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This supplementary document provides the following
additional materials and results to assist with the under-
standing of our TransTIC:

• Implementation details in Section A1;

• Rate-accuracy comparison with the state-of-the-art tra-
ditional codec VVC in Section A2;

• More ablation experiments in Section A3;

• More qualitative results in Section A4.

A1. Implementation Details
A1.1. Perceptual Loss

To train the prompt generator network gp and the
decoder-side prompts for downstream recognition tasks, the
distortion measure d(·, ·) in Eq. (3) of the main paper is
chosen to be the perceptual loss. Specifically, the percep-
tual loss is evaluated based on a pre-trained ResNet50 [2],
Faster R-CNN [6] and Mask R-CNN [1] for classification,
object detection and instance segmentation, respectively.
Fig. A1 illustrates a ResNet50-based Feature Pyramid Net-
work (FPN), which serves as the feature extractor in Faster
R-CNN and Mask R-CNN. For the classification task, the
perceptual loss is evaluated in the feature space of F1, F2,
F3, and F4:

d(x, x̂) =
1

4
·

4∑
l=1

MSE(Fl(x), Fl(x̂)), (1)

where x and x̂ are the input and decoded images, respec-
tively. For the tasks of object detection and instance seg-
mentation, the perceptual loss is evaluated in the feature
space of P2, P3, P4, P5, and P6:

d(x, x̂) =
1

5
·

6∑
l=2

MSE(Pl(x), Pl(x̂)). (2)

Figure A1. Architecture of Resnet50-based FPN, which shows the
features selected for evaluating the perceptual loss.

Figure A2. Architecture of the extractor in our prompt generator
gp.

In Fig. A1, the network weights are initialized using a sepa-
rate pre-trained model, depending on the downstream task.



Figure A3. Architecture of TIC+SFT.

Figure A4. Architecture of TIC+channel selection.

A1.2. Extractor in Prompt Generator

Fig. A2 details the network architecture of the extractor
in our task-specific prompt generator gp (see Fig. 2(a) in the
main paper). It has a U-Net [7]-like structure.

A1.3. TIC+SFT

Fig. A3 depicts the network architecture of the baseline
method TIC+SFT [9], which shares the same fixed pre-
trained base codec (the parts in blue color) as our TransTIC.
TIC+SFT utilizes spatial feature transform (SFT) layers to
perform element-wise affine transformation of the feature
maps in ga, gs, and ha for transferring the base codec from
human perception to downstream machine tasks. It fol-
lows [8] in using convolutional neural networks to produce
the element-wise affine parameters γ, β for each SFT layer.

A1.4. TIC+channel selection

Fig. A4 shows the architecture of TIC+channel selec-
tion [5]. Based on a pre-trained codec for human percep-
tion, TIC+channel selection introduces two additional task-
specific modules for machine perception. As shown, a gate

module first performs adaptive channel selection on the im-
age latent y through multiplying each of its channels by a bi-
nary value. Then, a transform module converts the masked
image latent into a set of feature maps suitable for the down-
stream recognition network.

A2. Comparison with VVC
Fig. A5 (a) compares our base codec, TIC, with the state-

of-the-art traditional codec VVC (VTM 16.0 intra coding)
on the standard image compression task (i.e. for human per-
ception). The dataset is Kodak [4]. As shown, TIC shows
worse PSNR results than VVC on the standard reconstruc-
tion task. It is thus not surprising to see that TIC performs
worse than VVC on the remaining recognition tasks. How-
ever, based on TIC, our TransTIC achieves much better rate-
accuracy performance than VVC (Fig. A5 (b)(c)(d)). This
result confirms the effectiveness of our prompting tech-
nique.

A3. More Ablation Experiments
A3.1. Prompt Injection: Deep vs. Shallow

This ablation experiment tests another variant of prompt
injection. Our TransTIC injects prompts to every Swin-
Transformer layer in an IP-type or TP-type STB, which
is similar to VPT-Deep in [3]. Another possible way of
injecting prompts is to insert them only at the first Swin-
Transformer layer of a STB. These prompts are also updated
in the multi-head self-attention step. This setting is analo-
gous to VPT-shallow in [3]. The architectural difference be-
tween Deep and Shallow is shown in Fig. A6. From Fig. A7,
Deep performs comparably to Shallow on the classification
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Figure A5. Performance comparison between our TransTIC and VVC under various tasks.

Figure A6. Architecture comparison of Deep and Shallow IP-type
STB.

(a) Classification (b) Object Detection

Figure A7. Ablation on prompt injection: Deep vs. Shallow.

task, and performs slightly better than Shallow on the detec-
tion task. In Table A1, Deep has comparable kMAC/pixel
and model size to Shallow. We thus choose Deep in our
TransTIC for its better rate-accuracy performance.

A3.2. IP-type STBs in the Decoder

This ablation study introduces IP-type STBs to the de-
coder. Currently, our TransTIC uses only TP-type STBs in
the decoder because the input image is not accessible on the
decoder side. One alternative to constructing IP-type STBs
on the decoder side is to utilize the decoded latent ŷ to gen-
erate instance-specific prompts (Fig. A8)). From Fig. A9,
we see that introducing such IP-type STBs to the decoder

Table A1. Comparison of the kMACs/pixel and model size. Bold
indicates our final design choices.

Section Method kMACs/pixel Params (M)
Encoder Decoder Encoder Decoder

TIC 142.54 188.52 3.65 3.86

A3.1 Shallow 322.80 209.51 4.65 3.88
Deep 332.03 202.60 5.24 3.89

A3.2 Enc: IP, Dec: IP 332.03 276.39 5.24 5.06
Enc: IP, Dec: TP 332.03 202.60 5.24 3.89

A3.3
4 prompts 302.06 192.04 5.24 3.87

16 prompts 332.03 202.60 5.24 3.89
64 prompts 451.91 244.87 5.24 3.98

A3.4
STB-1234 332.03 202.60 5.24 3.89

STB-12 332.03 200.80 5.24 3.87
STB-34 332.03 190.32 5.24 3.88

A3.5
Enc: IP, Dec: - 332.03 188.52 5.24 3.86

Enc: - , Dec: TP 142.54 202.60 3.65 3.89
Enc: IP, Dec: TP 332.03 202.60 5.24 3.89

improves the rate-accuracy performance on the classifica-
tion task, but performs comparably to TP-type STBs on the
object detection task. From Table A1, as compared to TP-
type STBs, IP-type STBs lead to a 36% increase in the de-
coder’s kMACs/pixel and a 30% increase in the decoder’s
model size. Because low decoding complexity and small
decoder size are of importance, we choose to use TP-type
STBs in the decoder.

A3.3. Prompt Numbers

Fig. A10 ablates the effect of the number of prompts
used in a Swin-Transformer window. When the number
of prompts decreases from 64 to 4, the rate-accuracy per-
formance drops marginally on the more complicated detec-
tion task. According to Table A1, the kMACs/pixel and
model size of the model with 16 prompts is close to those
of the model with 4 prompts. We thus choose 16 prompts to
strike a balance between the rate-accuracy performance and
model complexity.

A3.4. Prompt Depth of the Decoder

Fig. A11 analyzes which and how many STBs to inject
prompts on the decoder side. As shown, injecting task-



Figure A8. Architecture of IP-type STBs in the decoder.
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Figure A9. Ablation on decoder side STB.

(a) Classification (b) Object Detection

Figure A10. Ablation on the number of prompts.

specific prompts to all STBs (STB-1234) appears to be a
better choice than the other variants, namely, STB-12 and
STB-34, in terms of the rate-accuracy performance. STB-
12 refers to injecting prompts to the two STBs closer to the
decoded image x̂ while STB-34 refers to injecting them to
STBs closer to the image latent. From Fig. A11, STB-12
performs better than STB-34. Because STB-1234 has only
slightly higher kMAC/pixel and model size than STB-12
(Table A1), we choose STB-1234 as our final design.

A3.5. Prompting Encoder vs. Decoder

Fig. A12 compares the effectiveness of introducing IP-
type STBs to the encoder and TP-type STBs to the decoder.
As shown, introducing prompts to both the encoder and de-
coder achieves the best rate-accuracy performance. We also
see that prompting on the encoder side is more effective
than prompting on the decoder side. This result is intuitively
agreeable because prompting on the encoder side allows
the compressed bitstream to be tailored for the downstream

(a) Classification (b) Object Detection

Figure A11. Ablation on the prompt depth of the decoder.

(a) Classification (b) Object Detection

Figure A12. Ablation on effectiveness of prompt on encoder and
decoder sides.

task. The complexity characteristics of these variants are
provided in Table A1.

A4. More Qualitative Results
Fig. A13, Fig. A14, and Fig. A15 provide more qual-

itative results, comparing the decoded images and the bit
allocation maps produced by the competing methods. As
shown, TIC, the codec optimized for human perception,
tends to allocate more bits to complex regions, even if those
regions are less relevant (e.g. background) to the down-
stream recognition tasks. In contrast, the other methods,
which target machine perception, attempt to shift coding
bits from the background regions to the foreground objects.
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Figure A13. Visualization of the decoded images (the first row) and the bit allocation maps (the second row) of the image latent ŷ for the
classification task. The rightmost image of the second row shows the quality map used for the ROI method. The text below each map
denotes the corresponding bit rate / PSNR / prediction result, with O and X indicating correct and false classification, respectively.
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Figure A14. Visualization of the decoded images (the first row) and the bit allocation maps (the second row) of the image latent ŷ for the
object detection task. The rightmost image of the second row shows the quality map used for the ROI method. The text below each map
denotes the corresponding bit rate / PSNR.
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Figure A15. Visualization of the decoded images (the first row) and the bit allocation maps (the second row) of the image latent ŷ for the
instance segmentation task. The rightmost image of the second row shows the quality map used for the ROI method. The text below each
map denotes the corresponding bit rate / PSNR.


