Continually-Adapted Margin and Multi-Anchor Distillation for
Class-Incremental Learning

Yi-Hsin Chen* Dian-Shan Chen*

Ying-Chieh Weng

Wen-Hsiao Peng Wei-Chen Chiu

Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
{yhchean 101.cs09, dianshanl4.c, wengyc.cs09, wpeng, walon}@nycu .edu.tw

Abstract—This paper addresses the problem of class-
incremental learning. The model is trained to recognize the
classes added incrementally. It thus suffers from the challenging
issue of catastrophic forgetting. Stemming from the knowledge
distillation idea of attempting to retain the model’s knowledge
on seen classes while learning the newly-added ones, we advance
to further alleviate the catastrophic forgetting via our proposed
multi-anchor distillation objective, which is realized by con-
straining the spatial relationship between the input data and
the multiple class embeddings of each seen class in the feature
space while training the model. Moreover, since the knowledge
distillation for incremental learning generally relies on keeping
a replay buffer to store the samples of seen classes, the buffer
of limited size brings another issue of class imbalance: the
number of samples from each seen class decreases gradually,
thus being much smaller than the number of samples from each
new class. We therefore propose to introduce the continually-
adapted margin into the classification objective for tackling
the prediction bias towards new classes caused by the class
imbalance. Experiments are conducted on various datasets
and settings to demonstrate the effectiveness and superior
performance of our proposed techniques in comparison to
several state-of-the-art baselines.

I. INTRODUCTION

Deep learning have achieved great success in various
vision tasks. These models are mostly trained in batch mode,
with data given all at once. Recently, the needs for learning
recognition models incrementally with training data arriving
in a stream are emerging. For example, the single-head class-
incremental learning (CIL) needs to learn newly arriving
classes sequentially. Because the seen training data can only
be partially retained in an experience replay buffer due to
limited storage, how to learn new classes effectively while
preserving the knowledge of old classes to avoid catastrophic
forgetting calls for a specialized training strategy.

This paper tackles specifically single-head CIL. The train-
ing proceeds in successive incremental phases. In each phase,
the model is presented with the training data of a number of
new classes together with those of old classes in the replay
buffer. Over incremental phases, some old training data in
the replay memory are removed to make room for new data.

Prior works on single-head CIL can be grouped into
two categories: parameter-based and distillation-based ap-
proaches. Parameter-based methods preserve learnt knowl-
edge by imposing restrictions on the update of model param-
eters [1]-[3]. Specifically, those parameters that crucially af-
fect the performance of old classes tend to be fixed during the
learning of new classes. However, identifying those network
parameters can be computationally expensive, especially with

modern neural networks that are often deep and large. By
contrast, distillation-based methods [4]-[10] simply require
the model to produce similar predictions on old classes,
an idea similar to knowledge distillation. Distillation-based
methods usually involve an experience replay buffer [4] that
stores partial training data of old classes. These training data
are utilized together with those of new classes in updating
the model to alleviate catastrophic forgetting.

While the experience replay buffer enjoys the merit of
simplicity and effectiveness, the limited buffer size results in
an imbalance distribution over the training data of old and
new classes. The number of old training data in the replay
buffer is usually much smaller than that of new classes. This
yields a biased model that tends to output new classes as
the prediction results. Some investigations [5], [6], [8], [11]
show that the biased network weights in the fully-connected
layers of the classifier are potential root causes.

A skewed decision boundary, which suggests the increased
logits associated with the new classes irrespective of the
input, arises as a result [12]. This observation becomes even
more obvious along the incremental learning phase ; that is,
the imbalance between the logits of the old and new classes
increases and the prediction is biased more heavily towards
new classes in a latter phase. The rationale behind these is
the decreasing number of training data of old classes.

In this paper, we propose a two-pronged approach to
address data imbalance and catastrophic forgetting in in-
cremental learning. Our main contributions are: (1) We
introduce a continually-adapted margin that tackles data
imbalance by adapting classification logits according to the
distribution of the old and new classes. (2) We apply a multi-
anchor classifier to knowledge distillation in order to alleviate
forgetting by preserving flexibly the relationship between the
features of an input and those class anchors. (3) Extensive
experiments show that our schemes achieve the state-of-art
performance in various class incremental learning scenarios,
striking a good balance between the learning of new classes
and the knowledge preservation of old classes.

II. RELATED WORKS

Catastrophic forgetting. Knowledge distillation is a com-
mon approach to addressing catastrophic forgetting. In the
context of incremental learning, it is required that the model
learnt in a new incremental training phase (termed the new
model) should yield similar predictions on data of old classes
to the model obtained in the previous learning phase (termed

the old model). [7] is the first to introduce a modified
cross-entropy loss for preserving the knowledge of the old
model. [4] extends the idea and introduces a replay buffer for
distillation. [9] adapts the exemplars in the replay buffer for
more informative experience replay. [6] uses the distillation
in feature space by requiring the feature vectors of data to
have similar orientations in both old and new models. [13]
applies the distillation idea at different feature levels, called
Pooled Outputs Distillation Loss. By pooling features along
different dimensions for distillation, their model is able to
trade off better between the ability to learn new classes and
forgetting. [10] utilizes the colliding effect between old and
new data to reduce the size of the replay buffer. [14] splits the
network into two parts to separate the learning of new classes
from the distillation of old classes, followed by integrating
these two parts to fine tune the model for the combined task.
Data imbalance. With replay buffer, the amount of training
data for old classes is still much smaller than that for new
classes. This induces a prediction bias towards new classes.
Here we review techniques used to alleviate data imbalance.
— Class imbalance in CIL: [6] replaces standard softmax
layer with a cosine normalization layer to balance the ac-
tivations of old and new classes. Moreover, an inter-class
separation loss is adopted to encourage larger separation
between the new and old classes to prevent prediction bias.
[8] trains a bias correction layer that adjusts the output
logits to overcome prediction bias. [11] rescales the class
embeddings according to their Ly norm to avoid prediction
bias toward new classes.

—Long-tailed recognition: A large body of literature has
sought to address the class imbalance issue (also known
as the long-tailed issue) in the general recognition tasks.
The widely used techniques include (1) data resampling
or loss reweighting, (2) decoupled classifier training, and
(3) margin loss. Specifically, data resampling techniques
over-sample the tail (scarce) classes [15] or down-sample
the head (frequent) classes [15]. Reweighting methods [16],
[17] balance the contributions of head and tail classes to
the classification losses according to the class distribution,
which reaches a similar effect to the resampling methods.
Decoupled training [18] observes that the classifier is the
main cause that results in the bias in imbalance training,
and targets the bias correction on the classifier. Margin loss
aims to increase the class separation and reduce intra-class
variation. For example, [19] introduces a class-dependent
margin loss, showing more balanced recognition accuracy
between head and tail classes.

III. PROPOSED METHOD
A. Preliminaries for class-incremental learning

We review the general setting of class-incremental learning
here. Assume that there are in total N batches of training
samples {B' B2% --. BN}, which sequentially arrive in
the corresponding N incremental learning phases, and the
samples in the batch B™ belong to the new classes C).,,,

which are distinct from the old classes C7,; that have been

. . . n _ 1 2
seen in the previous phases (i.e. C}y;, = C,.,, U Cs.,, U

---UCn=1). In the n-th incremental phase, the classification
model learns to not only recognize C},,, but also maintain
its knowledge with respect to C7;,, where the latter relies
on a replay buffer to store the samples of C7} ;. Particularly,
the size of the replay buffer is often limited such that not
all the training data of C7}; are stored. Assume the buffer
has its maximum size of S samples. Typically each class

. n N —
in C},; has an equal number of 5" = samples

s
o
(named as exemplars) being kept in the buffe‘:r O(dhere |C2
indicates the number of classes in C7) ;). Therefore, when
the incremental phase proceeds with the growing |C7,,|, the
number of exemplars for each seen class decreases gradually.
We denote the exemplars in the replay buffer in the n-th
incremental phase as E".

One of the seminal works of class-incremental learning is
[4], which also become the basis for our proposed method
as well as various state-of-the-art methods, e.g. [5], [8],
[11]. Without loss of generality, two basic loss functions
(which could be modified into different variants according
to different methods) are typically adopted in most class-
incremental learning methods: the classification loss L
and the knowledge distillation loss Ly4. They are detailed
as follows.

Classification loss L.;; is based on the cross-entropy ob-
jective for encouraging the model to well classify both new

classes C},,, and old classes C7}, at the same time:

»Ccls(xvy) = Z

CEC:’ldUC;"ew

—0y=clogpc(x), (D

where z is the training data € B™ U E™; y is the ground-
truth class label of x; p.(z) denotes the posterior of class ¢
for input x, predicted by the model; and d,—. is an indicator
function.

Knowledge distillation loss L extends the idea of knowl-
edge distillation to the scenario of incremental learning.
Given an input data x € B"UFE", we denote its logit (i.e. the
value before applying softmax o(-) to derive the posterior)
of the class ¢ € (7, predicted by the classification model
learnt in the previous incremental phase as I.(z), and the
one predicted by the model in the current phase as I.(z).
The knowledge distillation loss aims to restrict the current
model to produce similar predictions to the previous one,
which helps preserving the model’s knowledge on the seen
classes:

‘de(x) = Z - ch(x) log qC(x)7
ceCiy 2
where G.(z) = o(l,(z)/T) and g.(z) = o(l.(x)/T).

T here denotes the temperature scalar, thus L4 is built upon
the cross-entropy objective between softened posteriors.

B. Continually-adapted margin (CAM)

As aforementioned, since only a portion of training sam-
ples of old classes (i.e. exemplars) are kept in the replay
buffer, the number of exemplars per old class € C7),; is
typically much less than the number of training samples

per new class € C). ., which leads to the problem of
class imbalance. In particular, such class imbalance between
Ch, and C7, ., becomes more severe while incremental
learning proceeds, as the number of exemplars per old
class is getting smaller. Basically, during test time, the
classification model trained on the dataset with the class
imbalance issue is prone to give the new classes (having
more training samples) higher logits, while the old classes
(having fewer training samples) tend to get lower logits.
Such bias toward new classes can also be connected to the
phenomenon of having a skewed decision boundary [12]. In
order to tackle this bias as the main cause of catastrophic
forgetting for the class-incremental learning method with
replay buffer, we introduce the continually-adapted margin
(CAM). By adding a margin A to each class ¢, we adjust
the corresponding logit predicted by the classification model
in order to rectify the skewed decision boundary, where
such margin A} is adaptive according to the number of
accessible training samples (denoted as ¢) for the class ¢
in the n-th incremental phase. Given a training sample z,
its posterior p.(z) for class c after applying our continually-
adapted margin (denoted as p.(z)) is defined as:

~ ellc(m)—A;1 N 3"

Pe(x) = > com AT A=~ (52)4 3)

where C" = C7,,UC},., and 7y is a hyper-parameter used
to control the maximal margin among all the classes C™.
Note that the margin is only added in the training stage and
the logit I’(x) used here is computed on the multiple class
embeddings, which we will detail in the next subsection.
Such rectified posterior p.(z) is adopted to replace p.(z) of
L5 defined in Eq. (1), which results in the classification

loss Lcam used to train our model:

[/CAM(xvy) = Z _61/:0 IOgﬁc(x)a 4)
ceCn

We remark that the design of our margin A” is inspired by
the margin loss proposed in [19], which was initially aimed
at tackling the long-tailed recognition. However, a direct
application of [19] to our class-incremental learning problem
does not yield good performance. We thus adapt its design in
two ways. First, different from [19], where the margin A” is
given to the logit of the positive class (i.e. the ground-truth
class) only, our scheme attaches margin to all the classes,
positive or negative. This more balanced design is found
beneficial to not only class-incremental learning but also
long-tailed recognition. Second, with a different application
from [19], which addresses long-tailed recognition under the
non-incremental learning setup, our margin A7 is specifically
chosen to suit class-incremental learning in a way that the
margins for old classes remain fixed across incremental
learning phases. This is meant to preserve the learnt knowl-
edge, in order to mitigate catastrophic forgetting. In Eq. (3),
the margins A7 for old classes ¢ € C7;; evaluate to -y, which
is a constant throughout the whole training process because
the accessible training samples €7 for old classes are always
the 5™ exemplars (cf. Section III-A) in the replay buffer.

As such, € = §" and A7 = . Moreover, to address the
issue that the class imbalance gets more skewed along the
incremental phases (as §" gradually decreases together with
the increasing |C7,,|), the margin has the desirable property
that it becomes increasingly smaller for new classes as the
incremental phase increases. For new classes ¢ € C).,.
because their available training samples €7 are typically more
than the ones of old classes, Al is then smaller than +.
To sum up, the old classes have larger margins than the
new classes; the gap between their margins grows as the
incremental phase increases, the process of which ensures
that the classification model yields higher logit values for
old classes to minimize Lcam.

Please note that some existing approaches of class-
incremental learning (e.g. [8], [11]) also propose to correct
the classification bias towards new classes caused by the class
imbalance, via various manners. In experiments, we compare
our CAM with these prior works to validate its effectiveness.

C. Multi-anchor knowledge distillation (MAKD)

Without loss of generality, given an input data =, its logit
l.(x) with respect to the class ¢ produced by the typical
classification model can be written as ¢(x) " w,, i.e. the inner
product between the feature of x extracted by the feature
extractor ¢(-) and the class embedding w. of the class ¢
contained in the fully connected layer. In such a scenario,
each class ¢ is assumed to have only a single embedding
w,, which might not be capable of well handling the class
with multi-modal feature distributions. We hypothesize that
such multi-modal feature distributions, which are attributed
to the large intra-class variability, are common in real-world
datasets. To this end, we introduce K embeddings {w¥}X |
for each class ¢, named as multiple anchors in our work.
Then, the logit /() based on these anchors is computed as
follows:

lo(z) = ¢(z) e

o (x wa T K
where a¥ = % and w, = Zaf,wf ©)

Zj:l ed (@) Twe /T —

and 7 is a temperature scalar, called the intra-class tem-
perature, used to soften the contribution of each anchor for
deriving the aggregated anchor of the class ¢ (i.e. w.). Such
aggregation is based on the similarities between the input
feature ¢(x) and the multiple anchors {w¥}& | thus being
data-dependent. Also, the aggregated anchor w. is actually
located within the simplex built on {w*}%X . Note that the
logit I/.(z) with multiple anchors is used for computing p.(x)
in »CCAM-

Moreover, based on these multiple anchors, we are able
to extend the basic knowledge distillation loss L, defined
in Eq (2) to be the Lyakp objective of multi-anchor
knowledge distillation (MAKD) used to train our model:

Lunco(@) = 3~ o(lL(@)/T)logo(lk(x)/T) (g
c€Cola

where I(z) and I/,(x) denote the logits of class ¢ predicted
by the classification model in the current phase and the

Data //' Tr~s
/
7 .

Anchor /
A/g . ®
Fig. 1. Illustration of spatial relationship in the feature space (related to
class posteriors) used by [left] the basic knowledge distillation loss Ly g
and [right] our multi-anchor knowledge distillation loss Lyakp, Where the
former has a single embedding/anchor per class while the latter has multiple
anchors. For L4, a fixed anchor is used to compute the similarity with
respect to all samples, while for Lyakp an aggregated anchor is adopted.
Particularly, the combination over multiple anchors to obtain the aggregated
anchor is data-dependent (cf. Eq. (5)), where the aggregated anchor is within
the simplex (outlined by dash-dotted lines) built upon multiple anchors.

N-Y X>g
\\
\
®

Aggregated anchor

Inner product

Aggregating weight

one learnt in the previous incremental phase, respectively,
in which the computation of (x) follows the same pro-
cedure as Eq. (5) but uses both the feature extractor ¢E()
and multiple anchors {@w*}X | obtained from the previous
incremental phase. The temperature 7" here is the inter-class
temperature, which is to be distinguished from the intra-
class temperature.

As shown in Figure 1, our multi-anchor knowledge distil-
lation loss Lyaxp considers the spatial relationship between
samples and the “data-dependent” aggregated anchor w, of
each class ([right] in Figure 1), where it not only adopts the
higher-order spatial constraints (i.e. versus multiple anchors)
but also provides more flexibility due to the data-dependent
property of w.. Later in the evaluation section, our Lyakp
loss is experimentally shown to not only lower the forgetting,
but also improve the accuracy. In passing, the main difference
between our MAKD and Local Similarity Classifier in [13],
which applies Eq. (5) to classification only, is that our
MAKD uses Eq. (5) for both classification and knowledge
distillation.

Our overall objective function is summarized as:

E(JC,y) = (1 —)\)ECAM(x,y) +)\EMAKD(m) (7)

where A = |C7,|/(|C% | + |C..]) in the n-th incremental
phase to control the trade-off between Lcam and Lyakp.
Along with incremental phases, |C7,,| increases thus the
overall objective tends to strengthen Lyakp for further
enhancing the preservation of model’s knowledge on seen
classes.

IV. EXPERIMENTAL RESULTS

Datasets. We adopt CIFAR-100 and ImageNet datasets for
evaluating various methods of class-incremental learning. We
follow the experimental setting as [4] to sample 100 classes
from ImageNet to form a subset, denoted as ImageNet-sub.
Training schemes. There are two common training schemes:
training-from-scratch (TES) and training-from-half (TFH).
For TFS, the model is trained from scratch without any pre-
training. In practice, the classes in the dataset are equally
divided into N packages, which are used sequentially in N
incremental phases for training the model. For TFH, half
of the classes in the dataset are firstly used to pre-train

the feature extractor of the classification model (i.e. the
model starts class-incremental learning with a strong feature
extractor), and then the remaining half of the classes are
equally divided into N packages to be learned sequentially
in N incremental phases. For the replay buffer, it can store
up to S exemplars (S = 2000 for all our experiments unless
otherwise stated). For each of the old classes, the exemplars
to be kept in the replay buffer are selected via the herding
strategy as [4].

Evaluation metrics. We follow the evaluation metrics pro-
posed by [4], which include the incremental accuracy, the
average incremental accuracy, and the average forgetting
measure [3]. For the first two metrics, the higher the better,
whereas for the forgetting measure, the lower the better.
Implementation details. We follow iCaRL [4] to employ a
32-layer (respectively 18-layer) ResNet [20] as the feature
extractor for the experiments on CIFAR-100 (respectively
ImageNet-sub) dataset. We train the model using the SGD
optimizer with a momentum of 0.9 and set the initial learning
rate to 0.1 for all experiments. For the CIFAR-100 dataset,
each incremental phase has 250 epochs, with learning rate
decay being 0.1 after 100, 150, and 200 epochs. The weight
decay is set to 0.0005 and the batch size is 128. The
intra-class temperature 7 in Lyakp is set to 10. While for
the ImageNet-sub dataset, each incremental phase has 100
epochs, with learning rate decay being 0.1 after 30, 60, 80,
and 90 epochs. The weight decay is set to 0.0001 and the
batch size is 256. The intra-class temperature 7 in Lyakp 1S
set to 1. We adopt random cropping and horizontal flip for
all datasets as iCaRL [4]. For all experiments, the number
of anchors K per class is set to 10, the maximal margin ~y
used in CAM is set to 7, and the inter-class temperature 7'
in Lymakp is set to 2. We will release our code and models
after paper acceptance.

A. Quantitative comparison

We compare our proposed method with several state-
of-the-art or representative baselines of class-incremental
learning, including three methods (i.e. iCaRL [4], BiC [8],
WA [11]) originally proposed in the TFS scheme and another
four methods (i.e. LUCIR [6], Mnemonics [9], PODNet [13],
DDE [10]}) designed for the TFH scheme. Table I summa-
rizes the results on two datasets, two training schemes, and
various settings of the number of incremental phases IV, by
three evaluation metrics. Please note that we use 5 random
orderings of classes to construct incremental phases, and all
performance numbers are computed over these 5 orderings.

We observe that, among all the different settings, our
proposed method achieves the best or the second best per-
formance. Moreover, we see that these baseline methods
have strong preference on their specific training schemes.
For instance, with the TFH scheme, the most competitive
baselines to ours are {LUCIR, Mnemonics, PODNet, DDE},
but their performance turn out to be much worse under the

10fficial released code of DDE contains only the version with LUCIR,
thus results of this version is provided.

TABLE I
COMPARISON AMONG VARIOUS METHODS BASED ON BOTH CIFAR-100 AND IMAGENET-SUB DATASETS UNDER TWO TRAINING SCHEMES WITH
DIFFERENT TOTAL NUMBER OF INCREMENTAL PHASES: N = {5, 10,20} FOR TRAINING-FROM-SCRATCH (TFS) WHILE N = {5, 10} FOR
TRAINING-FROM-HALF (TFH). WE ADOPT THE INCREMENTAL ACCURACY AT THE END OF THE ENTIRE INCREMENTAL LEARNING (ABBREVIATED AS
last (1)), THE AVERAGE INCREMENTAL ACCURACY (ABBREVIATED AS avg. (1)), AND THE AVERAGE FORGETTING MEASURE (ABBREVIATED AS forg.
(4)) AS THE EVALUATION METRICS. RED AND GREEN INDICATE THE BEST AND THE SECOND BEST PERFORMANCE.

TFS TFH

Method N=5 10 20 5 10

last avg. forg. last avg. forg. last avg. forg. last avg. forg. last avg. forg.
CIFAR-100
iCaRL 50.1 609 24.1 43.1 55.1 205 3777 492 268 524 620 203 494 59.1 25.0
LUCIR 48.1 632 32.1 399 535 394 36.5 54.1 452 545 640 286 48.8 593 322
Mnemonics 45.1 58.7 31.6 409 534 330 39.1 502 31.6 542 633 188 55.0 63,5 169
PODNet 48.1 62.1 31.2 385 53.1 394 315 443 463 542 640 226 519 620 254
DDE 493 62.0 13.5 399 543 14.2 335 455 12.0 55.0 643 8.1 50.7 61.3 11.8
BiC 534 652 245 440 59.0 28.6 37.8 550 349 524 624 262 46.6 56.2 304
WA 582 68.5 18.0 51.9 657 239 41.6 60.0 37.6 540 626 244 431 54.6 385
Ours 58.5 69.2 193 540 67.1 214 485 639 214 56.8 651 175 5277 623 169
ImageNet-sub
iCaRL 60.7 71.5 20.0 555 67.6 202 479 62.1 285 60.7 689 202 52.8 632 29.1
LUCIR 494 66.2 39.1 344 509 485 324 522 57.1 60.1 692 292 514 63.1 346
Mnemonics 48.2 61.1 20.0 394 492 31.5 38.6 43.0 30.0 61.0 694 13.7 614 69.1 128
PODNet 587 714 239 472 619 36.3 356 504 48.6 642 73.0 20.8 59.5 68.7 27.1
DDE 545 67.0 150 424 56.5 21.0 348 473 255 624 705 8.8 593 680 114
BiC 61.0 714 255 56.1 69.6 31.0 46.9 63.8 423 59.7 687 273 512 61.6 382
WA 573 682 305 492 62.7 37.1 427 577 43.1 53.8 63.6 38.0 47.0 574 32.1
Ours 653 732 136 59.3 69.7 16.8 50.0 639 184 67.5 73.0 10.1 60.8 68.7 11.3
TABLE II

COMPARISON AMONG VARIOUS LONG-TAILED METHODS ON CIFAR-100 UNDER TWO TRAINING SCHEMES WITH DIFFERENT TOTAL NUMBER OF
INCREMENTAL PHASES: N = {5, 10,20} FOR TFS WHILE N = {5, 10} FOR TFH. WE ADOPT THE LAST INCREMENTAL ACCURACY (ABBREVIATED
AS last (1)), THE AVERAGE INCREMENTAL ACCURACY (ABBREVIATED AS avg. (1)), AND THE AVERAGE FORGETTING MEASURE (ABBREVIATED AS
forg. (})) AS THE EVALUATION METRICS. RED AND GREEN INDICATE THE BEST AND THE SECOND BEST PERFORMANCE.

TFS TFH
Method N=35 10 20 5 10

last avg. forg. last avg. forg. last avg. forg. last avg. forg. last avg. forg.

Base 45.1 62.5 442 36.0 56.5 51.8 299 514 578 40.4 53.8 50.2 349 485 549
Base+RS 52.8 66.0 29.0 455 62.1 29.7 404 59.3 245 49.6 60.7 25.8 43.8 56.0 24.1
BiC 534 652 245 440 59.0 28.6 37.8 550 349 524 624 262 46.6 562 304
WA 58.2 685 18.0 519 657 239 41.6 60.0 37.6 540 626 244 43.1 546 385
Base+CAM 57.8 69.0 213 52.0 659 247 445 60.6 253 564 65.6 19.8 504 615 204
Ours 585 692 193 540 67.1 214 485 639 214 56.8 65.1 175 527 623 169

TFS scheme. This observation indicates that these methods
highly rely on having a strong feature extractor to start with
in order to achieve good performance for the task of class-
incremental learning. On the other hand, {BiC, WA} perform
closely to our scheme in the TFS scheme, but are much
worse than ours in the TFH scheme. In comparison, our
proposed method shows consistently superior performance
in both training schemes across CIFAR-100 and ImageNet-
sub datasets, confirming its superiority and generalizability.

Confusion matrices comparison. Figure 2 visualizes the
confusion matrices of classification obtained from Base,
BiC, WA, and our full model. Base is simply trained by
using L5 and Lg; it does not particularly address the class
imbalance problem. In contrast, BiC and WA tackle the class-

imbalance issue by correcting the bias related to the fully-
connected classifier at the end of each incremental phase. As
seen, our proposed method shows much less bias towards the
new classes, suggesting its superior capability of addressing
the class imbalance problem.

Incremental accuracy. Figure 3 and Figure 4 plot the
incremental accuracy along the incremental learning phases
for CIFAR-100 and ImageNet-sub datasets, respectively. The
results presented include both training-from-scratch (TFS)
and training-from-half (TFH) schemes and a variety of
incremental learning phases N. The average incremental
accuracy of each method is shown in parentheses. Note that
each point in the plots is averaged over five orderings of
classes and an error bar is used to indicate the standard

(a) Base

(b) BiC (c) WA (d) Ours

Fig. 2. Comparison between various methods in terms of confusion matrix (where all entries v in the matrix are transformed by log(1 + v) for better
visualization). Experiments are conducted on the CIFAR-100 dataset under the scheme of TFS with the number of incremental phases N = 20. These
matrices show that the baseline methods (e.g. Base, BiC [8], and WA [11]) still suffer from the class imbalance problem as their resultant classification

models have significant bias (related to large confusion) towards the new classes being added in the last few incremental phases.

O
o

icaRL (60.9)
& LUCIR (63.2)
—¥- Mnemonics (58.7)
~#- PODNet (62.1)
~&- BIC (65.2)
4 WA (68.5)
—&- Ours (69.2)

O
o

~
w
~
(6]

H

(O]
»
w

Incremental accuracy (%)
o
o
Incremental accuracy (%)
o
o

w
o

Vo)
o

iCaRL (55.1)

—&— LUCIR (53.5)
¥~ Mnemonics (53.4)
~#- PODNet (53.1)
—%- BIC (59.0)
—4— WA (65.7)
—&- Ours (67.1)

iCaRL (49.2)

—&— LUCIR (54.1)

- Mnemonics (50.2)
~#i- PODNet (44.3)
% BIC (55.0)
—¥- WA (60.0)
—8- Ours (63.9)

~
(6]

»
wu

Incremental accuracy (%)
(o))
o

3010 20 30 40 50 60 70 80 90 100
Number of classes

(@) TFS, N =5

10 20 30 40 50 60 70 80 90 100
Number of classes

(b) TFS, N = 10

w
o

10 20 30 40 50 60 70 80 90100
Number of classes

(¢) TFS, N = 20

(00}
o

iCaRL (62.0)

—&— LUCIR (64.0)
~¥- Mnemonics (63.3)
—#- PODNet (64.0)
~&- BIC (62.4)
4 WA (62.6)
—#- Ours (65.1)

~
o

(6]
o

Incremental accuracy (%)
o))
o

IS
o

(00}
o

icaRL (59.1)

&~ LUCIR (59.3)
~¥- Mnemonics (63.5)
—i#- PODNet (62.0)
~&- BIC (56.2)
4~ WA (54.6)
—&- Ours (62.3)

~
o

u
o

Incremental accuracy (%)
o
o

50 60 70 80 90
Number of classes

(d) TFH, N =5

100

Fig. 3.

IS
o

50 60 70 80 90
Number of classes

(e) TFH, N = 10

100

Incremental accuracy on CIFAR-100 dataset with TFS (top row) and TFH (bottom row). The average incremental accuracy of each method is

shown in parentheses. In most of the settings, our method achieves the highest incremental accuracy at the completion of the entire incremental training

(see the rightmost point of each curve).

deviation. In most of the settings, our method achieves the
best incremental accuracy at the end of incremental training
(i.e. the highest accuracy at the rightmost point in each plot).
On ImageNet-sub dataset, the baseline methods show better
incremental accuracy than ours in the first few incremental
phases; however, their performances drop quickly with the
increasing number of learnt classes. The result suggests that
they suffer from catastrophic forgetting. In comparison, the
performance of our method decreases at a relatively slower
rate, showing that our method is more robust to forgetting.
This observation is in line with the results in Table I, where
our method shows the lowest average forgetting measure in
most of the test cases.

B. Ablation study

The distribution of training data versus the CAM. We
visualize how (1) the number of training data per class and
(2) the value of our continually-adapted margin A (in our

proposed CAM technique) vary with the incremental learning
phase. The results are reported for the CIFAR-100 dataset
and under the TFS scheme.

Figure 5 shows that for those old classes, the number of
per-class training data (the red curve) decreases with the
incremental learning phase. This is because of the limited
size (S = 2000) of the replay buffer. With the increasing
number of seen classes, the number of exemplars that can
be stored for each seen class decreases. On the other hand,
the number of training data of each new class is maintained
at a fixed level (the blue curve), i.e. 500 training samples
for CIFAR-100 dateset. The increasing gap between the red
and blue lines along the incremental phase indicates the
increasing imbalance between the training data of the old
and new classes.

Figure 6 presents the resulting change of margin in our
CAM design. As described in the main paper, when the class

? 100 iCaRL (71.5) ? 100 iCaRL (67.6) ? 100 iCaRL (62.1)
£ 90 A | 00 T wemomcrto | = 901 ¢ o Vi i
3 B 9 3 e o Bt
E 80 +WA(63:2) g 80 + WA(62:7) g 80 I + WA(57:7)
3 —&— Ours (73.2) —&— Ours (69.7) —&— Ours (63.9)
g 70 g 70 g 70
T 60 T 60 s 00
S 5 $ 50
2 50 2 50 2
S 40 S 40 G
£ £ £ 30
3010 20 30 40 50 60 70 80 90 100 30 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90100

Number of classes

Number of classes

Number of classes

(a) TFS, N =5 (b) TFS, N = 10 (c) TFS, N = 20

— 90 iCaRL (68.9) —~ 90 iCaRL (63.2)

X —&— LUCIR (69.2) X —&— LUCIR (63.1)

- - Mnemonics (69.4) ~ ¥~ Mnemonics (69.1)

280 Tommeme | 280 3 e

o 4 WA (63.6) o 4 WA (57.3)

o —&— Ours (73.0) o —&— Ours (68.7)

3 570

© ©

€ < 60

[(9]

: 60 : i

e + S50 —

g g -
20 50 60 70 80 90 100 50 60 70 80 90 100

Number of classes
(d) TFH, N =5
Fig. 4.

Number of classes

(e) TFH, N = 10

Incremental accuracy on ImageNet-sub dataset with TFS (top row) and TFH (bottom row). The average incremental accuracy of each method

is shown in parentheses. Our method obtains a less steep curve as compared with the other baseline methods, which indicates less forgetting across the

incremental learning phases.

500{ o—e—o—0o—0—0—0—0—0
9 400
o 300 —— old class
?ELZOO —e— new class
©
100

0
2 3456 7 8 910
phase

Fig. 5. Demonstrates that the number of exemplars per old class decreases
with the increasing learning phase due to the fixed-size of replay buffer,
thus increases the data imbalance between the old and new classes.

c belongs to C7};, the margin A} is equal to v (and v =7
here). According to Figure 5, the new classes usually have
more training data than the old classes. Therefore, the term
(5"/e™)% in our definition of the CAM becomes less than
1 (as € > 5™), the margin of each new class thus become
less than «y (the blue curve in Figure 6). The growing gap
between the margins of the old and new classes indicates
that our continually-adapted margin can adapt the margin of
new classes to address the increased data imbalance along
the learning phases. In addition, the margin value in our
paper could be further explored. There are many factors in
incremental learning that affect the optimal value for margins
(e.g. the total number of incremental phases N, training
schemes, and the maximal size of exemplars S). We believe
that there could exist more suitable design of margin for the
class-incremental learning to strive for a better class balance
and leave this exploration for future work.

Data imbalance: First, we investigate how the three types

71 k-—-k---A---A-——k -k -—k---k---A
6
c | e
S| s --a-- old class
=5 \\\
© . --e-- new class
£ .
4 \1_.
‘*""---o--_.
3

2 3 45 6 7 8 910
phase

Fig. 6. Shows that our continually-adapted margin (CAM) is able to adapt
the margin A of new classes to address the increased data imbalance along
the learning phases.

of long-tailed recognition methods—namely, data resampling,
decoupled classifier training, and margin loss—perform in
terms of addressing the data imbalance issue in class-
incremental learning. We experiment these methods on a
base model (Base), which is trained with £.;s (Eq. (1)) and
Liq (Eq. (2)). In the following, Base+RS refers to the data
resampling method, where the old class data are resampled
from the accessible exemplars to match the amount of new
class data; WA [11] and BiC [8] are methods with the
decoupled classifier training, where the training is done in
two stages with the bias correction applied to the classifier
in the second stage; and Base+CAM represents the margin
loss methods. We evaluate their performance on CIFAR-
100, under the TFS and TFH schemes for a varied number
of N. As seen in Table II, Base+CAM performs among
the top-2 across all settings in terms of all three evaluation
metrics. Additionally, the results of our full model shows that
Base+CAM, when extended to our full model, can be fur-

920

804

70

604

50
Base
—— Base+CAM
—=— Base+MAKD
—— Full

incremental accuracy (%)

404
— old

---= new

304

1 2 3 4 5 6 7 8 9 10
phase

Fig. 7. Comparison on different model variants to study the contributions
of CAM and MAKD to the accuracy on new and old classes. Experiments
are based on CIFAR-100 dataset and the TFS scheme, with N = 10.

ther improved by the proposed MAKD. In comparison, WA
cannot benefit from MAKD since it requires the classifier to
be a single fully-connected layer.

Accuracy vs. forgetting: In Table II, a comparison between
Base+CAM and Ours shows that MAKD improves accuracy
while mitigating the forgetting. Often we have one method
performing better than another in terms of accuracy while
showing worse forgetting, or the vice versa. One example is
iCaRL [4] vs. BiC [8] in Table I.

Contributions of CAM and MAKD: In this section, we
conduct an ablation experiment to analyze the individual
contributions of CAM and MAKD, via comparison among
several variants of our model: (a) Base trained with the clas-
sification loss L.;s and knowledge distillation loss Lyg4; (b)
Base+CAM extends from Base to add CAM for computing
the posteriors used in L. In this variant, there is only one
anchor per class (i.e. MAKD is disabled); (c) Base+MAKD
introduces multi-anchors into both L., and L4, which
becomes Lyvakp. In this variant, CAM is disabled; and (d)
Full indicates our full model, where both Lcam and Lyakp
are used. The experiment is conducted on CIFAR-100 under
the TFS scheme with NV = 10. In Figure 7, the incremental
accuracy on new and old classes is presented in pairs of
dashed and solid lines. The results of different variants are
visualized in separate colors. From the figure, two main
observations are made. (1) Base vs. Base+CAM.: it is seen
that the gap between the blue lines is much larger than that
between the red lines, which suggests CAM is able to achieve
more balanced accuracy on new and old classes. The same
observation holds true when MAKD is present, by comparing
the gap between the green lines (Base+MAKD) with that
between the purple lines (Full). (2) Base vs. Base+MAKD:
the comparison of the blue and green solid lines shows that
MAKD is able to improve the accuracy on old classes while
maintaining similar performance on new classes (the blue
and green dashed lines). The same observation carries over
when CAM is enabled.

V. CONCLUSIONS

In this work of incremental learning, to address the class
imbalance issue which gets more serious as incremental

phases proceed, we introduce CAM, which continuously
adjusts the margins for all classes in order to accommo-
date different degrees of class imbalance over incremental
phases. We also propose MAKD, which aims to preserve
both the higher-order and data-dependent spatial relation-
ships between the features of samples and the class em-
beddings across incremental phases, thereby maintaining the
knowledge and the discrimination of the seen/learnt classes.
Experiments show that these simple yet critical solutions
improve both accuracy and forgetting metrics across various
settings and datasets.

Acknowledgement This work is supported by NSTC 111-
2628-EA49-018-MY4 & MOST 110-2221-E-A49-065-MY3.

REFERENCES

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus
Rohrbach, and Tinne Tuytelaars, “Memory aware synapses: Learning
what (not) to forget,” in ECCV, 2018.

[2] Friedemann Zenke, Ben Poole, and Surya Ganguli,
learning through synaptic intelligence,” JMLR, 2017.

[3] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and

Philip HS Torr, “Riemannian walk for incremental learning: Under-

standing forgetting and intransigence,” in ECCV, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and

Christoph H Lampert, “icarl: Incremental classifier and representation

learning,” in CVPR, 2017.

[5] Francisco M Castro, Manuel J Marin-Jiménez, Nicolds Guil, Cordelia
Schmid, and Karteek Alahari, “End-to-end incremental learning,” in
ECcCV, 2018.

[6] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua
Lin, “Learning a unified classifier incrementally via rebalancing,” in
CVPR, 2019.

[7]1 Zhizhong Li and Derek Hoiem, “Learning without forgetting,” TPAMI,
2017.

[8] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, and Yun Fu, “Large scale incremental learning,” in
CVPR, 2019.

[9] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru
Sun, “Mnemonics training: Multi-class incremental learning without
forgetting,” in CVPR, 2020.

[10] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and
Hanwang Zhang, “Distilling causal effect of data in class-incremental
learning,” in CVPR, 2021.

[11] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia,
“Maintaining discrimination and fairness in class incremental learn-
ing,” in CVPR, 2020.

[12] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and
Ling Shao, “Striking the right balance with uncertainty,” in CVPR,
2019.

[13] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and
Eduardo Valle, “Podnet: Pooled outputs distillation for small-tasks
incremental learning,” in ECCV, 2020.

[14] Jong-Yeong Kim and Dong-Wan Choi, “Split-and-bridge: Adapt-
able class incremental learning within a single neural network,”
ArXiv:2107.01349, 2021.

[15] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski, “A sys-
tematic study of the class imbalance problem in convolutional neural
networks,” Neural Networks, 2018.

[16] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert, “Learning to
model the tail,” in NeurIPS, 2017.

[17] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie,
“Class-balanced loss based on effective number of samples,” in CVPR,
2019.

[18] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert
Gordo, Jiashi Feng, and Yannis Kalantidis, “Decoupling representation
and classifier for long-tailed recognition,” ArXiv:1910.09217, 2019.

[19] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu
Ma, “Learning imbalanced datasets with label-distribution-aware
margin loss,” ArXiv:1906.07413, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in CVPR, 2016.

“Continual

[4

=

