
Adaptively-Realistic Image Generation
from Stroke and Sketch with Diffusion Model Supplementary Materials

Shin-I Cheng*1, Yu-Jie Chen*1, Wei-Chen Chiu1, Hung-Yu Tseng2, and Hsin-Ying Lee3

1National Chiao Tung University, Taiwan, 2Meta, 3Snap Inc.

1. Dataset and Preprocessing Details

1.1. Dataset.

We consider three datasets: AFHQ [2], Landscapes [8],
and Oxford Flower [7] in our experiments. AFHQ dataset
has three domains: 5153 training and 500 testing images
of“cat”, 4739 training and 500 testing images of “dog”,
and 4738 training and 500 testing images of “wildlife”
(e.g. tiger, lion, wolf, etc). Oxford Flower dataset contains
8189 images (split to 7189 images for training and 1000 for
testing), and Landscapes (LHQ) dataset has 90000 images
(split to 81000 images for training, and 9000 for testing).

1.2. Generating Sketch-stroke Pairs from Given
Datasets.

For each image in the aforementioned three datasets,
we prepare the corresponding sketch and stroke images for
training and testing in our proposed task.

Sketch Generation. We utilize the official pretrained
model of Photo-sketching [5], a GAN-based network ex-
tracting the contour drawings from the given image, to ob-
tain the paired sketch data for images of the datasets used
in our experiments. Noting that we perform additional
foreground extraction using GrabCut algorithm in OpenCV
specifically for the Oxford Flower images before applying
the sketch generation, as we find that the images in this
dataset usually have many leaves behind the main flowers
which would cause some distraction for capturing outlines
of the main object.

Stroke Generation. We do image-to-painting translation
via applying two methods, Stylized Neural Painting [10]
and Paint Transformer [6], in order to generate the paired
stroke data for images of the datasets used in our exper-
iments. Both Stylized Neural Painting and Paint Trans-
former are state-of-the-art image-to-painting frameworks

and able to produce a sequence of meaningful and faith-
ful stroke prediction. Considering that practical stroke im-
ages manually created by human users usually contain only
coarse features, we generate stroke data by randomly select-
ing the intermediate canvas produced during the progres-
sive procedure of Stylized Neural Painting or Paint Trans-
former. We apply Stylized Neural Painting on the AFHQ
dataset and Paint Transformer on the datasets with more
images (i.e. Oxford Flower and Landscapes) since Paint
Transformer is less time-consuming.

1.3. Generating Sketch-stroke Pairs from Custom
Input Images.

Given the custom input images ccomb which are the syn-
thetic ones (e.g. the input images shown in Figure.7 of our
main manuscript), as they are different from the real im-
ages (e.g. what we have in the AFHQ, Landscapes, and
Oxford Flower datasets), we perform the following opera-
tions (different from the way that we described in the previ-
ous subsection 1.2) in order to extract black-white sketches
csketch and colored stroke images cstroke. Firstly, we adopt
the GrabCut algorithm in OpenCV to extract and concen-
trate on the foreground/main object (where the subordinate
parts/fragments around the image border, which are likely
to be background, are removed). Next, we utilize Canny al-
gorithm to detect the edges, followed by finding the contour
information upon the edges via [9] (findContours function
in OpenCV), to obtain the black-white sketch csketch. As for
the colored strokes cstroke, they are generated by making the
contour pixels in white upon the input image ccomb.

For the two applications (i.e. multi-conditioned local
editing and region-sensitive stroke-to-image) unleashed by
our proposed DiSS, as users would provide their input ccomb
via directly drawing on the top of the original image, we
adopt another procedure to extract the sketch csketch and
stroke cstroke: Firstly, we apply a thresholding operation
(grayscale value > 50 to white; otherwise black) on the
input to obtain the black-white sketches csketch; then, we ex-
tract the colored strokes cstroke by replacing the black pixels

1



with white color, which is achieved by the bitwise AND op-
eration on the input image ccomb and a binary mask (thresh-
olding on the saturation value in which those pixels with
saturation > 0 are labelled as 1, otherwise 0).

2. Implementation Details
We implement the models with Pytorch. The imple-

mentation details of DiSS are provided in Section 2.1, in
which we describe the network architecture, the settings of
hyper-parameters, how we design the computation for the
downsampling size N used in realism control, and the al-
gorithm of the adaptively-realistic image generation from
stroke and sketch (cf. the first paragraph in Sec. 4.1 of our
main manuscript). For the two applications that our DiSS
unleashes, i.e. multi-conditioned local editing and region-
sensitive stroke-to-image, we explain the details and pro-
vide their algorithms in Section 2.2.

2.1. DiSS

Network Architecture. We modify the UNet model
in [3] to realize the posterior prediction in our sketch- and
stroke-guided diffusion model (i.e. ϵ̂θ(xt, t, csketch, cstroke)
in Sec. 3.2 of our main manuscript). The basic UNet model
is constructed with a sequence of residual layers and down-
sampling convolutions as encoder, followed by a sequence
of residual layers and the corresponding upsampling convo-
lutions as decoder, with skip connections linking the inter-
mediate layers with the same spatial size. After firstly being
proposed in [4], the UNet model for diffusions is further im-
proved by [3] with higher sampling quality. We then modify
it by extending the input channel from 3 to 7, which allows
the concatenation between the input image and the addi-
tional two conditions, i.e. sketches (1-channel) and strokes
(3-channel).

Settings of Hyper-parameters. We apply the same set-
tings of hyper-parameters among the three datasets, as
shown below:

Realism Control. The basic concept of our realism con-
trol is mainly inherited from ILVR [1], which utilizes a
low-pass filter1to operate a downsampling procedure on the
given reference ccomb (from the original image size m ×m
to size N × N and upsampling back to the original size).
The key difference between the realism control of DiSS and
ILVR is that the realism control of DiSS permits the down-
sampling to an arbitrary size N (from Equation 10 in the
main manuscript), while ILVR performs downsampling to
m/2s (s is a non-negative integer) in which it only allows
specific sizes.

1https://github.com/assafshocher/ResizeRight

AFHQ Cat 512×512
Oxford Flower 512×512
Landscapes-HQ 512×512

Diffusion steps 1000
Noise schedule linear
Channels 128
Depth 3
Channels multiple 0.5, 1, 1, 2, 2, 4, 4
Heads channels 64
Attention resolution 32, 16, 8
BigGANup/downsample yes
Dropout 0.0
Batchsize 2
Learning rate 1e-4

Table 1: The settings of hyper-parameters among the
three datasets. We apply the same settings of hyper-
parameters for the three datasets on our diffusion models.

To enable a continuous realism scale srealism ∼ [0.0, 1.0],
the higher (respectively lower) values of srealism should be
corresponding to a smaller (respectively larger) downsam-
pling size N in order to realize a trade-off between the re-
alism and the consistency for the synthesized output image.
The computation N with respect to the corresponding re-
alism scale srealism is provided in Equation 10 of the main
manuscript, in which we assume an affine relation between
N and srealism, i.e. N = srealism × a + b where a and b are
scalars. In the following we provide the detailed explana-
tion on how such computation is derived. Basically, when
srealism = 1.0 (the most realistic and the least consistent to
ccomb), we would like to force the transformed size N = 1,
which passes the least information of the reference image
ccomb during the filtering; On the other hand, we make the
transformed size N = m (size remains the same, passes
the most information of the reference image ccomb during
the filtering) when srealism = 0.0 (the least realistic and the
most consistent to ccomb). In order to fulfil such purpose, we
hence set a = −(m − 1) and b = m in which the formula-
tion becomes:

N = −srealism(m/1− 1) + (m/1). (1)

However, in practice, we discover that when applying
srealism = [0.0, 0.8], the results are highly consistent to
ccomb. Consequently, we substitute the divisor in the for-
mulation above with 8 to achieve adaptively-photorealistic
translation with srealism = [0.0, 1.0]. Furthermore, we ap-
pend a constant term k to adapt on different datasets, k = 0
for the object-level dataset (AFHQ, flowers) and k = 16 for
the scene-level dataset (landscapes). The final formulation
hence becomes:

N = −srealism(m/8− 1) + (m/8) + k (2)



Algorithm. The detailed algorithm for realizing the over-
all “adaptively-realistic image generation from stroke and
sketch”, what our DiSS does, is presented in Algorithm 1.

Algorithm 1 DiSS

1: Input: Input custom image ccomb
2: Output: Generated image x = x0

3: Extract ccomb → csketch, cstroke
4: Sample xT ∼ N (0, I)
5: For t = T ,...,1 do
6: x̃t−1 ∼ p̂θ(x̃t−1|xt, csketch, cstroke)
7: ccombt−1 ∼ q(ccombt−1 |ccomb0) {ccomb0 = ccomb}
8: xt−1 ← x̃t−1 − LPN(x̃t−1) + LPN(ccombt−1

)
9: End for

10: Return x0

2.2. Applications

As described in the main manuscript, our proposed DiSS
without any model retraining is able to unleash two ap-
plications, i.e. multi-conditioned local editing and region-
sensitive stroke-to-image, in which here we provide their
detailed descriptions in the following as well as their algo-
rithms (Algorithm 2 and 3 respectively).

• Multi-conditioned Local Editing. Our proposed
method can naturally realise both sketch and stroke
local editing simultaneously on an existing image.
As illustrated in Algorithm 2, we can handle an real
image with guided local sketch and stroke drew on
top of it as input, via extracting the corresponding
sketch part and stroke part followed by performing
sketch and stroke modifications with our proposed
two-directional classifier-free guidance and realism
control. We achieve this application mainly owing to
the three-dimensional control technique that enables
both sketch and stroke guidance while the realism con-
trol keeps the unmodified region of images and en-
hance the edited parts at the same time.

• Region-sensitive stroke-to-image. DiSS enables
the partial color-conditioning on the specified regions
and provides variations on the white colored regions.
Algorithm 3 shows that after performing the two-
directional classifier-free guidance, we apply an ad-
ditional step before latent variable refinement at each
time step to enforce the consistency of partial stroke.
Specifically, we mask the non-colored regions to allow
the variations and append the noisy colored informa-
tion to the current latent image (line 9). Also note that
here we use the stroke condition only, instead of the
combination of sketch and stroke, to refine the current
step image to further strengthen the partial stroke guid-
ance.

3. User-Friendly Interface of DiSS
We provide a user-friendly webpage that enables user to

create their own drawing and performs all DiSS applica-
tions (three dimensional control image generation, multi-
conditioned local editing, and region-sensitive stroke-to-
image). We present the screenshots of running our user
interface in Figure 1, which sequentially demonstrates the
initial state (cf. top subfigure), processing state after user
creating a drawing, and the final generated result. Our in-
terface allows the users to draw on their own (an example
of this is provided in Figure 2) or simply upload an image.
By clicking “Generate” button, the loading icon will show
up and DiSS starts processing the input image (cf. the sub-
figure in the middle). The results will show on the webpage
when the generation is done, the screenshot is shown in the
bottom subfigure.

4. Additional Results
More qualitative results of two applications enabled by

our proposed DiSS, i.e. multi-conditioned local editing
and region-sensitive stroke-to-image, are shown in Figure 3.
Also, more qualitative results demonstrating the trade-off
between realism and consistency, together with the corre-
sponding LPIPS score, are provided in Figure 4. Lastly, we
provide another set of qualitative results of using different
stroke and sketch scales on Lanscapes dataset in Figure 5.

References
[1] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune

Gwon, and Sungroh Yoon. ILVR: Conditioning method for
denoising diffusion probabilistic models. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021.

[2] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
StarGAN v2: Diverse image synthesis for multiple domains.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[3] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2021.

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[5] Mengtian Li, Zhe Lin, Radomir Mech, Ersin Yumer, and
Deva Ramanan. Photo-sketching: Inferring contour draw-
ings from images. In IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), 2019.

2https://freesvg.org/1497040842
3https://freesvg.org/1528308068-65465
4https://freesvg.org/dior-2
5https://freesvg.org/funny-cat-head-vector-illustration
6https://www.nicepng.com/maxp/u2q8e6e6y3t4r5i1/
7https://freesvg.org/1532149926
8https://free-vectors.net/nature/river-vector
9https://free-vectors.net/nature/summer-mountain-landscape-vector



Figure 1: DiSS User Interface. We build a user interface enabling all the applications of DiSS. The screenshots from top to
bottom respectively show the initial state, the processing state after creating a drawing, and the final generation result.



Figure 2: DiSS User Interface with Hand-Drawing. We play DiSS on the user interface by drawing on our own.

Algorithm 2 Application: Multi-conditioned Local Editing.

1: Input: Original image with hand-drawing editing, x́
2: Output: Edited image xedited = xedited0
3: Extract x́→ csketch: local sketch editing, cstroke: stroke editing + the original image
4: R: range of the timestep refinement
5: Sample xeditedT ∼ N (0, I)
6: For t = T ,...,1 do
7: x̃editedt−1

∼ p̂θ(x̃editedt−1
|xeditedt , csketch, cstroke)

8: If t > R do
9: ccombt−1

∼ q(ccombt−1
|ccomb0) {ccomb0 = ccomb}

10: xeditedt−1 ← x̃editedt−1 − LPN(x̃editedt−1) + LPN(ccombt−1)
11: End for
12: Return xedited0

Algorithm 3 Application: Region-sensitive Stroke-To-Image.

1: Input: Guided condition ccomb with sketch and partial colored stroke
2: Output: Region-sensitive stroke-to-image x = x0

3: Extract ccomb → csketch, cstroke (Section 1.3)
4: R: range of the timestep refinement
5: mask: 0 on colored region of cstroke; otherwise 1
6: Sample xT ∼ N (0, I)
7: For t = T ,...,1 do
8: x̃t−1 ∼ p̂θ(x̃t−1|xt, csketch, cstroke)
9: If t > R do

10: cstroket−1 ∼ q(cstroket−1|cstroke0) {cstroke0 = cstroke}
11: x̃t−1 ← mask× x̃t−1 + (1−mask)× cstroket−1 { append cstroket−1

on x̃t−1}
12: xt−1 ← x̃t−1 − LPN(x̃t−1) + LPN(cstroket−1

)
13: End for
14: Return x0



Original Input Multimodal Results

(a) Multi-conditioned Local Editing.

Input Multimodal Results

(b) Region-sensitive Stroke-to-Image.

Figure 3: More Applications results. (a) By drawing the new contour or color on an existing image, the proposed model
enables the mask-free image editing. (b) With the partial colored stoke as the input, the proposed method synthesizes more
diverse contents in the non-colored region. Here we use cats and flowers23as examples.



Input Realism = 1.0 Realism = 0.8 Realism = 0.6 Realism = 0.4 Realism = 0.2 Realism = 0.0

LPIPS 0.499 0.421 0.396 0.342 0.322 0.271

LPIPS 0.504 0.386 0.343 0.277 0.257 0.187

LPIPS 0.563 0.359 0.315 0.275 0.239 0.216

LPIPS 0.362 0.242 0.239 0.198 0.170 0.149

LPIPS 0.608 0.522 0.412 0.353 0.276 0.210

LPIPS 0.503 0.360 0.277 0.216 0.186 0.144

Figure 4: Trade-off between realism and consistency to image guidance. We demonstrate the trade-off between the image
realism and the correspondence to the input guidance, where the realism scale is varied from low (0.0, right) to high (1.0,
left). We also show the LPIPS scores between the generated image and the input guidance. Both the object-level and scene-
level input guidance images456789are used in this experiment.



Figure 5: Qualitative results on AFHQ cat dataset of using different stroke and sketch scales. The top-left corner show
the results generated without guidance. Stronger scale values lead to results which are more consistent to the input guidance.

[6] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng
Deng, Xin Li, Errui Ding, and Hao Wang. Paint transformer:
Feed forward neural painting with stroke prediction. In IEEE
International Conference on Computer Vision (ICCV), 2021.

[7] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In Sixth
Indian Conference on Computer Vision, Graphics & Image
Processing, 2008.

[8] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elho-

seiny. Aligning latent and image spaces to connect the un-
connectable. In IEEE International Conference on Computer
Vision (ICCV), 2021.

[9] Satoshi Suzuki et al. Topological structural analysis of dig-
itized binary images by border following. Computer vision,
graphics, and image processing, 1985.

[10] Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and
Zhenwei Shi. Stylized neural painting. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.


