of scheduled 2D Gaussian kernels
also helps the joint optimization. On the one hand, smoothed
supervision images produce smoothed image gradients and
stabilize the camera alignment. On the other hand, smoothed
training image also helps to restrict the spectrum of the
learned 3D scene. The Gaussian schedule for smoothing 2D
training images is similar to that of the 3D radiance fields .

Randomly Scaled Kernel Parameter and Edge Guided
Loss. From the previous spectral analysis in Sec. 3.2,
one may have the impression that a larger kernel leads to
stronger modulation, and hence always results in more ro-
bust pose registration. However, this is not always true, be-
cause the magnitude of H(u, k) decreases linearly as k ap-
proaches 0. Notice that in Fig. 3(b) the magnitude of modu-
lated H̃ is weaker than that of H , which means that d

du L̃1d is
weaker than d

duL1d and therefore is more easily influenced
by noise. In the 3D case, this weak and noisy gradient prob-
lem caused by overly aggressive filtering corresponds to the
excessive blur effect that destroys important edge signals
in the training images, causing pose alignment to fail. See
Fig. 4(b) for a visualization of the image blurred by an over-
strength kernel, in which the thin edge information is elimi-
nated, causing the camera pose to randomly drift.

Based on the effect of weak and noisy gradient prob-
lem, when applying only coarse-to-fine 3D schedule and
smoothed 2D supervision, we found that it is insufficient to
use a single-size kernel on different real-world scene struc-
tures (in which the same kernel may be overly aggressive in
one scene, but overly gentle in another scene). Therefore, we
introduce randomly scaled kernel, which randomly scales
the kernel by a factor uniformly sampled from [0, 1]. Ran-
dom scales are sampled independently among 3D Gaussian
kernels (for the radiance field) and 2D Gaussian kernels (for
training images), allowing combinations of different-sized
kernels to guide the joint optimization. See Fig. 4(c) for a
visualization of the same input image filtered by a range
of randomly sampled kernels. We observe that the training
schedule becomes more robust when we alternate between
these randomly sampled kernel scales.

Another way to mitigate the weak and noisy gradient
problem is the edge guided loss , in which we increase the
learning rate by 1.5x (and hence amplify the gradient signal)
on the pixels in the edge region, from which the learning
signal for pose alignment mainly comes. See visualization
in Fig. 4 (d), where we color the edge area that is detected
using the Sobel filter (Kanopoulos, Vasanthavada, and Baker
1988) on the filtered 2D images in yellow. Edge-guided ren-
dering loss helps the joint optimization focuses more on the
edge area of the training images, resulting in more robust
pose optimization. Empirically we apply this edge-guided
scale alternately on every other training iteration.



(a) No Kernel (b) Overly Aggresive Kernel (c)  Randomly Scaled Kernel (d) Edge Region

Figure 4: Visualization of 2D Randomly Sampled Kernel and Edge Guided Loss. (a) Input supervision without kernel.
Joint optimization using unblurred images easily overfit to high-frequency noises (b) Input supervision blurred by an overly
aggressive kernel. Notice that the edge information is largely destroyed by the blurring process, resulting in weak and noisy
gradients, causing the poses to drift around easily. (c) Same input supervision blurred by four randomly scaled kernels. We
empirically found that mixing different filtering strengths results in a more robust joint optimization. (d) We select edge area of
a blurred image by Sobel filter with a threshold set to 1.25x of the average value of the filtered edge-strength map.

Methods sl(3) error ↓ patch PSNR ↑
BARF 0.0105 35.19
Naı̈ve 2D TensoRF 0.5912 20.80
2D TensoRF + 2D Gaussian 0.0023 40.70

Table 1: Quantitative results of planar image alignment.

4 Experiments
Although our method is applicable to various decomposed
low-rank tensor implementations, in this section, we validate
our proposed method using TensoRF (Chen et al. 2022) with
inaccurate or unknown camera poses.

We evaluate our proposed method against three previous
works BARF (Lin et al. 2021), GARF (Chng et al. 2022),
and HASH (Heo et al. 2023). Since the implementation of
GARF and HASH are unavailable, we directly use the re-
sults reported in their paper for comparison. We compare
these methods on the planar image alignment task and
novel view synthesis task on NeRF-Synthetic and LLFF
dataset. We provide detailed implementation details and ex-
perimental setup in the supplementary material.

4.1 Results
Planar Image Alignment (2D). In Fig. 5 we compare our
method (i.e., 2D TensoRF + 2D Gaussian) with naı̈ve 2D
TensoRF implementation (Chen et al. 2022) and BARF (Lin
et al. 2021). Quantitative results are reported in Tab. 1, in-
cluding sl(3) warp error and patch PSNR. These results
demonstrate the effectiveness of Gaussian filtering in joint
optimization, verifying the analysis in Sec. 3.2.

NeRF (3D): Synthetic Object & Real World Objects.
Tab. 2 reports the pose error and novel-view synthesis qual-
ity of the NeRF-Synthetic dataset. Our method achieves the
smallest pose error in 5 out of 8 scenes and achieves the best
reconstruction quality in all eight scenes, and the quantita-
tive results are shown in Fig. 6.

Tab. 3 reports the pose error and novel-view synthesis
quality of the LLFF dataset. Our method achieves pose error
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Figure 5: Qualitative comparisons of the 2D image patch
alignment. 2D TensoRF + 2D Gaussian successfully regis-
ters accurate warping parameters, verifying the analysis of
Gaussian filtering on joint optimization.

on par with previous methods and produces the best aver-
age view synthesis quality. Our method also scores the best
LPIPS in 7 out of 8 scenes, indicating that our method pro-
duces perceptually more natural novel-view synthesis.

Note that we achieve state-of-the-art results within only
20% to 25% of training iterations, while all other competing
methods train for 200k iterations.

4.2 Ablation
Component Analysis. In Tab. 4, we report the effect of
each proposed component on the pose error and PSNR of
the optimization results. The results are average across all
real-world scenes in the LLFF dataset. In (a) (b), we show
the effect of randomly scaled kernel described in Sec. 3.6.
In (b)(c), we show the effectiveness of edge guided loss
(Sec. 3.6). Finally, in (c)(d)(e), we show the necessity of
Gaussian filtering on both 2D supervising images and 3D ra-
diance field represented by a decomposed tensor grid, which
validates the analysis in Sec. 3.2.

Potential Baseline of TensoRF with BARF/GARF. One
may suspect that we can solve the joint optimization prob-
lem of decomposed low-rank tensor by simply applying the
method of (Lin et al. 2021) or (Chng et al. 2022), we clar-



Scene

Camera Pose Registration View Synthesis Quality

Rotation (◦) ↓ Translation ↓ PSNR ↑ SSIM ↑
GARF BARF HASH Ours GARF BARF HASH Ours GARF BARF HASH Ours GARF BARF HASH Ours

Chair 0.113 0.096 0.085 0.874 0.549 0.428 0.365 3.501 31.32 31.16 31.95 35.22 0.959 0.954 0.962 0.984
Drum 0.052 0.043 0.041 0.037 0.232 0.225 0.214 0.118 24.15 23.91 24.16 25.78 0.909 0.900 0.912 0.934
Ficus 0.081 0.085 0.079 0.050 0.461 0.474 0.479 0.173 26.29 26.26 28.31 31.37 0.935 0.934 0.943 0.978
Hotdog 0.235 0.248 0.229 0.105 1.123 1.308 1.123 0.499 34.69 34.54 35.41 37.18 0.972 0.970 0.981 0.982
Lego 0.101 0.082 0.071 0.049 0.299 0.291 0.272 0.100 29.29 28.33 31.65 34.23 0.925 0.927 0.973 0.981
Materials 0.842 0.844 0.852 0.854 2.688 2.692 2.743 2.690 27.91 27.84 27.14 29.04 0.941 0.936 0.911 0.951
Mic 0.070 0.071 0.068 1.177 0.293 0.301 0.287 5.000 31.39 31.18 32.33 32.50 0.971 0.969 0.975 0.976
Ship 0.073 0.075 0.079 0.058 0.310 0.326 0.287 0.167 27.64 27.50 27.92 31.98 0.862 0.849 0.879 0.903

Mean 0.195 0.193 0.189 0.400 0.744 0.756 0.722 1.533 28.96 28.84 29.86 32.07 0.935 0.930 0.943 0.961

Table 2: Quantitative results on the NeRF-Synthetic dataset. Our method achieves the best average novel-view synthesis
quality and the best pose error in 5 out of 8 scenes. Notice that our method converges within 40k iterations, while all previous
methods train for 200k iterations.

Scene

Camera Pose Registration View Synthesis Quality

Rotation (◦) ↓ Translation ↓ PSNR ↑ SSIM ↑
GARF BARF HASH Ours GARF BARF HASH Ours GARF BARF HASH Ours GARF BARF HASH Ours

Fern 0.470 0.191 0.110 0.472 0.250 0.102 0.102 0.199 24.51 23.79 24.62 26.17 0.740 0.710 0.743 0.842
Flower 0.460 0.251 0.301 1.375 0.220 0.224 0.211 0.389 26.40 23.37 25.19 25.62 0.790 0.698 0.744 0.810
Fortress 0.030 0.479 0.211 0.449 0.270 0.364 0.241 0.419 29.09 29.08 30.14 29.68 0.820 0.823 0.901 0.882
Horns 0.030 0.304 0.049 0.386 0.210 0.222 0.209 0.251 22.54 22.78 22.97 22.84 0.690 0.727 0.736 0.819
Leaves 0.130 1.272 0.840 1.990 0.230 0.249 0.228 0.397 19.72 18.78 19.45 21.24 0.610 0.537 0.607 0.753
Orchids 0.430 0.627 0.399 0.279 0.410 0.404 0.386 0.340 19.37 19.45 20.02 20.57 0.570 0.574 0.610 0.698
Room 0.270 0.320 0.271 0.188 0.200 0.270 0.213 0.191 31.90 31.95 32.73 31.87 0.940 0.949 0.968 0.936
T-Rex 0.420 1.138 0.894 0.523 0.360 0.720 0.474 0.416 22.86 22.55 23.19 24.19 0.800 0.767 0.866 0.878

Mean 0.280 0.573 0.384 0.709 0.269 0.331 0.258 0.325 24.55 23.97 24.79 25.27 0.745 0.723 0.772 0.827

Table 3: Quantitative results on the LLFF dataset. Our method achieves the best average novel-view synthesis quality and
best LPIPS in 7 out of 8 scenes. Our method converges within 50k iterations, while all previous methods train for 200k iterations.

Figure 6: Visual comparisons of novel view synthesis.

ify that there exists no simple way of integrating BARF (i.e.,
gradually activating higher-frequency components in posi-
tional encoding) into TensoRF since the MLP decoder of
TensoRF does not take spatial coordinates as input (i.e., con-
trolling spatial property in TensoRF is hard to achieve by
manipulating positional encoding). Nevertheless, we make

3D 2D Random Edge Rot. Trans. PSNR
Gauss. Gauss. Kernel Guided ↓ ↓ ↑

(a) ✓ ✓ ✓ ✓ 0.72 0.33 25.36
(b) ✓ ✓ ✓ 1.00 0.37 25.25
(c) ✓ ✓ 1.91 0.93 25.12
(d) ✓ 33.00 12.7 20.10
(e) ✓ 26.25 8.9 19.73
(d) 23.29 9.4 23.97

Table 4: Ablation study of the components of the pro-
posed method on the real-world LLFF dataset.

Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓
TensoRF + BARF 45.47 0.17 20.71 0.630 0.314
TensoRF + GARF 73.92 0.29 10.47 0.287 0.679
Ours 0.43 0.003 26.92 0.872 0.104

Table 5: Ablation on Directly Applying BARF and GARF
on TensoRF (Potential Baseline)



Filter Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Box filter 9.98 0.06 20.18 0.387 0.165
Gaussian filter 0.46 0.004 29.49 0.874 0.063

Table 6: Ablation On Low-Pass Filters.

Setting Rot. ↓ Trans. ↓ PSNR ↑
w/ random kernels & edge guided loss 0.06 0.002 34.34
w/o random kernels & edge guided loss 0.28 0.010 34.43

Table 7: Ablation on Applying Randomly Scaled Kernel
Parameter and Edge Guided Loss in Synthetic Scenes

σ 0.125 0.15 0.175 0.2

BARF Rotation ↓ 0.094 0.068 0.100 0.108
Translation ↓ 0.004 0.004 0.005 0.005

Ours Rotation ↓ 0.07 0.062 0.072 0.066
Translation ↓ 0.003 0.003 0.003 0.002

Table 8: Ablation: Sensitivity Analysis On Gaussian
Noise in Blender Chair.

rough attempts to add a positional encoding schedule into
the MLP decoder input to simulate the setting of BARF
or replace the decoder with a GARF network. We conduct
experiments on four randomly chosen scenes in the LLFF
dataset. The results are shown in Tab. 5, which demon-
strate the efficacy and pertinency of our proposed method
to achieve successful training.

Using Other Low-Pass Filters. As we would like to have
identical filtering strength along all spatial directions, we
adopt the Gaussian filter in our method as it is the only ker-
nel that is both circularly symmetric and separable (a well-
known property in signal processing). Nevertheless, we ex-
periment with other low-pass filters. We report in Tab. 6
the performance of using the box filter (i.e., a representa-
tive low-pass filter) on the LLFF Fortress scene, in which
we clearly observe the benefits of using the Gaussian filter.

Applying Randomly Scaled Kernel Parameter. and Edge
Guided Loss on Synthetic Scenes. Although the two tech-
niques are originally proposed to improve the robustness of
complex real-world scenes, they do not harm the perfor-
mance of synthetic ones and even slightly boost the pose
estimation, as shown in Tab. 7.

Sensitivity w.r.t. Pose Initialization. We adopt the Chair
scenes in the Blender dataset to conduct sensitivity analysis
upon pose initialization via varying variance σ of Gaussian
noise. The result is shown in Tab. 8, which demonstrates that
both BARF and our proposed method show certain robust-
ness against the noisy initialization of camera poses.

4.3 Time Complexity
In Fig. 7, we compare with previous methods on average
PSNR and training iterations in the Synthetic NeRF dataset.
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Figure 7: PSNR and training iterations comparison.

The figure shows two advantages of our method: (1) rapid
convergence and (2) high-quality novel view synthesis.

The early-stage blurry supervision can hinder detailed
structure reconstruction later in the optimization, impact-
ing the final result quality. Our method resolves this prob-
lem by applying 3D filters with directly controllable kernel
parameters, which enables smooth and rapid transition (by
continuous exponential kernel schedule) of the 3D content
across the spectrum domains, as opposed to previous meth-
ods that use indirect methods (e.g., learning rate in (Heo
et al. 2023), encoding magnitude in (Lin et al. 2021)) to
influence learned 3D scene spectral property. Furthermore,
our method is carefully designed to use a single voxel grid,
which is trained only once in the coarse-to-fine schedule
controlled by our proposed efficient component-wised con-
volution algorithm, thus leading to faster convergence; in
comparison, (Heo et al. 2023), which also uses voxel-based
representation, requires sequential curriculum learning upon
multiple voxel grids of different resolutions, resulting in four
times more training iterations than ours.

5 Conclusion
Our contributions is three fold: 1) Theoretically, we pro-
vide insights into the impact of 3D scene properties on the
convergence of joint optimization beyond the coarse-to-fine
heuristic discussed in prior research (e.g., BARF, Heo et
al. 2023), thus offering a filtering strategy for improving the
joint optimization of camera pose and 3D radiance field. 2)
Algorithmically, we introduce (and prove the equivalence
of) an effective method for applying the pilot study’s fil-
tering strategy on the decomposed low-rank tensor, notice
that the proposed separable component-wise convolution is
more efficient than the traditionally well-known trick of sep-
arable convolution kernel as we additionally utilize the sep-
arability of the input signal. Furthermore, we also propose
other techniques such as randomly-scaled kernel parameter,
blurred 2D supervision, and edge-guided loss mask to help
our proposed method better perform in complex real-world
scenes. 3) Comprehensive evaluations demonstrate our pro-
posed framework’s state-of-the-art performance and rapid
convergence without known poses.
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