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1. Network Architectures

There are several networks used in our proposed model,
including Eexp, Eid, Dflow, Dexp, Did, and two MLPs (i.e.
MLPde and MLPre). Figure 2 presents the network architec-
ture of Eid and Eexp; Figure 3 presents the network archi-
tecture of Dflow; Figure 4 presents the network architecture
of Dexp. Figure 5 presents the network architecture of Did
and two MLPs. More detailed descriptions are provided in
the caption of each figure. Notice that we adopt leakyReLU
with leakage 0.1 as our activation function used in all the
networks, but we omit it in the figures for simplicity. More-
over, there is a channel attention module which is heavily
used in the proposed networks, its visualization is provide
in the Figure 1. This channel attention module is inspired
from self-attention [3], but we basically use it to compute
relations between channels instead of spatial pixels as in [3].

2. More Intermediate Network Outputs

We show more intermediate network outputs in Figure 6.
Figure 6 presents intermediate network outputs from test
dataset of Voxceleb2. The proposed method is able to gen-
erate consistent mean faces as well as the neutral faces with
some important facial-attributes well preserved. It suggests
the effectiveness of the proposed method.

3. More Image-to-Image Translation Results

We show more image-to-image translation results with
different sources of motion sequences in Figure 7. For
translation, we adopt different target images from test
dataset of Voxceleb2. The results demonstrate that our pro-
posed method can transfer the head pose and expression
from the source to the target without noticeable artifacts.

4. Ablation Study

In this section, we perform ablation experiments for re-
sponding the advises from the anonymous reviewers. As
shown in Table 1, the best result is achieved by using
Vox1+2, 64 × 64 image size and adopt other frames in the
video as transformation (T ).

Dataset Img Size Transform (T ) RAF Acc(%)
Vox 1 64× 64 other frames 66.63
Vox 1 64× 64 horizontal flip 63.52
Vox 1 128× 128 other frames 64.05

Vox 1+2 64× 64 other frames 71.01
Table 1. The ablation study. We show the dataset size, image size,
and transformation can affect the power of extracted representa-
tions.

5. Identity preservation in generated images
Regarding the concerns on the identity preservation in

our frontalization and translation tasks of facial images
from the anonymous reviewers, we perform the person ver-
ification on our frontalized/translated results with respect to
their corresponding original images (1000 pairs in total) and
achieve the accuracy of 69.2%, which is close to our per-
formance (73.72%) of person recognition shown in Table
3, demonstrating that the identity is well-preserved during
frontalization/translation by our proposed method.
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Name Layer setting Output dimension

input 64 × 64 × 3

conv1 7 × 7, 64, s2 32 × 32 × 64

conv2_0 3 × 3, 64, s2 16 × 16 × 64

conv2_1 3 × 3, 64 16 × 16 × 64

Self-attention 16 × 16 × 64

conv3_0 3 × 3, 128, s2 8 × 8 × 128

conv3_1 3 × 3, 128 8 × 8 × 128

Self-attention 8 × 8 × 128

conv4_1 3 × 3, 256, s2 4 × 4 × 256

conv4_2 3 × 3, 256 4 × 4 × 256

Self-attention 4 × 4 × 256

conv5_1 3 × 3, 256, s2 2 × 2 × 256

conv5_2 3 × 3, 256 2 × 2 × 256

Flatten

fc1 256 256

fc2 256 256

Ouptut Tanh() 256
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Figure 1. The channel attention module and residual basic block.
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Architecture of 𝐸exp and 𝐸id

Figure 2. The network architecture of Eid and Eexp. We also present the size of convolution kernels and number of features in the
figure. Each convolution/fully-connected layer is followed by a leakyReLU with leakage 0.1, except the last one. “conv st.2” denotes
the convolution layer with stride 2.
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R
es

id
u
al

 B
as

ic
 B

lo
ck

R
es

id
u
al

 B
as

ic
 B

lo
ck

64

3 × 3 1 × 1

64

output

flow

Figure 3. The network architecture of Dflow. We also present the size of convolution kernels and number of features in the figure. Each
convolution/fully-connected layer is followed by a leakyReLU with leakage 0.1, except the last one which is followed by a Tanh. We use
PixelShulffle [2] for increasing the spatial resolution of the features after the fully-connected layer.
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Figure 4. The network architecture of Dexp. We also present the size of convolution kernels and number of features in the figure. Each
convolution layer is followed a leakyReLU with leakage 0.1 except the last one.
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Figure 5. The network architecture ofDid, and the MLP. We also present the size of convolution kernels and number of features in the figure.
Each convolution/fully-connected layer is followed by a leakyReLU with leakage 0.1 except the last one. The MLPs learn AdaIN [1] affine
parameters (µ and σ). IN: instance normalization.
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Figure 6. We show intermediate network outputs of different persons from test datatset of Voxceleb2.
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Figure 7. Image-to-image translation results on the facial motion
sequence (as the source of face motion). We adopt different target
images from test dataset of Voxceleb2.
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