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Stands on Shoulders of Giants:
Learning to Lift 2D Detection to 3D with Geometry-Driven Objectives
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Abstract— 3D detection of vehicles is an essential component
for autonomous driving applications. Nevertheless, collecting
the supervised training data for learning 3D vehicle detectors
would be costly (e.g. utilization of expensive LiDAR sensors)
and labor-intensive (for human annotation). In comparison
to 3D detection, 2D object detection has achieved a well-
developed status, boosting stable and robust performance with
widespread application in numerous fields, thanks to the large
scale (i.e. amount of samples) of existing training datasets of
2D object detection. Hence, in our work, we propose to realize
3D detection via leveraging the robustness of 2D detectors and
developing a network that lifts 2D detections to 3D.

With the flexibility of building upon various backbone models
(e.g. the models which take image regions detected by 2D
detector as inputs to predict their corresponding 3D bounding
boxes, or the existing monocular 3D detection models which
have the intermediate output of 2D bounding boxes), we
propose several geometry-driven objectives, including projection
consistency loss, geometry depth loss, and opposite bin loss,
to improve the training upon 2D-to-3D lifting. Our extensive
experimental results demonstrate that our proposed geometry-
driven objectives not only contribute to the superior results
of 3D detection but also provide better generalizability across
datasets.

I. INTRODUCTION

Object detection, particularly on vehicles, is a critical
component in the application scenarios of autonomous driv-
ing. Basically, object detectors have the main objective of
identifying and localizing objects within a given scene. The
current works of object detection methods can be roughly
categorized into two groups, i.e. 2D and 3D object detections,
according to the format of output (in which 2D and 3D
detections result to 2D and 3D bounding boxes, respectively).
In practice, 2D object detectors have been comprehensively
developed and widely used across various scenarios, demon-
strating their efficiency and applicability, while 3D detectors
begin to attract more and more research attention due to
their ability to provide richer geometric structure. However,
learning monocular 3D object detection is typically quite
difficult (as now the output contains only not the 3D locations
of the target objects, but also their 3D attributes composed
of 3D dimensions and orientations) requires large quantity
of training data, where the cost of collecting dataset with
groundtruth annotations also becomes extremely expensive.
Moreover, the complexity of annotating 3D attributes in turn
also limits the overall number of training samples in the 3D
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Fig. 1. First, we leverage existing 2D object detectors to obtain the 2D
bounding boxes of objects (stands on shoulders of giants). Then, we apply
a 2D-to-3D lifting model to transform the 2D detections into corresponding
3D bounding boxes. Our framework is designed to decouple 3D object
detection into 2D detection process and the 2D-to-3D transformation,
allowing the model to focus solely on mastering the 2D-to-3D lifting without
the complexities of detection. The proposed geometry-driven objectives
further enhance the model to predict more accurate and robust 3D attributes.

detection datasets (in comparison, the scale of existing 2D
detection datasets typically is larger than the 3D ones). In
results, we can observe from our pilot study that the off-
the-shelf 2D detectors (which have larger amount of training
data to learn a simpler task) experimentally offers higher
recall and more stable performance across diverse scenes
in comparison to the 3D ones (which have less quantity of
training data and require to learn a harder task).

Motivated by the discussion and the pilot study above, in
this work, we would like to explore the following research
question: “in light of the well-established foundation of 2D
object detection, are we able to utilize the reliability of 2D
detection for enabling/boosting 3D detection?” Specifically,
we propose to establish a 2D-to-3D lifting model which
is trained to predict the attributes of 3D bounding boxes
from the image content and the given 2D detections, where
such lifting model acts as an efficient bridge to fill the gap
between 2D and 3D detection capabilities. Moreover, we
further utilize the geometric relationships between 2D and
3D to design novel geometry-driven loss functions, enabling
a more effective lifting/transformation.

There are already existing works (e.g. Deep3DBox [1])
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of building 2D-to-3D lifting model, or we can leverage the
3D detection models which have the intermediate stage of
predicting 2D bounding boxes (e.g. GUPNet [2], where we
can replace its 2D bounding boxes with the ones from off-
the-shelf 2D detectors, or simply treat its network compo-
nents prior to this intermediate stage as a 2D detector) and
extend them to support the lifting operation. In comparison
to them, our proposed method in this paper focuses more
on developing the objective functions which can not only
boost the training of lifting model (as well as enhance the
estimation of 3D attributes for 3D bounding boxes) but also
have the flexibility to be integrated with various network
architectures of lifting models. Particularly, we propose three
geometry-driven objective functions dedicated to utilizing the
monocular image content as well as the 2D/3D geometric
properties of objects, including:

« projection consistency loss which considers the con-
sistency between the given 2D detections and the 2D
bounding boxes produced by reprojecting the lifted 3D
bounding boxes back onto the image plane;

« geometric awareness loss which firstly parameterizes
the depth (named as geometric depth) by using the 3D
attributes (e.g. 3D dimensions and the orientation of
objects), followed by minimizing the errors between the
geometric depth derived from groundtruth 3D attributes
and the one derived from estimated 3D attributes;

« opposite bin loss which specifically aims to improve
the estimate of object orientation via minimizing the
confusion between front and rear features of vehicles.

We have conducted extensive experiments across multiple
datasets, including KITTT [3], nuScenes-mini [4], and a pri-
vate Taiwan street scene dataset provided by ELAN Micro-
electronics Corp, to verify the effectiveness of the proposed
geometry-driven objectives. Our framework, employing off-
the-shelf 2D object detectors and training with the proposed
geometry-driven, demonstrates superior performance in con-
structing and predicting robust 3D bounding boxes across
various scenarios.

II. RELATED WORKS
A. 2D Object Detection

With the rapid advancement of deep learning and its
widespread adoption in 2D object detection, significant
progress has been made in developing high-performing de-
tection models. Pioneering frameworks such as the R-CNN
family [5], [6], [7], [8] and the YOLO series [9], [10],
[11], [12], [13] have set benchmarks in this domain. The
R-CNN models, by leveraging region proposal mechanisms,
have progressively optimized feature extraction and object
localization. YOLO series, with the gradual integration of
new technologies in each generation, ultimately achieved
excellent detection performance. Building on these foun-
dational advancements, 2D object detection has become
highly reliable and is now widely used in various real-
world applications. This reliability inspires us to integrate
pre-existing 2D detectors into our framework.

B. Monocular 3D Object Detection

Monocular 3D object detection has become a critical
research area due to its widespread applications in au-
tonomous driving, robotics, and augmented reality. Despite
the absence of explicit depth information in single-image
inputs, numerous methods have been developed to address
this challenge by incorporating learning strategies, geometric
constraints, and prior knowledge. Early works are driven
by the use of constraints and adapt 2D object detection
frameworks to infer 3D information [1], [14], [15]. More
recent approaches have introduced multi-task learning tech-
niques that simultaneously estimate keypoints and 3D at-
tributes [2], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. For example, SMOKE [18] completely bypasses 2D
detection and directly predicts 3D centers by using keypoint
estimation. However, [19] revisits the misalignment between
2D bounding box centers and projected 3D object centers,
arguing that 2D detection remains a crucial component.
As a result, many recent methods continue to incorporate
2D detection in monocular 3D object detectors [2], [22],
[23], [24], [26], [27], [25]. Additionally, several approaches
have exploited geometric relationships between objects [28],
[29]. Specifically, [28] improves object location precision by
enforcing spatial constraints on object pairs, while [29] treats
all 3D objects in an image as a unified whole and introduces
a novel loss function. These innovations inspire the design
of geometry-driven objectives, which can be integrated into
monocular 3D detectors.

III. PROPOSED METHOD
A. 2D-to-3D lifting model

In this work, we focus on transforming/lifting 2D detec-
tions into 3D bounding boxes, as illustrated in Fig. 2. Using
GUPNet as an example, we replace its original branch re-
sponsible for predicting 2D parameters with an off-the-shelf
2D detector or existing 2D annotations. This modification
enables the model to concentrate solely on learning how to
transform these known 2D detections into their correspond-
ing 3D bounding boxes, improving its performance in 3D
space.

B. Geometry-Driven Objectives

Basically, given an input monocular image [ € RW >3
and a 2D bounding box Bsy = (u,v,waq, hog), where
W, H denote the width and height of the image I, (u,v)
represents the center of Boy, and (weg, hog) indicates the
width and height of By in pixels on the image, our
objective is to accurately regress the corresponding 3D
attributes (,y, z, hgq, W3d, l34, 0) from Boy. Here, (x,y, 2)
and (hsq, w3q,l34) represent the 3D center and the 3D
dimensions of the object (both measured in meters), respec-
tively, while 6 is the yaw angle describing the orientation
of the object. Please note that for orientation, both roll and
pitch angles are assumed to be zero, following practice as
[1]; while both the intrinsic matrix K and the extrinsic matrix
E of the imaging camera are assumed to be known as well
during both training and inference.
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Fig. 2. Overview of GUPNet with our proposed method for lifting all 2D detection to 3D space. Given an input monocular image and the 2D bounding
boxes of vehicles (which can be obtained using an off-the-shelf 2D object detector), the object-level features are firstly extracted with the help of feature
extractor and Rol-align operation. The concatenation between the extracted object-level features and the coordinate maps of their 2D bounding boxes will
go through the regression heads to estimate the 3D attributes of the 3D bounding boxes. In addition to the typical objectives (noted with white rounded
rectangles) which directly optimize the errors between estimated 3D attributes and their groundtruth. We additionally introduce three geometry-driven
objectives (highlighted by orange rectangles). Please refer to Section III-B for details.

Projection Consistency Loss L,,,;. Given a 3D bounding
box Bgsg presented by a set of 3D attributes that are pre-
dicted/lifted from a 2D bounding box B, via the lifting
model, it can be easily projected onto the image place to
obtain the corresponding 2D bounding box BY)” (where
the projection is based on the general mapping function of a
pinhole camera model, driven by both intrinsic and extrinsic
camera matrices K and E, we omit its equation here for
simplicity), in which such projected 2D bounding box ideally
should be accurately aligned with ng, thus leading to our
projection consistency loss £,,.,; defined as the interaction-
over-union (IoU) between BY',” and Bg;:

B B
Eproj =1- (1)

proj gt ’
2,7 B

In practice, as there are 8 corners of a 3D bounding box
B3, where their 3D coordinates can be computed via

cos(f) 0 sin(0)| [ £lza/2 x
0 1 0 thaa/2| + |y, @
—sin(d) 0 cos(f)| |Ltwsq/2 z

according to the 3D attributes (x,y, z, h3d, W3q, l34,0), we
project these corners onto the image space followed by iden-
tifying their maximum and minimum values of 2D coordinate
to construct the projected 2D bounding box BL,*.
Intuitively, as the size/area of a projected 2D bounding
box BY” is mainly determined by the corresponding 3D
dimensions (h3q, w34, l34) and yaw angle 6 (assuming depth
remains unchanged), the employment of our projection con-
sistency loss L,,; contributes to enhance their estimations.

Geometric Awareness Loss L,.,. Here, we incorporate
additional information by introducing geometric depth d as
a form of supervision. d is derived from an algorithm that
leverages 2D bounding box size and 3D attributes of objects.
We provide illustrations from bird-eye-view (BEV) as shown
in Fig. 3 and Fig. 4 to explain the connection among depth,
2D bounding box size, and 3D attributes. Firstly, Fig.3(a)
visualizes the geometric relationship across geometric depth
d, the width V,,,, of image field-of-view (FoV), and the
spread angle ¢ of image FoV, where

Vimg
2-d
Moreover, by denoting the width of the object in FoV as
Vop; (i.e. observed width along the horizontal direction), we
assume (without loss of generality) the ratio between V;
and V;,, equals to the one between their corresponding
representations in terms of pixels (i.e. the width wsy of
the object 2D bounding box and the image width W,
respectively), in which
_ W2

Vobj
Vimg

P
tan(g) = 3)

W
W then Vimg = w72d 'Vobj-

With substituting V;,,, in Eq. 3 by the one in Eq. 4, the

geometric depth d now can be represented as

W Vo
waq  2-tan(2)

4)

d= &)
Furthermore, as illustrated by Fig. 3(b), when the object is
positioned right ahead of the camera (i.e. in the center of
camera’s FoV), its V;,; is fully determined by the object
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Fig. 3. From the perspective of bird-eye-view, (a) illustrates the geometric
connections among geometric depth d, the width of image FoV, V4 and
the spread angle of image FoV &; while (b) starts from the assumption
that object is located in the center of camera’s FoV, and links the object’s
observed width Vp; to its 3D dimensions (i.e. wzgq and l34) and the
orientation 6.

width wsg, object length [34, and the object orientation 6,
that is: Vp; = wsqgsin(8) + 34 cos(h).

Nevertheless, as objects could appear at any position in
camera’s FoV (i.e. not being right ahead of the camera), the
formulation among V5, wsg, I34, and 6 should take the
angle (8, which is between the optical axis of camera and
the ray connecting camera to the object center (as illustrated
in Fig. 4), into consideration, where in results we have:

Vi — wagsin(f — ) + l3q cos(0 — B) ©)
cos(B)
With combining Eq. 5 and Eq. 6, we derive geometric depth
d based on the aforementioned geometric relations:

W wsasin(@ — ) + lza cos(6 — 5)
2- tan(%) - cos(f)

d=

(N

Wad
Finally, given a 3D detection B34, we denote the geometric
depth computed by using its groundtruth 3D attributes as d9
and the one computed by the predicted 3D attributes (i.e.
produced by the lifting model) as d, our geometric depth
loss Lge, is then defined as:

‘CQeo = ‘a — a7 ®)

in which its minimization contributes to the update upon 3D
dimensions (i.e. wsgq and l34) and the orientation 6.

Opposite Bin Loss £,,,,. The object’s orientation is formu-
lated into two sub-tasks, heading classification and residual
regression, it is a common practice nowadays to estimate the
object’s heading via introducing the multi-bin loss [19], [30],
where we define N equally split angle bins and the model
learns to predict the posterior for each bin to realize the
orientation estimation (i.e. the bin with the highest posterior
provides a specific range of object’s orientation). We then
empirically discover that, the confusion in estimation fre-
quently happens between the diametrically opposite bins (i.e.
between the bin and its 180°-rotated counterpart), indicating
the model’s difficulty in distinguishing between vehicle ob-
ject’s front and rear features due to their high similarity. For

cos( )

Fig. 4. Extended from Fig. 3(b) with its releasing the assumption upon
object’s position (i.e. now objects can appear at any position in camera’s
FoV) and taking the angle /3 (between camera’s optical axis and the ray
connecting camera to the object center) into consideration, the geometric
depth formulated as Eq. 7 enables our geometric awareness loss.

alleviating such confusion, in addition to the original multi-
bin objective applied upon the orientation estimation (which
attempts to maximize the posterior of the groundtruth bin),
we propose the opposite bin loss L,,,, which explicitly aims
to minimize the posterior of the diametrically opposite bins
with respect to the groundtruth ones. In details, with denoting
the array composed of the posterior of all orientation bins as
P, the posterior for the bin corresponding to the groundtruth
orientation as p9¢, and the posterior for the diametrically
opposite bin as p°PP°, our opposite bin loss is defined as:
pgt _ poppo

max(P) — min(P))
where max(P) — min(P) helps to normalize the difference
between p9¢ and p°PP° thus leading to more numerically
stable optimization. L,,,, directly contributes to update 6.

‘C’OPPO = (1 - &)

IV. EXPERIMENT

To validate the adaptability of the proposed methods,
we select two baseline models with distinct architectures,
GUPNet [2] and Deep3DBox [1], and incorporate proposed
geometry-driven objectives into both frameworks. This al-
lows for a comprehensive evaluation of the methods’ robust-
ness across varying network designs. Evaluated across mul-
tiple datasets, proposed geometry-driven objectives demon-
strate significant effectiveness in enhancing feature extraction
and improving regression accuracy for 3D object detection.

A. Baseline Models

GUPNet [2] processes full images at a resolution of
1280384 and employs DLA-34 [31] as the feature extractor.
After generating 2D bounding boxes in intermediate stage,
the model performs ROI alignment on the feature maps,
followed by multi-head regression to estimate 3D attributes.

Deep3DBox [1] accepts cropped images based on pro-
vided 2D bounding box coordinates and resizes them to
224 % 224 for input. The model employs VGG [32] backbone
as the feature extractor, followed by fully connected layers
to predict the orientation and dimensions of objects. Sub-
sequently, 3D center locations are determined by geometric
constraints between the 2D and 3D bounding boxes.
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B. Implementation Details

Our experiments are performed on two public datasets,
KITTI and nuScenes-mini, and one in-house dataset pro-
vided by ELAN Microelectronics Corporation. ELAN dataset
consists of 4182 RCCC images, which are sensitive to red
lights, and the color representation significantly deviates
from traditional RGB images.

We incorporate the proposed geometry-driven objectives
into GUPNet [2] and Deep3DBox [1], training both mod-
els on the KITTI [3] frain set and evaluating them on
the KITTI val. set. Additionally, to assess the adaptability
of the proposed methods across different scenarios, we
further evaluate the models trained on KITTI directly on
the nuScenes-mini [4] dataset. This cross-dataset evaluation
provides insights into the generalization capability of our
approach in diverse environments.

For the ELAN dataset, we partition the data into 80% for
training and 20% for validation and then retrain both baseline
models from scratch on the RCCC images to evaluate the ef-
fectiveness of the geometry-driven objectives across various
images.

C. Enhancement on baseline models

Our work focuses on transforming each 2D bounding
box into a corresponding 3D bounding box, evaluating the
precision of key 3D object attributes such as orientation,
depth, and dimensions. To assess the yaw angle estimation,
we compute the cosine distance, defined as one minus the
cosine similarity. For depth and dimensions, we calculate
the mean absolute differences between the predicted values
and the ground truth for the car category, providing a
detailed evaluation of the model’s accuracy in predicting 3D
attributes.

Tab. I highlights the performance enhancements of GUP-
Net and Deep3DBox across different datasets. For the car
category on the KITTI val. set, improvements are observed
across all metrics, particularly in depth and orientation esti-
mation, illustrating the superior capability of our method in
transforming/lifting 2D detection into accurate 3D bounding
boxes. On the nuScenes-mini dataset, our method further
demonstrates its robustness in lifting 2D objects to 3D
bounding boxes across diverse scenes. Notably, these models
are trained on the KITTI dataset and evaluated directly
on nuScenes-mini without any fine-tuning. For the ELAN
dataset of RCCC images, the results demonstrate that our
proposed geometry-driven objectives are closely tied to the
inherent geometric properties of objects, independent of the
image format in which they were captured.

D. Ablation Study

To evaluate how the proposed geometric objectives en-
hance regression performance, we conducted ablation studies
on GUPNet by incrementally adding the three proposed
objectives. (We keep the original losses of GUPNet during
training.) The results, presented in Tab. II, highlight the
impact of each objective on improving the model’s perfor-
mance.

TABLE I
PERFORMANCE ENHANCEMENT FOR GUPNET AND DEEP3DBOX
ACROSS DIFFERENT DATASETS, AND IMPROVED VALUES ARE IN BOLD.

Dataset Model [A2] (D) [ [cos(Ag) ) | [Ahsa[ D) [ [Awsgal D) [ [Alza] ()
GUPNet 0.973 0.1229 0.0756 0.0698 0.3129
KITTI GUPNet+ours 0.856 0.0883 0.0675 0.0695 0.3078
Deep3DBox 2518 0.0635 0.0962 0.0733 0.2934
Deep3DBox-+ours 2.330 0.0462 0.0894 0.0722 0.2874
GUPNet 1.591 0.1423 0.138 0.1117 0.325
GUPNet+ours 1510 0.0791 0.1373 0.1084 0.2746
Deep3DBox 6.618 0.8321 0.1282 0.1840 0.2858
Deep3DBox+ours 6.541 0.7858 0.1276 0.1844 0.2844
GUPNet 1.1166 0.0440 0.0586 0.0968 0.2728
ELAN GUPNet+ours 0.7765 0.0255 0.0385 0.0836 0.2561
Deep3DBox 3.195 0.1110 0.1134 0.1651 0.3938
Deep3DBox-+ours 2.899 0.0752 0.1095 0.1622 0.3728

In Tab. II (b), the loss term Lgeo significantly improves
all metrics by enabling the model to better capture geo-
metric attributes. Although both Lproj and Lgeo involve
the complete set of 3D object attributes, potentially com-
plicating model convergence during training, Lproj still
enhances depth and object height estimation. Additionally,
the third loss, L,pp,, contributes to refining the orientation
and works synergistically with the other two geometry-driven
objectives. As a result, the model achieves top performance
across four metrics and secures second place in object length
estimation, as shown in Tab. II (d).

TABLE I
ABLATION STUDY OF THE PROPOSED OBJECTIVES ON GUPNET.

Lgeo | Lproj | Loppo | 182] (1) | Tcos(Bg)| (1) | [Ahsa| (1) | [Awsal () | [Alzal (1)
(a) X X X 1.0121 0.1942 0.8230 0.0743 0.3250
(b) v X X 0.9913 0.1757 0.0717 0.0735 0.3112
(c) v v X 0.9850 0.1766 0.0701 0.0739 0.3180
(d) v v v 0.9849 0.1602 0.0684 0.0706 0.3122

E. Quantitative Results

Besides the enhancement of lifting ability, we evaluate the
performance in APsp, APgpy metrics on the KITTI val.
set car category. Here, we integrate our proposed geometry-
driven objectives on GUPNet [2], DID-M3D [25], and
MonoDistill [39]. As shown in Table III, the improvement on
each model states the precision of constructed 3D bounding
boxes is better. In conclusion, our proposed geometry-driven
objectives not only benefit the 2D-to-3D lifting models
but also enhance the performance of monocular 3D object
detectors.

F. Qualitative Results

Fig. 5 shows the qualitative results of our methods. The
left column illustrates the results detected by the baseline
GUPNet model, whereas the right column presents the results
of our proposed method, lifting 2D detection into 3D. The
blue boxes represent the groundtruth, the orange boxes rep-
resent the results predicted by the model, and the red circles
highlight the objects that are not detected by the baseline
model. Because the 3D monocular object detection models
may cause more miss detection on objects than 2D, our
proposed framework leverages mature 2D object detectors
and learns to transform 2D detection into 3D attributes.
Aided by geometry-driven objectives, we can obtain more
accurate results for 3D object bounding boxes.
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TABLE III
QUANTITATIVE RESULTS ON KITTI val. Car. THE RED INDICATES THE IMPROVEMENT, AND * MEANS REPRODUCED MODELS.

Method Venues ‘ APgD @ IoU=0.7 ‘ APBEV @ IoU=0.7

| Easy Moderate Hard | Easy Moderate Hard
M3D-RPN [33] ICCV2019 14.53 11.07 8.65 20.85 15.62 11.88
SMOKE [18] CVPRW2020 | 14.76 12.85 11.50 | 19.99 15.61 15.28
MonoPair [28] CVPR2020 16.28 12.30 1042 | 24.12 18.17 15.76
MonoDLE [19] CVPR2021 17.45 13.66 11.68 | 24.97 19.33 17.01

MonoRUn [34] CVPR2021 17.26 12.27 10.41 - - -
GrooMeD-NMS [35] CVPR2021 19.67 14.32 11.27 | 27.38 19.75 15.92
MonoFlex [21] CVPR2021 23.64 17.51 14.83 | 28.23 19.75 16.89
DCD [36] ECCV2022 23.81 15.90 1321 | 32.55 21.50 18.25

MoGDE [26] NeurIPS2022 | 23.35 20.35 17.71 - - -

MonoCon [22] AAAI2022 26.33 19.01 15.98 - - -
MonoDDE [24] CVPR2022 26.66 19.75 16.72 | 35.51 26.48 23.07
MonoDTR [37] CVPR2022 24.52 18.57 1551 | 33.33 25.35 21.68
MonoGround [23] CVPR2022 25.24 18.69 15.58 | 32.68 24.79 20.56
MonoNeRDI[38] ICCV2023 2275 17.13 15.63 | 31.13 23.46 20.97
MonoPGC [27] ICRA2023 25.67 18.63 15.65 | 34.06 24.26 20.78
DID-M3D [25] ECCV2022 29.16 21.92 18.57 | 37.22 26.25 24.37
DID-M3D+ours - 29.71 22.28 18.83 | 37.13 28.86 24.63
Improvement - +0.55 +0.36 +0.26 -0.09 +2.61 +0.26
MonoDistill [39] ICLR2022 25.74 21.70 20.11 36.87 29.66 25.59
MonoDistill+ours - 26.78 21.76 20.57 | 37.16 29.99 25.98
Improvement - +1.04 +0.06 +0.46 | +0.29 +0.33 +0.39
GUPNet* [2] ICCV2021 27.31 21.63 18.53 | 34.30 25.48 24.10
GUPNet*+ours - 27.98 22.11 18.96 | 36.27 26.52 25.21
Improvement - +0.67 +0.48 +0.43 | +1.93 +1.04 +1.11

[ Prediction [_] Ground truth (C_) Undetected

/R

Fig. 5. Qualitative results of comparison between GUPNet and GUPNet+ours method on KITTI val set of Car category. The left column shows
the baseline model results with its corresponding BEV results. The right column presents the results of our proposed method. Blue boxes represent the
groundtruths; orange boxes indicate the predicted results, and the red circles highlight the objects not detected by the baseline model.

V. CONCLUSION

In this work, we proposed a framework to transform/lift
the bounding boxes from 2D object detection into their
3D counterparts. Specifically, we leverage the geometric
relationships of objects and introduce geometry-driven ob-
jectives to significantly improve the estimation of 3D object

attributes. Our experiments demonstrate that the proposed
method can be seamlessly integrated with various model ar-
chitectures, exhibiting strong generalizability across diverse
scenes and datasets.
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